
Learning Signals with
Simple Fourier Transforms

Christopher Musco, Princeton University

1

today’s topic

Solving an old problem in signal processing using tools from
randomized algorithms.

(matrix sketching, randomized SVD, Laplacian linear systems.)

2

today’s topic

Solving an old problem in signal processing using tools from
randomized algorithms.

(matrix sketching, randomized SVD, Laplacian linear systems.)

2

basic problem

Observe signal y at sample locations t1, . . . , tq ∈ [0, T].

(possibly with noise)

3

basic problem

Observe signal y at sample locations t1, . . . , tq ∈ [0, T].
(possibly with noise)

3

basic problem

Goal: Recover signal ỹ which is close to y.

4

basic problem

Central questions:

• How many samples do we need to approximately
reconstruct y on [0, T]?

• How can we compute and represent ỹ in a
computationally efficient way?

5

continuous signal reconstruction

Naively, this problem is ill-posed.

We need to assume y is smooth or structured in some way.

6

continuous signal reconstruction

Naively, this problem is ill-posed.

We need to assume y is smooth or structured in some way.

6

fourier transform structure

In science and engineering, we often impose structure by
assuming y has a “simple” Fourier transform.

ŷ(ξ) =
∫ ∞

−∞
y(t)e−2πitξ dt.

7

bandlimited signals

Standard assumption: y is bandlimited, i.e. ŷ(ξ) = 0 for |ξ| > F.

Shannon, Whitaker, Nyquist, Kotelnikov – foundations of
modern signal processing and information theory.

8

bandlimited signals

Standard assumption: y is bandlimited, i.e. ŷ(ξ) = 0 for |ξ| > F.

Shannon, Whitaker, Nyquist, Kotelnikov – foundations of
modern signal processing and information theory.

8

bandlimited signal reconstruction

Shannon-Nyquist Theorem: O(F) samples per second suffice.

Uniform Nyquist sampling.

Sinc interpolation.

ỹ(t) =
∞∑

s=−∞
sinc(y(t+ s) · F)

9

bandlimited signal reconstruction

Shannon-Nyquist Theorem: O(F) samples per second suffice.

Uniform Nyquist sampling. Sinc interpolation.

ỹ(t) =
∞∑

s=−∞
sinc(y(t+ s) · F)

9

bandlimited signal reconstruction

Shannon-Nyquist Theorem: O(F) samples per second suffice.

Uniform Nyquist sampling. Sinc interpolation.

ỹ(t) =
∞∑

s=−∞
sinc(y(t+ s) · F)

9

bandlimited signal reconstruction

Shannon-Nyquist Theorem: O(F) samples per second suffice.

Uniform Nyquist sampling. Sinc interpolation.

ỹ(t) =
∞∑

s=−∞
sinc(y(t+ s) · F)

9

bandlimited signal reconstruction

Shannon-Nyquist Theorem: O(F) samples per second suffice.

Uniform Nyquist sampling. Sinc interpolation.

ỹ(t) =
∞∑

s=−∞
sinc(y(t+ s) · F)

9

problems with sinc interpolation

Sinc interpolation doesn’t actually work over [0, T]...

(in theory or practice)

ỹ(t) =
FT∑
s=0

sinc(y(t+ s) · F)

O(FT/ϵ) samples for ϵ error at best.

10

problems with sinc interpolation

Sinc interpolation doesn’t actually work over [0, T]...
(in theory or practice)

ỹ(t) =
FT∑
s=0

sinc(y(t+ s) · F)

O(FT/ϵ) samples for ϵ error at best.

10

problems with sinc interpolation

Sinc interpolation doesn’t actually work over [0, T]...
(in theory or practice)

ỹ(t) =
FT∑
s=0

sinc(y(t+ s) · F)

O(FT/ϵ) samples for ϵ error at best.

10

problems with sinc interpolation

Sinc interpolation doesn’t actually work over [0, T]...
(in theory or practice)

ỹ(t) =
FT∑
s=0

sinc(y(t+ s) · F)

O(FT/ϵ) samples for ϵ error at best.
10

prolate spheroidal wave functions

This problem was resolved in the 1960s (+ some):
Theorem (Slepian, Landau, Pollak and Rokhlin et al.)
Suppose y = F∗x for bandlimited x and we observe y+ n.
With O(FT+ log(1/ϵ)) samples, it’s possible to recover ỹ with:

∥y− ỹ∥2T ≤ ϵ∥x∥22 + c · ∥n∥22

Prolate spheroid wave functions
provide a smooth basis for
bandlimited interpolation.

Can project to this basis with numerical quadrature.

11

prolate spheroidal wave functions

This problem was resolved in the 1960s (+ some):
Theorem (Slepian, Landau, Pollak and Rokhlin et al.)
Suppose y = F∗x for bandlimited x and we observe y+ n.
With O(FT+ log(1/ϵ)) samples, it’s possible to recover ỹ with:

∥y− ỹ∥2T ≤ ϵ∥x∥22 + c · ∥n∥22

Prolate spheroid wave functions
provide a smooth basis for
bandlimited interpolation.

Can project to this basis with numerical quadrature.

11

prolate spheroidal wave functions

This problem was resolved in the 1960s (+ some):
Theorem (Slepian, Landau, Pollak and Rokhlin et al.)
Suppose y = F∗x for bandlimited x and we observe y+ n.
With O(FT+ log(1/ϵ)) samples, it’s possible to recover ỹ with:

∥y− ỹ∥2T ≤ ϵ∥x∥22 + c · ∥n∥22

Prolate spheroid wave functions
provide a smooth basis for
bandlimited interpolation.

Can project to this basis with numerical quadrature.

11

prolate spheroidal wave functions

This problem was resolved in the 1960s (+ some):
Theorem (Slepian, Landau, Pollak and Rokhlin et al.)
Suppose y = F∗x for bandlimited x and we observe y+ n.
With O(FT+ log(1/ϵ)) samples, it’s possible to recover ỹ with:

∥y− ỹ∥2T ≤ ϵ∥x∥22 + c · ∥n∥22

Prolate spheroid wave functions
provide a smooth basis for
bandlimited interpolation.

Can project to this basis with numerical quadrature. 11

non-uniform sampling

Important conclusion: For interpolation on a finite interval
[0, T], uniform sampling is suboptimal.

Non-uniform distribution required to get Õ(FT) samples.

Uniform would give Õ(F2T2) or O(FT/ϵ).

Not surprising if you think about polynomial interpolation.

12

non-uniform sampling

Important conclusion: For interpolation on a finite interval
[0, T], uniform sampling is suboptimal.

Non-uniform distribution required to get Õ(FT) samples.

Uniform would give Õ(F2T2) or O(FT/ϵ).

Not surprising if you think about polynomial interpolation.

12

non-uniform sampling

Important conclusion: For interpolation on a finite interval
[0, T], uniform sampling is suboptimal.

Non-uniform distribution required to get Õ(FT) samples.

Uniform would give Õ(F2T2) or O(FT/ϵ).

Not surprising if you think about polynomial interpolation.

12

non-uniform sampling

Important conclusion: For interpolation on a finite interval
[0, T], uniform sampling is suboptimal.

Non-uniform distribution required to get Õ(FT) samples.

Uniform would give Õ(F2T2) or O(FT/ϵ).

Not surprising if you think about polynomial interpolation. 12

what about other structure?

What about Fourier structure beyond a bandlimit?

13

fourier transform structure

E.g. y is Fourier sparse. ŷ(ξ) is supported on k frequencies.

Compressed sensing, applications in medical imaging,
microscopy, RADAR, etc.

14

fourier transform structure

E.g. y is multiband, i.e. ŷ(ξ) supported on k intervals.

15

fourier transform structure

Bayesian perspective: instead of “allowing” or “disallowing”
certain frequencies, we can consider any prior distribution on

y’s power spectral density.

Bandlimited.

vs.

Gaussian prior.

16

fourier transform structure

Bayesian perspective: instead of “allowing” or “disallowing”
certain frequencies, we can consider any prior distribution on

y’s power spectral density.

Bandlimited.

vs.

Cauchy-Lorentz Prior.

16

other priors

Smooth penalties underly Gaussian process regression,
kriging, kernel ridge regression, etc.

Countless applications in environmental science, geostatistics,
image processing, economics, time series analysis, etc.

17

other priors

Smooth penalties underly Gaussian process regression,
kriging, kernel ridge regression, etc.

Countless applications in environmental science, geostatistics,
image processing, economics, time series analysis, etc.

17

general fourier structure

Knowledge gap: 50 years after PSWFs, no finite sample
guarantees or efficient recovery algorithms for these popular

problems on a finite interval [0, T].

With the exception of Fourier sparse functions.
(Chen, Kane, Price, Song FOCS 2016, Chen, Kane 2018).

18

general fourier structure

Knowledge gap: 50 years after PSWFs, no finite sample
guarantees or efficient recovery algorithms for these popular

problems on a finite interval [0, T].

With the exception of Fourier sparse functions.
(Chen, Kane, Price, Song FOCS 2016, Chen, Kane 2018).

18

results

Our results:

1. Characterize optimal sample complexity for any prior
distribution µ.

2. Universal non-uniform sampling scheme that matches
this complexity up to logarithmic factors.

3. Efficient algorithm to pair with this sampling scheme that
works for essentially all priors used in practice.

19

results

Our results:

1. Characterize optimal sample complexity for any prior
distribution µ.

2. Universal non-uniform sampling scheme that matches
this complexity up to logarithmic factors.

3. Efficient algorithm to pair with this sampling scheme that
works for essentially all priors used in practice.

19

results

Our results:

1. Characterize optimal sample complexity for any prior
distribution µ.

2. Universal non-uniform sampling scheme that matches
this complexity up to logarithmic factors.

3. Efficient algorithm to pair with this sampling scheme that
works for essentially all priors used in practice.

19

results

Our results:

1. Characterize optimal sample complexity for any prior
distribution µ.

2. Universal non-uniform sampling scheme that matches
this complexity up to logarithmic factors.

3. Efficient algorithm to pair with this sampling scheme that
works for essentially all priors used in practice.

Typically a quadratic improvement on uniform sampling.

19

results

Our results:

1. Characterize optimal sample complexity for any prior
distribution µ.

2. Universal non-uniform sampling scheme that matches
this complexity up to logarithmic factors.

3. Efficient algorithm to pair with this sampling scheme that
works for essentially all priors used in practice.

19

results

All using tools from discrete randomized algorithms!

20

relevant paper

On arXiv soon:
“Universal Sampling Strategies for Learning Signals with

Simple Fourier Transforms”

Joint work with:
Haim Avron (TAU)

Michael Kapralov (EPFL)
Cameron Musco (MSR)
Ameya Velingker (EPFL)
Amir Zandieh (EPFL)

21

formal problem statement

Definition (Weighted Inverse Fourier Transform)
For any probability distribution µ over R and frequency
domain function g, let:

[
F∗
µ g

]
(t) =

∫ ∞

−∞
g(ξ)e2πiξt µ(ξ)dξ.

[F∗ g] (t) =
∫ ∞

−∞
g(ξ)e2πiξt dξ.

Standard inverse Fourier
transform.

22

formal problem statement

Definition (Weighted Inverse Fourier Transform)
For any probability distribution µ over R and frequency
domain function g, let:

[
F∗
µ g

]
(t) =

∫ ∞

−∞
g(ξ)e2πiξt µ(ξ)dξ.

[F∗ g] (t) =
∫ ∞

−∞
g(ξ)e2πiξt dξ.

Standard inverse Fourier
transform.

22

formal problem statement

Definition (Weighted Inverse Fourier Transform)
For any probability distribution µ over R and frequency
domain function g, let:

[
F∗
µ g

]
(t) =

∫ ∞

−∞
g(ξ)e2πiξt µ(ξ)dξ.

[
F∗

µ g
]
(t) =

∫ ∞

−∞
g(ξ)e2πiξt µ(ξ)dξ.

µ weighted inverse Fourier
transform.

22

formal problem statement

One possible formulation:

Suppose that y can be written as:

y = F∗
µx.

We observe y+ n for some fixed noise function n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

• ∥z∥2T = 1
T
∫ T
0 |z(t)|2dt = average squared error.

• ∥x∥2µ =
∫
R |x(ξ)|2µ(ξ)dµ = signal energy under µ.

• ϵ is a tunable parameter. Smaller ϵ requires more samples.
• Any fixed constant (e.g. 2) will do for c.

23

formal problem statement

One possible formulation:

Suppose that y can be written as:

y = F∗
µx.

We observe y+ n for some fixed noise function n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

• ∥z∥2T = 1
T
∫ T
0 |z(t)|2dt = average squared error.

• ∥x∥2µ =
∫
R |x(ξ)|2µ(ξ)dµ = signal energy under µ.

• ϵ is a tunable parameter. Smaller ϵ requires more samples.
• Any fixed constant (e.g. 2) will do for c.

23

formal problem statement

One possible formulation:

Suppose that y can be written as:

y = F∗
µx.

We observe y+ n for some fixed noise function n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

• ∥z∥2T = 1
T
∫ T
0 |z(t)|2dt = average squared error.

• ∥x∥2µ =
∫
R |x(ξ)|2µ(ξ)dµ = signal energy under µ.

• ϵ is a tunable parameter. Smaller ϵ requires more samples.
• Any fixed constant (e.g. 2) will do for c.

23

formal problem statement

One possible formulation:

Suppose that y can be written as:

y = F∗
µx.

We observe y+ n for some fixed noise function n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

• ∥z∥2T = 1
T
∫ T
0 |z(t)|2dt = average squared error.

• ∥x∥2µ =
∫
R |x(ξ)|2µ(ξ)dµ = signal energy under µ.

• ϵ is a tunable parameter. Smaller ϵ requires more samples.
• Any fixed constant (e.g. 2) will do for c.

23

formal problem statement

One possible formulation:

Suppose that y can be written as:

y = F∗
µx.

We observe y+ n for some fixed noise function n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

• ∥z∥2T = 1
T
∫ T
0 |z(t)|2dt = average squared error.

• ∥x∥2µ =
∫
R |x(ξ)|2µ(ξ)dµ = signal energy under µ.

• ϵ is a tunable parameter. Smaller ϵ requires more samples.
• Any fixed constant (e.g. 2) will do for c.

23

formal problem statement

One possible formulation:

Suppose that y can be written as:

y = F∗
µx.

We observe y+ n for some fixed noise function n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

• ∥z∥2T = 1
T
∫ T
0 |z(t)|2dt = average squared error.

• ∥x∥2µ =
∫
R |x(ξ)|2µ(ξ)dµ = signal energy under µ.

• ϵ is a tunable parameter. Smaller ϵ requires more samples.
• Any fixed constant (e.g. 2) will do for c.

23

intuition for indicator priors

Given: y = F∗
µx+ n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

Easiest to understand for bandlimited, sparse, or multiband.

There’s a natural Bayesian formulation for non-uniform
priors.

24

intuition for indicator priors

Given: y = F∗
µx+ n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

Easiest to understand for bandlimited, sparse, or multiband.

There’s a natural Bayesian formulation for non-uniform
priors.

24

natural approach

Suffices to return ỹ = F∗µg̃ for any constant factor
approximation g̃ to the regression problem:

If g̃ satisfies:
∥y+ n−F∗

µg̃∥2T + ϵ∥g̃∥2µ ≤ C ·
[
ming ∥y+ n−F∗

µg∥2T + ϵ∥g∥2µ
]
,

then: ∥y−F∗
µg̃∥2T ≤ O(C) ·

[
∥n∥2T + ϵ∥x∥2µ

]
.

Solution by discretization.

25

natural approach

Suffices to return ỹ = F∗µg̃ for any constant factor
approximation g̃ to the regression problem:

If g̃ satisfies:
∥y+ n−F∗

µg̃∥2T + ϵ∥g̃∥2µ ≤ C ·
[
ming ∥y+ n−F∗

µg∥2T + ϵ∥g∥2µ
]
,

then: ∥y−F∗
µg̃∥2T ≤ O(C) ·

[
∥n∥2T + ϵ∥x∥2µ

]
.

Solution by discretization.

25

natural approach

Suffices to return ỹ = F∗µg̃ for any constant factor
approximation g̃ to the regression problem:

If g̃ satisfies:
∥y+ n−F∗

µg̃∥2T + ϵ∥g̃∥2µ ≤ C ·
[
ming ∥y+ n−F∗

µg∥2T + ϵ∥g∥2µ
]
,

then: ∥y−F∗
µg̃∥2T ≤ O(C) ·

[
∥n∥2T + ϵ∥x∥2µ

]
.

Solution by discretization.
25

time domain discretization

Selecting time samples discretizes time domain.

What about Fourier domain?

26

time domain discretization

Selecting time samples discretizes time domain.

What about Fourier domain?

26

fourier domain

We can avoid discretization entirely as long as we have a
closed form representation of µ̂(t).

µ̂(t) = sinc(t)

µ̂(t) =
∑k

j=1 e−2πi(t)

µ̂(t) = e−|t|2

µ̂(t) = e−|t|

µ̂ is referred to as the autocorrelation function, the
semivariogram, the kernel function, etc.

27

fourier domain

We can avoid discretization entirely as long as we have a
closed form representation of µ̂(t).

µ̂(t) = sinc(t)

µ̂(t) =
∑k

j=1 e−2πi(t)

µ̂(t) = e−|t|2

µ̂(t) = e−|t|

µ̂ is referred to as the autocorrelation function, the
semivariogram, the kernel function, etc. 27

handling fourier domain

equivalent to

28

handling fourier domain

equivalent to

29

equivalence to kernel regression

Kµ(i, j) =
∫ ∞

−∞
e2πitiξe−2πitjξµ(ξ)dξ

=

∫ ∞

−∞
µ(ξ)e−2πi(tj−ti)ξdξ

= µ̂(tj − ti).

We can construct K in O(q2) time.

30

equivalence to kernel regression

Kµ(i, j) =
∫ ∞

−∞
e2πitiξe−2πitjξµ(ξ)dξ

=

∫ ∞

−∞
µ(ξ)e−2πi(tj−ti)ξdξ

= µ̂(tj − ti).

We can construct K in O(q2) time.

30

equivalence to kernel regression

Kµ(i, j) =
∫ ∞

−∞
e2πitiξe−2πitjξµ(ξ)dξ

=

∫ ∞

−∞
µ(ξ)e−2πi(tj−ti)ξdξ

= µ̂(tj − ti).

We can construct K in O(q2) time.

30

equivalence to kernel regression

Kµ(i, j) =
∫ ∞

−∞
e2πitiξe−2πitjξµ(ξ)dξ

=

∫ ∞

−∞
µ(ξ)e−2πi(tj−ti)ξdξ

= µ̂(tj − ti).

We can construct K in O(q2) time.

30

equivalence to kernel regression

• Sample t1, . . . , tq.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

31

equivalence to kernel regression

• Sample t1, . . . , tq.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

31

time domain discretization

Key Challenge: How to select samples in time domain.

Approach: Lean on well developed theory for randomly
sampling discrete regression problems.

32

time domain discretization

Key Challenge: How to select samples in time domain.

Approach: Lean on well developed theory for randomly
sampling discrete regression problems.

32

time domain discretization

For an approximate solution, suffices to sample rows (i.e. time
points) by their statistical leverage score:

τµ,ϵ(t) = max
g

1
T
∣∣F∗

µg(t)
∣∣2

∥F∗
µg∥2T + ϵ∥g∥2µ

0 ≤ τµ,ϵ(t) ≤ 1

33

time domain discretization

For an approximate solution, suffices to sample rows (i.e. time
points) by their statistical leverage score:

τµ,ϵ(t) = max
g

1
T
∣∣F∗

µg(t)
∣∣2

∥F∗
µg∥2T + ϵ∥g∥2µ

0 ≤ τµ,ϵ(t) ≤ 1

33

leverage score sampling

τµ,ϵ is a regularized version of effective resistance, a central
quantity in recent work on randomized algorithms for graph

problems and matrix sketching.

[Drineas, Mahoney, Muthukrishnan 2006]

[Spielman, Srivastava 2008]

34

leverage score sampling

How many samples are required?

∫ T

0
τµ,ϵ(t)dt = Sµ,ϵ = “statistical dimension”.

We need to take Sµ,ϵ total samples to approximate the
regression problem.

For finite dimension problems, Sµ,ϵ is bounded by d.

35

leverage score sampling

How many samples are required?

∫ T

0
τµ,ϵ(t)dt = Sµ,ϵ = “statistical dimension”.

We need to take Sµ,ϵ total samples to approximate the
regression problem.

For finite dimension problems, Sµ,ϵ is bounded by d.

35

leverage score sampling

How many samples are required?

∫ T

0
τµ,ϵ(t)dt = Sµ,ϵ = “statistical dimension”.

We need to take Sµ,ϵ total samples to approximate the
regression problem.

For finite dimension problems, Sµ,ϵ is bounded by d.

35

statistical dimension

Sµ,ϵ = tr (Kµ + ϵI)−1Kµ

=
∞∑
i=1

λi
λi + ϵ

≈ number of eigenvalues larger than ϵ.

Bound of Sµ,ϵ samples is tight.

36

statistical dimension

Sµ,ϵ = tr (Kµ + ϵI)−1Kµ

=
∞∑
i=1

λi
λi + ϵ

≈ number of eigenvalues larger than ϵ.

Bound of Sµ,ϵ samples is tight.

36

statistical dimension

Sµ,ϵ = tr (Kµ + ϵI)−1Kµ

=
∞∑
i=1

λi
λi + ϵ

≈ number of eigenvalues larger than ϵ.

Bound of Sµ,ϵ samples is tight.

36

statistical dimension

Sµ,ϵ = tr (Kµ + ϵI)−1Kµ

=
∞∑
i=1

λi
λi + ϵ

≈ number of eigenvalues larger than ϵ.

O
(
FT+ log 1

ϵ

)
k O

(∑
FiT+ log 1

ϵ

)
Õ
(
σT+ log 1

ϵ

)

Bound of Sµ,ϵ samples is tight.

36

statistical dimension

Sµ,ϵ = tr (Kµ + ϵI)−1Kµ

=
∞∑
i=1

λi
λi + ϵ

≈ number of eigenvalues larger than ϵ.

O
(
FT+ log 1

ϵ

)
k O

(∑
FiT+ log 1

ϵ

)
Õ
(
σT+ log 1

ϵ

)

Bound of Sµ,ϵ samples is tight.

36

leverage score sampling

Leverage scores are hard to compute, even for discrete
regression problems.

For our problem the challenge is even
more daunting... we need scores for a continuum of values.

But... we have structure on our side.

37

leverage score sampling

Leverage scores are hard to compute, even for discrete
regression problems. For our problem the challenge is even
more daunting... we need scores for a continuum of values.

But... we have structure on our side.

37

leverage score sampling

Leverage scores are hard to compute, even for discrete
regression problems. For our problem the challenge is even
more daunting... we need scores for a continuum of values.

But... we have structure on our side.

37

leverage scores

What is the leverage score?

τµ,ϵ(t) =
1
T maxg

∣∣F∗
µg(t)

∣∣2
∥F∗

µg∥2T + ϵ∥g∥2µ

Squared value of a function at t over the average squared
value. I.e. how much can the function “spike” at time t.

Worst case, but over a restricted class of functions –
need to have small norm under µ.

38

leverage scores

What is the leverage score?

τµ,ϵ(t) =
1
T maxg

∣∣F∗
µg(t)

∣∣2
∥F∗

µg∥2T + ϵ∥g∥2µ

Squared value of a function at t over the average squared
value. I.e. how much can the function “spike” at time t.

Worst case, but over a restricted class of functions –
need to have small norm under µ.

38

leverage scores

What is the leverage score?

τµ,ϵ(t) =
1
T maxg

∣∣F∗
µg(t)

∣∣2
∥F∗

µg∥2T + ϵ∥g∥2µ

Squared value of a function at t over the average squared
value. I.e. how much can the function “spike” at time t.

Worst case, but over a restricted class of functions –
need to have small norm under µ.

38

polynomial leverage

Leverage for degree k polynomials:

Bernstein Inequality.
τ(t) ≤ k/

√
min(t, T− t)

Markov Brother’s Inequality.
τ(t) ≤ k2

In general, a polynomial can “spike” more near the edge of an
interval.

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39

polynomial leverage

Leverage for degree k polynomials:

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39

polynomial leverage

Leverage for degree k polynomials:

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39

polynomial leverage

Leverage for degree k polynomials:

Uniform samples. Chebyshev samples.

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39

polynomial leverage

Leverage for degree k polynomials:

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39

polynomial leverage

Leverage for degree k polynomials:

Total leverage: O(k)

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39

polynomial leverage

Leverage for degree k polynomials:

Total leverage: O(k)

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39

fourier sparse leverage

[Chen, Kane, Price, Song, FOCS 2016], [Chen, Price 2018]

Nearly the same bounds holds for k-sparse Fourier functions.

|fk(t)|2

∥fk∥2T
= Õ

(
min

[
k4, k/min(t, T− t)

])

40

fourier sparse leverage

[Chen, Kane, Price, Song, FOCS 2016], [Chen, Price 2018]

Nearly the same bounds holds for k-sparse Fourier functions.

|fk(t)|2

∥fk∥2T
= Õ

(
min

[
k4, k/min(t, T− t)

])

40

fourier sparse leverage

Intuition: Sums of close frequencies look like modulated
polynomials. Far frequencies are nearly orthogonal.

41

fourier leverage

Leverage for k sparse Fourier functions:

Total leverage:

k+ O(k log k)

42

fourier leverage

Leverage for k sparse Fourier functions:

Total leverage:

k+ O(k log k)

42

fourier leverage

Leverage for k sparse Fourier functions:

Total leverage: k

+ O(k log k)

42

fourier leverage

Leverage for k sparse Fourier functions:

Total leverage: k+ O(k log k)

42

general constraints

How do we extend these bounds to more general constraint
distributions µ? Want Õ(Sµ,ϵ) samples.

More tools from randomized matrix algorithms!

43

general constraints

How do we extend these bounds to more general constraint
distributions µ? Want Õ(Sµ,ϵ) samples.

More tools from randomized matrix algorithms!

43

general leverage

Lesson from past decade: Top q singular vectors of a matrix
are approximately spanned by O(q) columns from that matrix.

(rank-revealing QR, randomized SVD, columns subset selection, CUR
decomposition, Nyström approximation, graph sparsification,

random Fourier features, etc.)

44

general leverage

Lesson from past decade: Top q singular vectors of a matrix
are approximately spanned by O(q) columns from that matrix.

(rank-revealing QR, randomized SVD, columns subset selection, CUR
decomposition, Nyström approximation, graph sparsification,

random Fourier features, etc.)

44

sparse approximation of weighted fourier transform

45

sparse approximation of weighted fourier transform

45

sparse approximation of weighted fourier transform

45

final bound

τµ,ϵ(t) = max
g

1
T
∣∣F∗

µg(t)
∣∣2

∥F∗
µg∥2T + ϵ∥g∥2µ

≤ Õ
(
min

[
S4µ,ϵ, Sµ,ϵ/min(t, T− t)

])

Total number of samples: Õ(Sµ,ϵ)

. 46

final bound

τµ,ϵ(t) = max
g

1
T
∣∣F∗

µg(t)
∣∣2

∥F∗
µg∥2T + ϵ∥g∥2µ

≤ Õ
(
min

[
S4µ,ϵ, Sµ,ϵ/min(t, T− t)

])

Total number of samples: Õ(Sµ,ϵ). 46

final algorithm

Simple Fourier function fitting:

• Sample t1, . . . , tq according to D.

• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

That’s it!

Matches known results for sparse and bandlimited function up
to log factors, while achieving nearly optimal sample

complexity for any other Fourier constraints.

47

final algorithm

Simple Fourier function fitting:

• Sample t1, . . . , tq according to D.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.

• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

That’s it!

Matches known results for sparse and bandlimited function up
to log factors, while achieving nearly optimal sample

complexity for any other Fourier constraints.

47

final algorithm

Simple Fourier function fitting:

• Sample t1, . . . , tq according to D.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].

• Evaluate ỹ(t) =
∑1

i=1 ziµ̂(ti − t) · f(ti).

That’s it!

Matches known results for sparse and bandlimited function up
to log factors, while achieving nearly optimal sample

complexity for any other Fourier constraints.

47

final algorithm

Simple Fourier function fitting:

• Sample t1, . . . , tq according to D.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

That’s it!

Matches known results for sparse and bandlimited function up
to log factors, while achieving nearly optimal sample

complexity for any other Fourier constraints.

47

final algorithm

Simple Fourier function fitting:

• Sample t1, . . . , tq according to D.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

That’s it!

Matches known results for sparse and bandlimited function up
to log factors, while achieving nearly optimal sample

complexity for any other Fourier constraints.

47

final algorithm

Simple Fourier function fitting:

• Sample t1, . . . , tq according to D.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

That’s it!
Matches known results for sparse and bandlimited function up

to log factors, while achieving nearly optimal sample
complexity for any other Fourier constraints.

47

final algorithm

Lots of open questions:

• Streaming reconstruction? Anything more local?
• Does uniform sampling work if we look outside [0, T]?
• Deterministic sampling patterns in noiseless case, or
under reasonable noise model?

Other connections between random graph/matrix sampling
and classic function interpolation?

48

final algorithm

Lots of open questions:

• Streaming reconstruction? Anything more local?

• Does uniform sampling work if we look outside [0, T]?
• Deterministic sampling patterns in noiseless case, or
under reasonable noise model?

Other connections between random graph/matrix sampling
and classic function interpolation?

48

final algorithm

Lots of open questions:

• Streaming reconstruction? Anything more local?
• Does uniform sampling work if we look outside [0, T]?

• Deterministic sampling patterns in noiseless case, or
under reasonable noise model?

Other connections between random graph/matrix sampling
and classic function interpolation?

48

final algorithm

Lots of open questions:

• Streaming reconstruction? Anything more local?
• Does uniform sampling work if we look outside [0, T]?
• Deterministic sampling patterns in noiseless case, or
under reasonable noise model?

Other connections between random graph/matrix sampling
and classic function interpolation?

48

final algorithm

Lots of open questions:

• Streaming reconstruction? Anything more local?
• Does uniform sampling work if we look outside [0, T]?
• Deterministic sampling patterns in noiseless case, or
under reasonable noise model?

Other connections between random graph/matrix sampling
and classic function interpolation?

48

thank you!

48

