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PROBLEM WE ARE STUDYING

Problem: Let F ⊂ Rn×n be a family of n× n matrices. For
tolerance parameter γ > 1, find a near-optimal approximation
B̃ ∈ F satisfying:

∥A− B̃∥F ≤ γ · min
B∈F

∥A− B∥F.

Example families:

Banded, block diagonal, Toeplitz, butterly, diagonal + low-rank,
sparse + low-rank, ...Interesting choices of γ include constant, γ = (1+ ϵ), or even

γ = log n.

3



PROBLEM WE ARE STUDYING

Problem: Let F ⊂ Rn×n be a family of n× n matrices. For
tolerance parameter γ > 1, find a near-optimal approximation
B̃ ∈ F satisfying:

∥A− B̃∥F ≤ γ · min
B∈F

∥A− B∥F.

Example families:

Banded, block diagonal, Toeplitz, butterly, diagonal + low-rank,
sparse + low-rank, ...

Interesting choices of γ include constant, γ = (1+ ϵ), or even
γ = log n.

3



PROBLEM WE ARE STUDYING

Problem: Let F ⊂ Rn×n be a family of n× n matrices. For
tolerance parameter γ > 1, find a near-optimal approximation
B̃ ∈ F satisfying:

∥A− B̃∥F ≤ γ · min
B∈F

∥A− B∥F.

Example families:

Interesting choices of γ include constant, γ = (1+ ϵ), or even
γ = log n. 3



COST MODEL

Problem: Let F ⊂ Rn×n be a family of n× n matrices. For
tolerance parameter γ > 1, find a near-optimal approximation
B̃ ∈ F satisfying:

∥A− B̃∥F ≤ γ · min
B∈F

∥A− B∥F.

We are specifically interested in the setting where A and AT can
only be accessed via black-box matrix-vector products.

I.e., return an approximation to A based only on

Ax1,ATx2,Ax3,ATx4, . . . ,Axm−1,ATxm

How many matrix-vector products, m, are needed to learn a
near-optimal approximation from a given family F?
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APPLICATIONS

• Compressed approximations of matrices that admit fast
matvecs. E.g., rank-structured matrices that can be
efficiently multiplied using Fast Multipole Method.

• Approximatiions of implicit matrices like Hessians, for
which matvecs can be implemented via Automatic
Differentiation or other techniques.

• Approximations to matrix functions like A−1. Can compute
A−1x with iterative methods.

• Learning structured covariance matrices. Might receive
samples of the form Σ−1/2g, where g is standard Gaussian.

Further theoretical motivation: One of the simplest interesting
special cases of operator learning, a task of recent interest in

scientific machine learning (SciML).
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OPERATOR LEARNING

Physical processes often map a function/vector x to a
function/vector y.

Goal in SciML: Learn neural network (DeepONet, Fourier Neural
Operator, etc.) that can directly map inputs to outputs.
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OPERATOR LEARNING

Train learned operator on input-output pairs,

(x1, y1), . . . , (xm, ym),

obtained via simulation or physical experiments.

Matrix learning corresponds to the setting when the target
operator is linear: yi = Axi. Even in this setting, basic questions
about the sample complexity of learning remain open.

2024 SIAM Activity Group on Linear Algebra Best Paper Prize.
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BACK TO THE PROBLEM

Problem: Let F ⊂ Rn×n be a family of n× n matrices. For
tolerance parameter γ > 1, find B̃ ∈ F satisfying:

∥A− B̃∥F ≤ γ · min
B∈F

∥A− B∥F.

Take away from Gunnar’s talk: Randomized methods like
sketching are really useful for solving this problem, for

structures well beyond low-rank matrices!

8



EXAMPLE: DIAGONAL APPROXIMATION

Let F be the class of diagonal matrices.
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How many matvecs do I need to solve this problem?

Consider the case when A is exactly diagonal. I.e.,
minB∈F ∥A− B∥F = 0. Hint: You don’t need randomness here.

A
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EXAMPLE: DIAGONAL APPROXIMATION

Deterministic methods usually fail as soon as A /∈ F !

Goal is to ensure:

∥A− B̃∥F ≤ (1+ ϵ)min
B∈S

∥A− B∥F ≈ .1 · n.

Error of naive algorithm:

≲
√

.12 · n2︸ ︷︷ ︸
off diag. error

+n · (.1 · n)2︸ ︷︷ ︸
on diag. error

≈ .1 · n1.5.
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BETTER APPROACH

Pick random sign vector r ∈ {−1, 1}n. Return r ◦ (Ar) [Bekas,
Kokiopoulou, Saad 2007].

Error of randomized algorithm:√
.12 · n2︸ ︷︷ ︸

off diag. error

+n · (.1 ·
√
n)2︸ ︷︷ ︸

on diag. error

≈ .14 · n ≤ 1.4 · ∥A− B∗∥F.

Can improve error by repeating and averaging.
12



OPTIMAL DIAGONAL APPROXIMATION

Theorem
Let F be the class of diagonal matrices. O(1/ϵ) matvecs with
A are needed to find B̃ ∈ F satisfying:

E[∥A− B̃∥F] ≤ (1+ ϵ) min
B∈F

∥A− B∥F.

• Not hard to prove. See [Baston, Nakatsukasa 2022],
[Dharangutte, Musco 2023], or [Amsel, Chen, Halikias,
Duman Keles, Musco, Musco, 2026].

• Generalizes to O(s/ϵ) matvecs for approximation by any
matrix with ≤ s non-zeros per row (e.g., banded or block
diagonal with bandwidth s).

• This bound is tight. Ω(s/ϵ) matvecs necessary in general.
13



RANDOMIZED ALGORTIHMS FOR MATRIX APPROXIMATION

Structure # of matvecs to learn reference
Rank k O(k/ϵ1/3) Randomized SVD!

[Bakshi et al., 2022]
Diagonal O(1/ϵ) [Bekas et al., 2007]

[Dharangutte, Musco 2023]
s-banded O(s/ϵ) [Amsel et al., 2026]

s-sparse rows O(s/ϵ) [Amsel et al., 2026]
rank-k HODLR O(k log4 n/ϵ3) [Lin,Lu,Ying, 2011]

[Chen et al., 2025]
rank-k HSS O(k log n) [Levitt, Martinsson, 2024]

[Amsel et al., 2024]
rank-k butterfly O(k

√
n) [Liu et al., 2021]

[Le at al., 2026]
...

...
...

Lots of gaps remain, and many natural families left unstudied! 14



LONG-TERM PROJECT

Can keep writing papers on different matrix families... or ask:

Is there a general theory for the query complexity of
structured matrix learning?

In statistical learning theory, we have general tools for
bounding the sample complexity of learning. VC dimension,
Pollard pseudodimension, fat-shattering dimension, etc.
Theorem (Informal)
Any hypothesis class H consisting of functions from
Rn → {−1, 1} with VC dimension C can be learned with:

O
(
C/ϵ2

)
samples.
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MULTI-OUTPUT LEARNING

Existing tools do not directly apply to matrix learning.

You can potentially learn a lot more from a single sample in
out setting than in a traditional statistical learning setting!
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NATURAL FIRST STEP

Start by considering finite-size matrix families. I.e., |F| < ∞.

Goal is to find argmini∈1,...,|F| ∥A− Bi∥F.

Why is finite interesting? Most natural continuous families can
be well-approximated by a finite family with size roughly

2O(# of parameters).

E.g., 2O(nk) for rank-k matrices, 2O(s) for s-sparse matrices, etc.
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BASELINE

First result in learning theory: The VC-dimension of a finite
hypothesis class H is upper bounded by log |H|, and the class
can be learned to accuracy ϵ with:

O(log |H|/ϵ2) samples.

Claim
Let F be a finite matrix family. A near-optimal approximation
to A from F can be learned up to accuracy (1+ ϵ) with:

O(log |F|/ϵ2) matrix-vector products.

Approach: Simply return argmini∈1,...,|F| ∥AΠ− BiΠ∥F, where Π

is a random sign or Gaussian matrix with O(log |F|/ϵ2) columns.

By standard analysis of Hutchinson’s estimator, we have that
with high probability, ∥AΠ− BiΠ∥F ∈ (1± ϵ)∥A− Bi∥F for all i.
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OUR IMPROVEMENT

Theorem (Amsel, Avi, Chen, Duman Keles, Hegde, Musco,
Musco, Persson, 2025)
Let F be a finite matrix family. An optimal approximation to A
from F can be learned up to accuracy γ = 4 with:

Õ(
√
log |F|) matrix-vector products.

I.e., find B̃ ∈ F satisfying ∥A− B̃∥F ≤ 4 ·minB∈F ∥A− B∥F.

The multi-output nature of the problem allows for quadratic
improvement in sample complexity!
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Let F be a finite matrix family. An optimal approximation to A
from F can be learned up to accuracy γ = 4 with:

Õ(
√
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O(log |F|) is optimal if we only allow vector-matrix-vector
queries.
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OUR IMPROVEMENT

Theorem (Amsel, Avi, Chen, Duman Keles, Hegde, Musco,
Musco, Persson, 2025)
Let F be a finite matrix family. An optimal approximation to A
from F can be learned up to accuracy 4 with:

Õ(
√
log |F|) matrix-vector products.

We can prove that the dependence on
√
log |F| cannot be

improved in general. It leads to tight results for some families,
loose results for others:

structure size of family query complexity
Constant rank butterfly 2O(n) Õ(

√
n)

s-sparse matrices 2O(S) Õ(
√
s)

Rank k matrices 2O(nk) Õ(
√
nk)

...
...

... 20



KEY IDEA

Either left or right queries must return a lot of information.

Consider approximation by the set of matrices that take ±1
values in just their first row:

• Not hard to show that Ω(n) right queries of the form Ax
are necessary.

• But a single left query, ATx suffices!
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KEY IDEA

Either left or right queries must return a lot of information.

The hardest case is the set of matrices that take ±1 values in
just the top

√
n×

√
n block:

• Not hard to show that Ω(
√
n) left queries or right queries

are necessary, and O(
√
n) queries is of course sufficient.

• Having both doesn’t help.

For experts: You can show that a permutation of this family is
a subset of the rank-1 butterfly matrices. So Butterfly matrices
also requires Ω(

√
n) matrix-vector product queries to learn.
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KEY IDEA

Please check out our paper Query Efficient Structured Matrix
Learning for the general case: www.arxiv.org/pdf/2507.19290.

Fun exercise: Prove our result for the class of matrices that are
±1 in s arbitrary locations. Assume A ∈ F . This family has size(n2
s
)
· 2s ≈ 2O(s log(n/s)). Prove that O(

√
s log n) matvecs suffice.

Tons of open questions:
• Obtain (1+ ϵ) error instead of constant factor.
• Our method uses adaptive queries. Are they necessary?
• We have learned that “class size” does not fully
characterize sample complexity: our result gives loose
bounds for low-rank matrices, diagonal matrices, etc.
What is the “right” complexity measure?
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QUESTIONS?
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