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Problem: Let 7 ¢ R™" be a family of n x n matrices. For
tolerance parameter v > 1, find a near-optimal approximation
B € F satisfying:
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Interesting choices of v include constant, ¥ = (1+ ¢€), or even
v = logn. 3



COST MODEL

Problem: Let F c R™" be a family of n x n matrices. For
tolerance parameter v > 1, find a near-optimal approximation
B € F satisfying:

A—Bllr <~-minllA =Bl
[ lF <~ gneljrgll I

We are specifically interested in the setting where A and AT can
only be accessed via black-box matrix-vector products.

l.e., return an approximation to A based only on

T T T
AX1, Ao, AX3, A Xy, .o AX 1, A X

How many matrix-vector products, m, are needed to learn a
near-optimal approximation from a given family 7?



APPLICATIONS

- Compressed approximations of matrices that admit fast
matvecs. E.g, rank-structured matrices that can be
efficiently multiplied using Fast Multipole Method.

- Approximatiions of implicit matrices like Hessians, for
which matvecs can be implemented via Automatic
Differentiation or other techniques.

- Approximations to matrix functions like A=". Can compute
A~'x with iterative methods.

- Learning structured covariance matrices. Might receive
samples of the form £~"/2g, where g is standard Gaussian.
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- Compressed approximations of matrices that admit fast
matvecs. E.g, rank-structured matrices that can be
efficiently multiplied using Fast Multipole Method.

- Approximatiions of implicit matrices like Hessians, for
which matvecs can be implemented via Automatic
Differentiation or other techniques.

- Approximations to matrix functions like A=". Can compute
A~'x with iterative methods.

- Learning structured covariance matrices. Might receive
samples of the form £~"/2g, where g is standard Gaussian.

Further theoretical motivation: One of the simplest interesting
special cases of operator learning, a task of recent interest in
scientific machine learning (SciML). 5




OPERATOR LEARNING

Physical processes often map a function/vector x to a
function/vectory.
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Goal in SciML: Learn neural network (DeepONet, Fourier Neural
Operator, etc.) that can directly map inputs to outputs.



OPERATOR LEARNING

Train learned operator on input-output pairs,
(X'\>y'|)> ceey (Xm>ym)a
obtained via simulation or physical experiments.

Matrix learning corresponds to the setting when the target
operator is linear: y; = Ax;. Even in this setting, basic questions
about the sample complexity of learning remain open.
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OPERATOR LEARNING

Train learned operator on input-output pairs,

(X77y‘|)7 soey (meym),
obtained via simulation or physical experiments.

Matrix learning corresponds to the setting when the target
operator is linear: y; = Ax;. Even in this setting, basic questions
about the sample complexity of learning remain open.

p NAS BRIEF REPORT | APPLIED MATHEMATICS

Elliptic PDE learning is provably data-efficient

Nicolas Boullé>' (%), Diana Halikias® (2}, and Alex Townsend®



BACK TO THE PROBLEM

Problem: Let 7 ¢ R™" be a family of n x n matrices. For
tolerance parameter v > 1, find B € F satisfying:

A—Bllr <~-minllA =Bl
[ lF <~ gneljrg\l I

Take away from Gunnar’s talk: Randomized methods like
sketching are really useful for solving this problem, for
structures well beyond low-rank matrices!



EXAMPLE: DIAGONAL APPROXIMATION

Let F be the class of diagonal matrices.

31131 3 3131
1-21 11 -2 ] a2
1142121 4 11031
11161 6 11301
113214 -1 11232
target matrix A optimal diagonal error of optimal
approximation B* approximation
2.8 212121
=21 111237
4 11042
6.1 113324
-9 112122
near-optimal diagonal error of near-optimal
approximation B approximation
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min
BeF

How many matvecs do | need to solve this problem?
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EXAMPLE: DIAGONAL APPROXIMATION

Deterministic methods usually fail as soon as A ¢ F!

>
I
th iAW

Goal is to ensure:
|A—Bllr < (1+¢)min||A—B|r~.1-n.
BeS
Error of naive algorithm:

5\/ 120 4+n-(1-n?=.1-n".
N~—— —_———

off diag. error

on diag. error

n



BETTER APPROACH

Pick random sign vector r € {—1,1}". Return r o (Ar) [Bekas,
Kokiopoulou, Saad 2007].

3 31321

-2 12122
4 = b I I =

6 112161

-1 111234

Error of randomized algorithm:

122 +n-(1-VnP=4-n<14-||A—BF
= —\ D

off diag. error

on diag. error

Can improve error by repeating and averaging.
12



OPTIMAL DIAGONAL APPROXIMATION

Theorem
Let F be the class of diagonal matrices. matvecs with
A are needed to find B € F satisfying:

E[|A —BJlf]] < (1+€) min |A - BJF.

min
BeF

- Not hard to prove. See [Baston, Nakatsukasa 2022],
[Dharangutte, Musco 2023], or [Amsel, Chen, Halikias,
Duman Keles, Musco, Musco, 2026].

- Generalizes to O(s/e) matvecs for approximation by any
matrix with < s non-zeros per row (e.g.,, banded or block
diagonal with bandwidth s).

- This bound is tight. Q(s/e) matvecs necessary in general. 5



RANDOMIZED ALGORTIHMS FOR MATRIX APPROXIMATION

Structure # of matvecs to learn reference
Rank k O(R/€'?) Randomized SVD!
[Bakshi et al., 2022]
Diagonal 0(1/¢€) [Bekas et al, 2007]
[Dharangutte, Musco 2023]
s-banded O(s/e) [Amsel et al., 2026]
s-sparse rows O(s/e) [Amsel et al,, 2026]
rank-k HODLR O(Rlog" n/é) [Lin,LuYing, 2011]
[Chen et al, 2025]
rank-kR HSS O(Rlogn) [Levitt, Martinsson, 2024]
[Amsel et al,, 2024]
rank-k butterfly O(kRv/n) [Liu et al, 2021]
[Le at al, 2026]

Lots of gaps remain, and many natural families left unstudied!



LONG-TERM PROJECT

Can keep writing papers on different matrix families... or ask:

Is there a general theory for the query complexity of
structured matrix learning?
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LONG-TERM PROJECT

Can keep writing papers on different matrix families... or ask:

In statistical learning theory, we have general tools for
bounding the sample complexity of learning. VC dimension,
Pollard pseudodimension, fat-shattering dimension, etc.
Theorem (Informal)

Any hypothesis class H consisting of functions from

R" — {—1,1} with VC dimension C can be learned with:

0 (C/€*) samples.

15



MULTI-OUTPUT LEARNING

Existing tools do not directly apply to matrix learning.

tradition learning (single output) operator learning (multiple output)
§%§

X ZRSK ~ Frles mp- {-1,1} A x =Py
EXX y

You can potentially learn a lot more from a single sample in
out setting than in a traditional statistical learning setting!
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Start by considering finite-size matrix families. l.e,

F| < oo0.
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NATURAL FIRST STEP

Start by considering finite-size matrix families. l.e,

F| < oo0.

B, B, Bir|

Goal is to find arg minjcy 7 [|A — Bj|r.

Why is finite interesting? Most natural continuous families can
be well-approximated by a finite family with size roughly

ZO(# of parameters)

E.g, 2907R) for rank-k matrices, 2°0) for s-sparse matrices, etc.



BASELINE

First result in learning theory: The VC-dimension of a finite
hypothesis class #H is upper bounded by log |#|, and the class
can be learned to accuracy e with:

O(log |H|/€*) samples.
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Let F be a finite matrix family. A near-optimal approximation
to A from F can be learned up to accuracy (1 + €) with:

O(log | F|/€*) matrix-vector products.



BASELINE

Claim

Let F be a finite matrix family. A near-optimal approximation
to A from F can be learned up to accuracy (1 + €) with:

O(log | F|/€*) matrix-vector products.

Approach: Simply return argminjc; |z [[AM — B;M||;, where N
is a random sign or Gaussian matrix with O(log | F|/€?) columns.

By standard analysis of Hutchinson's estimator, we have that
with high probability, [[AR — B;M||r € (1% €)||A — B;||r for all /.



OUR IMPROVEMENT

Theorem (Amsel, Avi, Chen, Duman Keles, Hegde, Musco,
Musco, Persson, 2025)

Let F be a finite matrix family. An optimal approximation to A
from F can be learned up to accuracy v = 4 with:

O(+/log | F|) matrix-vector products.

l.e, find B € F satisfying ||A — B||r < & - minger ||A — BJ|f.
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Theorem (Amsel, Avi, Chen, Duman Keles, Hegde, Musco,
Musco, Persson, 2025)

Let F be a finite matrix family. An optimal approximation to A
from F can be learned up to accuracy v = 4 with:

0(+/log | F|) matrix-vector products.

The multi-output nature of the problem allows for
in sample complexity!



OUR IMPROVEMENT

Theorem (Amsel, Avi, Chen, Duman Keles, Hegde, Musco,
Musco, Persson, 2025)

Let F be a finite matrix family. An optimal approximation to A
from F can be learned up to accuracy v = 4 with:

O(+/log | F|) matrix-vector products.

O(log|F]) is optimal if we only allow vector-matrix-vector
queries.

single output learning multiple output learning

zT



OUR IMPROVEMENT

Theorem (Amsel, Avi, Chen, Duman Keles, Hegde, Musco,
Musco, Persson, 2025)

Let F be a finite matrix family. An optimal approximation to A
from F can be learned up to accuracy 4 with:

O(+/log | F|) matrix-vector products.

We can prove that the dependence on /log|F| cannot be

improved in general. It leads to for some families,
for others:
structure size of family | query complexity
Constant rank butterfly 20(0)
s-sparse matrices 28

Rank k matrices 20(nk)

20




KEY IDEA

Either left or right queries must return a lot of information.
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KEY IDEA

Either left or right queries must return a lot of information.

Consider approximation by the set of matrices that take 41
values in just their first row:

AnaAna][Faaaaa A1 A

B, B B A

- Not hard to show that Q(n) right queries of the form Ax
are necessary.

- But a single left query, ATx suffices!
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KEY IDEA

Either left or right queries must return a lot of information.

Consider approximation by the set of matrices that take +1
values in just their first column:

+1 +1
+1 -1
+1 +1
. B . B
+1 -1
+1 -1

Bz" A

NN
Sy Sy Sy Ay

- Not hard to show that Q(n) left queries of the form A’x are
necessary.

- But a single right query, Ax suffices!

21



KEY IDEA

Either left or right queries must return a lot of information.

The hardest case is the set of matrices that take +1 values in
just the top v/n x +/n block:

+1 +1 +1
+1 +1 +1
+1 +1 +1

B

11 +1
+1-1-1

41141
B>

NN
e

|
A

=

A1
-1
-1

an

- Not hard to show that Q(y/n) left queries or right queries

are necessary, and O(y/n) queries is of course sufficient.
- Having both doesn’t help.

For experts: You can show that a permutation of this family is
a subset of the rank-1 butterfly matrices. So Butterfly matrices
also requires Q(+/n) matrix-vector product queries to learn.



KEY IDEA

Please check out our paper Query Efficient Structured Matrix
Learning for the general case: www.arxiv.org/pdf/2507.19290.

Fun exercise: Prove our result for the class of matrices that are
+11in s arbitrary locations. Assume A € F. This family has size
() - 25 ~ 20(108(1/9) Prove that O(+/5 log n) matvecs suffice.

S]

Tons of open questions:
- Obtain (1 + €) error instead of constant factor.

- Our method uses adaptive queries. Are they necessary?

- We have learned that “class size” does not fully
characterize sample complexity: our result gives loose
bounds for low-rank matrices, diagonal matrices, etc.
What is the “right” complexity measure?
23



QUESTIONS?



