The Effectiveness of Single Vector Krylov Methods for Low-Rank Approximation

NYU Tandon School of Engineering, Christopher Musco

COLLABORATORS

Raphael Meyer (NYU)

Cameron Musco (UMass. Amherst)

Paper available at: https://arxiv.org/abs/2305.02535.

Raphael is graduating with his Ph.D. in CS in Spring 2024 and will be looking for postdocs!

PROBLEM WE ARE STUDYING

Have a matrix $A \in \mathbb{R}^{d \times n}$ and want to quickly compute an optimal rank-k approximation.

Need to find the top k singular vectors of A.

PROBLEM WE ARE STUDYING

Have a matrix $\mathrm{A} \in \mathbb{R}^{d \times n}$ and want to quickly compute an optimal rank- k approximation.

Need to find the top k singular vectors of A. Call them $\mathbf{U}_{k} \in d \times k$. Then we can form the approximation:

$$
\mathrm{A} \approx \mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{A} \stackrel{\text { def }}{=} \mathrm{A}_{k}
$$

A_{k} is the optimal k-rank approximation to A.

PROBLEM WE ARE STUDYING

Have a matrix $A \in \mathbb{R}^{d \times n}$ and want to quickly compute an optimal rank-k approximation.

Need to find the top k singular vectors of A. Call them $\mathrm{U}_{k} \in d \times k$. Then we can form the approximation:

$$
\mathrm{A} \approx \mathrm{U}_{k} \mathrm{U}_{k}^{\top} \mathrm{A} \stackrel{\text { def }}{=} \mathrm{A}_{k}
$$

A_{k} is the optimal k-rank approximation to A.
How do we find it quickly without computing a full SVD?

TYPICAL KRYLOV METHOD

Most common approach: Run a Krylov subspace method.

1. Choose random starting block $B \in \mathbb{R}^{d \times b}$ ($b=1$ or larger).
2. Compute orthonormal basis Z for the Krylov subspace:

$$
\mathcal{K}=\left[\begin{array}{lllll}
\mathrm{B} & \mathrm{~A} A^{\top} \mathrm{B} & \left(\mathrm{~A} A^{\top}\right)^{2} \mathrm{~B} & \cdots & \left(\mathrm{~A} A^{\top}\right)^{t} \mathrm{~B}
\end{array}\right]
$$

3. Return $\mathbf{Q}=\mathbf{Z} \tilde{U}_{k}$ where \tilde{U}_{k} contains the top k eigenvectors of $Z^{\top} A A^{\top} Z$. This choice of Q minimizes $\left\|A-Q Q^{\top} A\right\|_{F}$ amoung all rank k matrices in the span of \mathcal{K}.

Runtime of this method? Often dominated by the cost of multiplying vectors by A , so $O\left(T_{M V}(\mathrm{~A}) \cdot b \cdot t\right)$.

TYPICAL KRYLOV METHOD

Two parameters to choose ${ }^{1}$:

- Number of iterations t.
- Size of starting block b.

Main question: For a choice of block-size b, how many matrix vector multiplications $b \cdot t$ do we need to ensure that:

$$
\left\|\mathrm{A}-\mathrm{QQ}^{\top} \mathrm{A}\right\| \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\| ?
$$

[^0]
LARGE BLOCK METHODS

Most prior theoretical work on k-rank approximation focuses on "large block" methods where $b \geq k$.

LARGE BLOCK METHODS

Most prior theoretical work on k-rank approximation focuses on "large block" methods where $b \geq k$. Two main regimes:

Sketching. Run for single iteration.
[Sarlós, 2006] [Martinsson, Rokhlin, Tygert, 2006] [Halko, Martinsson, Tropp 2011] [Clarkson, Woodruff 2009, 2013]

LARGE BLOCK METHODS

Most prior theoretical work on k-rank approximation focuses on "large block" methods where $b \geq k$. Two main regimes:

Block size k. Run for multiple iterations
[Rokhlin, Szlam, and Tygert, 2009] [Halko, Martinsson, Tropp 2011] [Gu, 2015] [Musco, Musco 2015] [Drineas, Ipsen, Kontopoulous, Magdon-Ismail 2017]

SMALL BLOCK METHODS

Surely the case of $b=1$ has also been studied? This is textbook single vector Krylov iteration.

Yes and no. Single vector Krylov methods have been studied extensively for the problem of eigenvector/eigenspace approximation. But this problem differs in subtle but important ways from the low-rank approximation problem.

THE VIRTUES OF LARGE BLOCK METHODS

1. Effectively take advantage of parallelism. Multiplying AA^{\top} by k vectors all at once might not be that much more expensive than multiplying by 1 vector.
2. Do not require iteration for very large b. Useful in streaming and distributed computing environments, for constrained low-rank approximation, and more.
3. Enjoy "gap-independent" theoretical guarantees.

THE VIRTUES OF LARGE BLOCK METHODS

1. Effectively take advantage of parallelism. Multiplying AA^{\top} by k vectors all at once might not be that much more expensive than multiplying by 1 vector.
2. Do not require iteration for very large b. Useful in streaming and distributed computing environments, for constrained low-rank approximation, and more.
3. Enjoy "gap-independent" theoretical guarantees.

EXAMPLE THEORETICAL BOUND

Theorem (Musco, Musco 2015)
When run for $O\left(\frac{\log d}{\sqrt{\epsilon}}\right)$ iterations with a random starting block with $b=k$ columns, the Krylov method returns a rank k matrix Q satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2, F}
$$

$O\left(\frac{k \log d}{\sqrt{\epsilon}}\right) \underline{\text { matrix-vector multiplications total. }}$

EXAMPLE THEORETICAL BOUND

Theorem (Musco, Musco 2015)

When run for $O\left(\frac{\log d}{\sqrt{\epsilon}}\right)$ iterations with a random starting block with $b=k$ columns, the Krylov method returns a rank k matrix Q satisfying:

$$
\left\|\mathrm{A}-\mathrm{QQ}^{\top} \mathrm{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{2, F}
$$

$O\left(\frac{k \log d}{\sqrt{\epsilon}}\right) \underline{\text { matrix-vector multiplications total. }}$
In contrast, guarantees for eigenvector approximation always depend on matrix dependent quantities like $\frac{\sigma_{i+1}}{\sigma_{i}-\sigma_{i+1}}$.

GAP DEPENDENT VS. GAP INDEPENDENT

The following matrix has top singular vectors \mathbf{e}_{1} and \mathbf{e}_{2} :

Convergence to the top subspace, span $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$, inherently depends polynomially on the inverse gap $\frac{\sigma_{3}}{\sigma_{2}-\sigma_{3}}$.
But for accurate rank 2 approximation, we can converge to any two vectors in the span of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$. No gap dependence necessary.

GAP DEPENDENT VS. GAP INDEPENDENT

The following matrix has top singular vectors \mathbf{e}_{1} and \mathbf{e}_{2} :

Convergence to the top subspace, span $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$, inherently depends polynomially on the inverse gap $\frac{\sigma_{3}}{\sigma_{2}-\sigma_{3}}$.
For more discussion, see e.g. Low-Rank Matrix Approximations Do Not Need a Singular Value Gap [Drineas, Ipsen, 2019].

SINGLE VECTOR METHODS AND SPECTRAL GAP DEPENDENCE

Without additional modifications, the convergence of single vector Krylov iteration must depend inversely on spectral gaps.
Even for low-rank approximation!

Krylov subspace never contains a good low-rank approximation.
$\left\|A-A_{2}\right\|_{F}=0$ but $\left\|A-Q Q^{\top} A\right\|_{F}$ is never less then 1 , no matter how many iterations we take.

SINGLE VECTOR METHODS AND GAP DEPENDENCE

"Despite decades of research on [single vector] Lanczos methods, the theory for [large block] randomized methods is more complete and provides strong guarantees of excellent accuracy, whether or not there exist any gaps between the singular values." - Slzam, Kluger, Tygert, 2014

single vector KryloV methods for low-rank approximation

THEORY/PRACTICE GAP

Most major numerical linear algebra libraries use a single random starting vector. And they usually work fine!

THEORY/PRACTICE GAP

If you are careful about numerical issues (e.g. build the Krylov subspace with sufficient reothogonalization) it is hard to find a problem where single vector Krylov methods lose to large block methods (in terms of number of matrix-vector products).

nd3k Matrix (SuiteSparse)

Wishart Lower Bound

[^1]
THEORY PRACTICE GAP

Repeated Singular Values

appu Matrix

Polynomial Decay ($\beta=0.5$)

human_gene_2 Matrix

Polynomial Decay ($\beta=1.5$)

exdata_1 Matrix

OUR MAIN RESULTS

Research question: For low-rank approximation, when and why do single vector Krylov methods require the same or fewer matrix-vector multiplications than large block methods?

OUR MAIN RESULTS

Research question: For low-rank approximation, when and why do single vector Krylov methods require the same or fewer matrix-vector multiplications than large block methods?

Answer: For low-rank approximation, single vector methods depend on gaps, but only in a very mild way!

Up to a logarithmic dependence on spectral gaps, single vector methods match (or beat) the performance of large block Krylov iteration run with any block size $b \geq k$.

EXAMPLE RESULTS

Theorem (Existing Large Block Result)

When run for $O\left(\frac{\log d}{\sqrt{\epsilon}}\right)$ iterations with block size $b=k$, the Krylov method returns a rank k matrix \mathbf{Q} satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{R}\right\|_{2, F}
$$

Let $g_{\text {min }}=\min _{i=1, \ldots, k-1}\left(\frac{\sigma_{i}-\sigma_{i+1}}{\sigma_{i+1}}\right)$ be the minimum singular value gap in the top subspace.

Theorem (Small block result)

When run for $O\left(\frac{k \log \left(1 / g_{\text {min }}\right)+\log d}{\sqrt{\epsilon}}\right)$ iterations with block size $b=1$, the Krylov method returns a rank k matrix \mathbf{Q} satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2, F}
$$

EXAMPLE RESULTS

Block size k method: $O\left(\frac{k \log d}{\sqrt{\epsilon}}\right)$ matvecs for error ϵ. Single vector method: $O\left(\frac{k \log \left(1 / g_{\min }\right)+\log d}{\sqrt{\epsilon}}\right)$ matvecs for error ϵ.

EXAMPLE RESULTS

Theorem (Existing Large Block Result)

When run for $O\left(\frac{\log (d / \epsilon)}{\sqrt{\left(\sigma_{k}-\sigma_{k+p}\right) / \sigma_{k+p}}}\right)$ iterations with block size $b=k+p$, Krylov iteration returns $a \operatorname{rank} k Q$ satisfying:

$$
\left\|\mathrm{A}-\mathrm{QQ}^{\top} \mathrm{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{2, F}
$$

Let $g_{\text {min }}=\min _{i=1, \ldots, k+p-1}\left(\frac{\sigma_{i}-\sigma_{i+1}}{\sigma_{i+1}}\right)$.

Theorem (New small block result)

When run for $O\left(\frac{(k+p) \log \left(1 / g_{\min }\right)+\log (d / \epsilon)}{\sqrt{\left(\sigma_{k}-\sigma_{k+p}\right) / \sigma_{k+p}}}\right)$ iterations with block size $b=1$, Krylov iteration returns a rank $k Q$ satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2, F}
$$

EXAMPLE RESULTS

Block size $k+p: O\left(\frac{(k+p) \log (d / \epsilon)}{\sqrt{\left(\sigma_{k}-\sigma_{k+p}\right) / \sigma_{k+p}}}\right)$ matvecs for error ϵ.
Single vector: $O\left(\frac{(k+p) \log \left(1 / g_{\min }\right)+\log (d / \epsilon)}{\sqrt{\left(\sigma_{k}-\sigma_{k+p}\right) / \sigma_{k+p}}}\right)$ matvecs for error ϵ, where we can minimize over p.

Single-vector method obtains the "best of all worlds" without having to do any parameter selection.

EXAMPLE RESULTS

[Bakshi, Clarkson, Woodruff, 2022] shows how to compute Q satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{R}\right\|_{F}
$$

using õ $\left(k / \epsilon^{1 / 3}\right)$. They run Krylov iteration with block sizes k and $k / \epsilon^{1 / 3}$ and take the best result in both subspaces.

Corollary of our result: Up to a logarithmic dependence on the minimum gap, we obtain the same bound with a simpler, parameter free method - simply run single vector Krylov.

All of these theorems can be proven using a single "gray box" reduction.

PROOF APPROACH

All of these theorems can be proven using a single "gray box" reduction. Start with a naive observation:

$$
\operatorname{span}\left[\begin{array}{lllll}
b & A A^{\top} b & \left(A A^{T}\right)^{2} b & \cdot & \left(A A^{T}\right)^{t} b
\end{array}\right]
$$

is equal to

$$
\operatorname{span}\left[\begin{array}{lllll}
S_{k} & A A^{\top} S_{k} & \left(A A^{T}\right)^{2} b & \cdot & \left(A A^{T}\right)^{t-k+1} S_{k}
\end{array}\right]
$$

where $S_{k}=\left[\begin{array}{llll}\mathrm{b} & \mathrm{AA} A^{\top} \mathrm{b} & \cdots & \left(\mathrm{AA}^{T}\right)^{k-1} \mathrm{~b}\end{array}\right]$ contains the first k columns of the Krylov subsoace.

PROOF APPROACH

Single vector iteration is equivalent to large block iteration with a particular choice of starting block.

IS THIS A REASONABLE IDEA?

- Upside: Every additional "iteration" of the block method only requires one matrix-vector multiply with $A A^{\top}$. Typically would need $k t$ matrix-vector multiplies to iterate a block of size k for t iterations. Only need $k+t$ if our starting block is S_{k}.
- Downside: The starting block S_{k} looks very different from a random matrix. E.g. will typically be numerically low-rank.

$$
\mathrm{S}_{k}=\left[\begin{array}{llll}
\mathrm{b} & \mathrm{~A} A^{\top} \mathrm{b} & \cdots & \left(\mathrm{~A} A^{T}\right)^{k} \mathrm{~b}
\end{array}\right]
$$

This is huge upside and a huge downside.

WHAT MAKES A GOOD STARTING BLOCK?

Almost all prior analysis of block Krylov methods depend on showing that the random starting block B satisfies a condition similar to the following:

Definition ((k, L)-good starting matrix)

A starting matrix $\mathbf{B} \in \mathbb{R}^{d \times k}$ is a (k, L)-good starting matrix for A if, $Q=\operatorname{span}(B)$ satisfies $\left\|\left(U_{k}^{\top} Q\right)^{-1}\right\|_{2}^{2} \leq L$.

We want L to be as small as possible. Requires that \mathbf{Q} has good inner product with any vector in the span of U_{k}.

Equivalent to requiring that all principal angles between subspaces U_{k} and Q have $\cos \left(\theta_{i}\right) \geq 1 / \sqrt{L}$.

WHAT MAKES A GOOD STARTING BLOCK?

Almost all prior analysis of block Krylov methods depend on showing that the random starting block B satisfies a condition similar to the following:

Definition (($k, L)$-good starting matrix)

A starting matrix $\mathrm{B} \in \mathbb{R}^{d \times k}$ is a (k, L)-good starting matrix for A if, $Q=\operatorname{span}(B)$ satisfies $\left\|\left(U_{k}^{\top} Q\right)^{-1}\right\|_{2}^{2} \leq L$.

We want L to be as small as possible. Requires that \mathbf{Q} has good inner product with any vector in the span of U_{k}.

Now standard result [Rudelson, Vershynin 2010]: A random Gaussian matrix is (k, L) good with probability $1-\delta$ for:

$$
L=O(k d / \delta) .
$$

RESULT FOR GENERIC STARTING BLOCKS

Theorem (Musco, Musco 2015)

When run for $O\left(\frac{\log d L}{\sqrt{\epsilon}}\right)$ iterations with a (k, L)-good starting block, the block Krylov method returns a rank k matrix Q satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2, F}
$$

Plugging in $L=O(k d / \delta)$ gives the desired bound for a random starting block.

SINGLE VECTOR ANALYSIS

Main question: Is the following matrix (k, L) good?

$$
S_{k}=\left[\begin{array}{llll}
\mathrm{b} & \mathrm{~A} A^{\top} \mathrm{b} & \cdots & \left(\mathrm{~A} A^{\top}\right)^{k} \mathrm{~b}
\end{array}\right]
$$

SINGLE VECTOR ANALYSIS

Main question: Is the following matrix (k, L) good?

$$
\mathrm{S}_{k}=\left[\begin{array}{llll}
\mathrm{b} & \mathrm{~A} A^{\top} \mathrm{b} & \cdots & \left(\mathrm{AA}^{T}\right)^{k} \mathrm{~b}
\end{array}\right]
$$

Claim: With probability $(1-\delta), S_{k}$ is (k, L)-good for:

$$
L=\operatorname{poly}(k, d, 1 / \delta) \cdot \frac{1}{g_{\min }^{4 k}},
$$

where $g_{\text {min }}=\min _{i=1, \ldots, k-1}\left(\frac{\sigma_{i}-\sigma_{i+1}}{\sigma_{i+1}}\right)$.

SINGLE VECTOR ANALYSIS

Main question: Is the following matrix (k, L) good?

$$
S_{k}=\left[\begin{array}{llll}
\mathrm{b} & \mathrm{~A} A^{\top} \mathrm{b} & \cdots & \left(\mathrm{~A} A^{\top}\right)^{k} \mathrm{~b}
\end{array}\right]
$$

Claim: With probability $(1-\delta), S_{k}$ is (k, L)-good for:

$$
L=\operatorname{poly}(k, d, 1 / \delta) \cdot \frac{1}{g_{\min }^{4 k}},
$$

where $g_{\text {min }}=\min _{i=1, \ldots, k-1}\left(\frac{\sigma_{i}-\sigma_{i+1}}{\sigma_{i+1}}\right)$.
This is exponentially worse than what we know for random matrices.

SINGLE VECTOR ANALYSIS

Which is great!!

SINGLE VECTOR ANALYSIS

Theorem (Musco, Musco 2015)

When run for $O\left(\frac{\log d L}{\sqrt{\epsilon}}\right)$ iterations with a (k, L)-good starting block, the block Krylov method returns a rank k matrix Q satisfying:

$$
\left\|\mathrm{A}-\mathrm{QQ}^{\top} \mathrm{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathrm{A}-\mathrm{A}_{k}\right\|_{2, F}
$$

Plugging in $L=\operatorname{poly}(k, d, 1 / \delta) \cdot \frac{1}{g_{\min }^{4 k}}$ gives the desired bound for the single vector starting block S_{k} with:

$$
t=O\left(\frac{k \log \left(1 / g_{\min }\right)+\log (d / \delta)}{\sqrt{\epsilon}}\right) \text { iterations. }
$$

SINGLE VECTOR ANALYSIS

Theorem (Musco, Musco 2015)

When run for $O\left(\frac{\log d L}{\sqrt{\epsilon}}\right)$ iterations with a (k, L)-good starting block, the block Krylov method returns a rank k matrix Q satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2, F}
$$

Plugging in $L=\operatorname{poly}(k, d, 1 / \delta) \cdot \frac{1}{g_{\min }^{4 k}}$ gives the desired bound for the single vector starting block S_{k} with:

$$
t=O\left(\frac{k \log \left(1 / g_{\min }\right)+\log (d / \delta)}{\sqrt{\epsilon}}\right) \text { iterations. }
$$

And running this many iterations only requires $t+k$ matrix-vector multiplications with ${A A^{T}}^{T}$.

SINGLE VECTOR ANALYSIS

How to show that $S_{k}=\left[\begin{array}{llll}\mathbf{b} & \mathrm{AA}^{\top} \mathbf{b} & \cdots & \left(\mathrm{AA}^{T}\right)^{k} \mathbf{b}\end{array}\right]$ is (k, L)-good?
Reduce to a problem about polynomials, by taking advantage of the fact that:

$$
\left\|\left(U_{k}^{\top} \mathbf{Q}\right)^{-1}\right\|_{2}^{2}=\left\|S_{k}\left(U_{k}^{\top} S_{k}\right)^{-1}\right\|_{2}^{2} \max _{x} \frac{\left\|S_{k} x\right\|_{2}^{2}}{\left\|U_{k}^{\top} S_{k} x\right\|_{2}^{2}}
$$

SINGLE VECTOR ANALYSIS

How to show that $S_{k}=\left[\begin{array}{llll}\mathbf{b} & \mathrm{AA}^{\top} \mathrm{b} & \cdots & \left(\mathrm{AA}^{T}\right)^{k} \mathbf{b}\end{array}\right]$ is (k, L)-good?
Reduce to a problem about polynomials, by taking advantage of the fact that:

$$
\left\|\left(\mathbf{U}_{k}^{\top} \mathbf{Q}\right)^{-1}\right\|_{2}^{2}=\left\|S_{k}\left(\mathbf{U}_{k}^{\top} \mathbf{S}_{k}\right)^{-1}\right\|_{2}^{2} \max _{x} \frac{\left\|S_{k} x\right\|_{2}^{2}}{\left\|\mathbf{U}_{k}^{\top} \mathbf{S}_{k} x\right\|_{2}^{2}}
$$

After applying some Gaussian anti-concentration, need to bound:

$$
\max _{\text {degree } k-1 \text { poly } p} \frac{\max _{i \in 1, \ldots, d} p\left(\sigma_{i}^{2}\right)}{\max _{i \in 1, \ldots, k} p\left(\sigma_{i}^{2}\right)}
$$

SINGLE VECTOR ANALYSIS

Need to bound:

$$
\max _{\text {degree } k-1 \text { poly } p} \frac{\max _{i \in k+1, \ldots, d} P\left(\sigma_{i}^{2}\right)}{\max _{i \in 1, \ldots, k} P\left(\sigma_{i}^{2}\right)}
$$

SINGLE VECTOR ANALYSIS

Need to bound:

$$
\max _{\text {degree } k-1 \text { poly } p} \frac{\max _{i \in k+1, \ldots, d} P\left(\sigma_{i}^{2}\right)}{\max _{i \in 1, \ldots, k} P\left(\sigma_{i}^{2}\right)}
$$

Obtain a bound of $O\left(1 / g_{\text {min }}^{4 k}\right)$ following an approach from [Saad, 1980].

CONCLUSION

Punchline: For low-rank approximation, single vector Krylov iteration matches large block methods (in terms of matrix-vector products) up to a logarithmic factor.

Theorem

When run for O $\left(\frac{k \log \left(1 / g_{\text {min }}\right)+\log d}{\sqrt{\epsilon}}\right)$ iterations with block size $b=1$, the Krylov method returns a rank k matrix \mathbf{Q} satisfying:

$$
\left\|\mathbf{A}-\mathbf{Q Q}^{\top} \mathbf{A}\right\|_{2, F} \leq(1+\epsilon)\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2, F}
$$

CONCLUSION

Other results in the paper:

- Bounds for block size $1<b<k$. Depend on minimum $b^{\text {th }}$-order gap.
- By adding a small random perturbation to A, we can replace the $\log \left(1 / g_{\text {min }}\right)$ with a $\log (d)$ without hurting accuracy.
- More experiments.

Impact of Minimum Gap on Single Vector Krylov

CONCLUSION

Future work:

- Better understanding finite precision. Can we obtain similar results with partial orthogonalization?
- Improving bounds for block size $1<b<k$. For $b=c \cdot k$, we require $O\left(k^{2}\right)$ matrix-vector multiplies. Not sure if tight.
- Are our current low-rank approximation algorithms optimal in terms of matrix-vector products? [Bakshi, Narayanan 2023].
questions?

[^0]: ${ }^{1}$ Lots of other choices related to how to orthogonalize and post-process the Krylov subspace. These are not the focus of my talk, but very important!

[^1]: \rightarrow Single Vector \rightarrow Block Size $50 \rightarrow$ Block Size 54

