
Recent Developments in
Algorithm Design

Lecture 2: Generalizations and Variants of Set Cover

(Hellerstein)

Recall Linear Program Duality

Linear Program (for minimization problem) in
canonical form

• minimize  

 

 such that  

 

n

∑
j=1

cjxj

n

∑
j=1

ai,jxj ≥ bi for i, …, m

xj ≥ 0 for j = 1,…, n

Linear Program (for minimization problem) in
canonical form — vector notation version

• minimize  
 
 such that  
 

cTx

Ax ≤ b

x ≥ 0

Linear Program in canonical form and its dual —
vector notation version

• minimize  
 
 such that  
 

• maximize  
 
 such that  
 

cTx

Ax ≥ b

x ≥ 0

bTy

ATy ≤ c

y ≥ 0

Linear Program (for minimization problem) in
canonical form, and its dual

• minimize  

 

 such that  

 

• maximize  

 

 such that  

 

n

∑
j=1

cjxj

n

∑
j=1

ai,jxj ≥ bi for i, …, m

xj ≥ 0 for j = 1,…, n

m

∑
i=1

biyi

m

∑
i=1

ai,jyi ≤ cj for j = 1,…, n

yi ≥ 0 for i = 1,…, m

Terminology

• A solution to an LP is “feasible” if it satisfies all the constraints

• Given a feasible solution to an LP, we say that a constraint of the LP is
made “tight” by this solution if it causes the left hand side of the
constraint to equal the right hand side

Weak duality

• If is a feasible solution to the primal LP (i.e., it satisfies all the constraints
of the primal LP), and is a feasible solution to the dual LP (i.e., it satisfies
all the constraints of the dual LP), then 
 

̂x
̂y

cT ̂x ≥ bT ̂y

Strong duality

• If is an optimal solution to the primal LP and is an optimal solution
to the dual LP, then 
 

x* y*

cTx* = bTy*

Primal-Dual Algorithm for Set Cover

Recall Set Cover Problem

• Input: Ground set (universe) = and family of subsets

 where each , such that  

• Task: Find a minimum size subset of that covers all the elements of

𝒰 {e1, …, en}

ℱ = {S1, …, Sm} Si ⊆ 𝒰
m

⋃
i=1

Si = 𝒰

ℱ 𝒰

LP for Set Cover

• minimize  

 
 such that  

 

∑
S∈ℱ

xS

∑
S:e∈S

xS ≥ 1 ∀e ∈ 𝒰

xS ≥ 0 ∀S ∈ ℱ

LP for weighted Set Cover
• Each has an associated weight .  

Want minimum weight set cover.

• minimize  

 
 such that  

 

S ∈ ℱ wS ≥ 0

∑
S∈ℱ

wSxS

∑
S:e∈S

xS ≥ 1 ∀e ∈ 𝒰

xS ≥ 0 ∀S ∈ ℱ

Primal LP and Dual LP for Set Cover
• Primal LP: minimize  

 
 such that  

 

• Dual LP: maximize  

 
 such that  

 

∑
S∈ℱ

wSxS

∑
S:e∈S

xS ≥ 1 ∀e ∈ 𝒰

xS ≥ 0 ∀S ∈ ℱ

∑
e∈𝒰

ye

∑
e:e∈S

ye ≤ wS ∀S ∈ ℱ

ye ≥ 0 ∀e ∈ 𝒰

15

e1 e2

e4
e3

S1

S3

S2

Dual:

max ye1
+ ye2

+ ye3
+ ye4

Primal: 
 

min 5xS1
+ 7xS2

+ 6xS3

w(S1) = 5, w(S2) = 7, w(S3) = 6

16

e1 e2

e4
e3

S1

S3

S2

Dual: 

max ye1
+ ye2

+ ye3
+ ye4

Primal: 
 

min 5xS1
+ 7xS2

+ 6xS3

w(S1) = 5, w(S2) = 7, w(S3) = 6

xS1
≥ 1

ye1
+ ye2

≤ 5
ye3

+ ye4
≤ 7

ye2
+ ye4

≤ 6

xS1
+ xS3

≥ 1
xS2

≥ 1
xS2

+ xS3
≥ 1

s.t.

s.t.

xS1
, xS3

, xS3
≥ 0

ye1
, ye2

, ye3
, ye4

≥ 0

Primal-Dual algorithm for set cover

• Another approximation algorithm for (weighted) Set Cover, produces a
cover of total weight , where is max number of sets containing
an element .

• Simple, combinatorial algorithm, doesn't require using an LP solver to
produce an optimal solution to the linear progam

• But LP and its dual used in motivation behind algorithm and in its analysis

f * OPT f
e ∈ 𝒰

Primal Dual algorithm for set cover
• Begin with feasible solution for the Dual LP. (i.e., for all , =0 is value assigned to)

• \\ We will add subsets to until subsets in cover all the elements in .

• while there is an element such that not covered by

• Increase until some constraint in the dual that contains becomes tight  
 \\ if a constraint containing already tight, “increase” by 0

• Let be subset associated with this constraint

•

• return

̂y = 0 e ̂ye ye

F′ = ∅ . S ∈ ℱ F′ F′ 𝒰

e ∈ 𝒰 e F′

̂ye ye
̂ye ̂ye

S

F′ = F′ ∪ {S}

F′

19

e1 e2

e4
e3

S1

S3

S2

Dual: 

max ye1
+ ye2

+ ye3
+ ye4

w(S1) = 5, w(S2) = 7, w(S3) = 6
ye1

+ ye2
≤ 5

ye3
+ ye4

≤ 7
ye2

+ ye4
≤ 6

s.t.

ye1
, ye2

, ye3
, ye4

≥ 0

20

e1 e2

e4
e3

S1

S3

S2

Dual: 

max ye1
+ ye2

+ ye3
+ ye4

w(S1) = 5, w(S2) = 7, w(S3) = 6
ye1

+ ye2
≤ 5

ye3
+ ye4

≤ 7
ye2

+ ye4
≤ 6

s.t.

ye1
, ye2

, ye3
, ye4

≥ 0

Increase

Add to cover 
 
 

Increase

Add to cover

̂ye1
= ̂ye2

= ̂ye3
= ̂ye4

= 0

̂ye2

̂ye2
= 5

S1

e3 and e4 still uncovered
ye4

̂ye4
= 2

S2

Analysis of Primal-Dual algorithm for Set Cover

• Thm: Primal-Dual algorithm constructs a set cover of size at most , where OPT is the value of the optimal solution (minimum weight
set cover), and is the max number of sets covering any element

• Pf: 
 
Can show that algorithm successfully produces cover

• Consider cover constructed by the algorithm, and final value of . Total weight of constructed cover is

For each , the corresponding dual constraint is tight, , so the total weight of is 

  

 
 belongs to at most sets  

 
 is feasible solution to Dual LP 
 

f × OPT
f S ∈ ℱ e ∈ 𝒰

F′

F′ ̂y F′ ∑
S∈F′

wS

S ∈ F′ ∑
e∈S

̂ye = wS F′

∑
S∈F′

wS = ∑
S∈F′

∑
e∈S

̂ye

≤ f ∑
e∈𝒰

̂ye since each e ∈ 𝒰 f S ∈ ℱ

≤ f × LP where LP is the optimal value of the LP, by duality and fact that ̂y

≤ f × OPT

Greedy Algorithm for Weighted Set Cover

Generalization of (primal) Greedy algorithm for
weighted set cover

• Previous greedy algorithm didn't handle weights on the subsets, just needed to minimize size
of cover

• Natural generalization of greedy algorithm, using greedy rule:

• Choose subset maximizing 
 

 

 
 
maximizing “bang-for-the-buck”

• Same approximation factor as for unweighted greedy algorithm, total weight of constructed
cover is at most

S

number uncovered elements in S
wS

ln(|𝒰 | + 1)OPT

Summary of Algorithms for Weighted Set
Cover

Summary of presented Weighted Set-Cover
Algorithms

Approximation
factor

Primal Dual f

Greedy ln U + 1

Solve LP and round
deterministically f

Solve LP,
randomized

rounding with
alteration

ln U + 1 (expected)

Submodular (Set) Cover

Submodular (Set) Cover

• Let be a finite set. Call the elements of “items”

• Let Function assigns non-negative  
 real value to each subset of items 
 We will call a “utility function”  

• Monotonicity:  
Say is monotone if for all where ,  
 Adding additional items to a set can never decrease utility

V V

u : 2V → ℝ≥0 u

u

u A, B A ⊆ B ⊆ V u(A) ≤ u(B)

Submodularity
• Definition: 

 A function : is said to be submodular if for all such that
, and , 

• Submodularity is sometimes called the diminishing returns property. Why? 
 
 
 
 
 

u 2V → ℛ≥0 A, B
A ⊆ B ⊆ V i ∈ V \B

u(A ∪ {i}) − u(A) ≥ u(B ∪ {i}) − u(B)

Equivalent Definition of Submodularity

• Definition: 
 A function : is said to be submodular if for all such that

, and , 

u 2V → ℛ≥0 A, B
A, B ⊆ V i ∈ V \B

u(A ∪ B) + u(A ∩ B) ≤ u(A) + u(B)

Coverage functions
• Recall that an instance of the set cover problem is a set system consisting of universe and a family of subsets of

• Consider the utility function where and for all  
 # elements of covered by the sets in

• This type of utility function, based on a set system, is called a “coverage function”

• The “items” of the coverage function correspond to the subsets in (each item is a subset of elements of universe)

• If is a coverage function, it is

• monotone

• submodular

• has the property that  

𝒰 ℱ 𝒰

u : 2V → ℛ≥0 V = ℱ F ⊆ ℱ
u(F) = | ⋃

S∈F

S | = 𝒰 S F

S ℱ 𝒰

u

u(∅) = 0

Other examples of submodular functions
• Rank function of a vector space

• = set of all vectors in a vector space, and rank of space spanned by vectors in

• Modular (additive) functions

• Each item has an associated real weight and  

If weights are non-negative, then is monotone.

• “Budget additive” functions

• Each item has an associated weight and for some ,

• Non-monotone example: Graph cut functions

• set of all vertices in a graph , = number of edges of with ,

V u(V′) = V′

i ∈ V wi u(V′) = ∑
i∈V

wi

u

i ∈ V wi ≥ 0 B ≥ 0 u(V′) = min{B, ∑
i∈V

wi}

V = G u(V′) (u, v) G u ∈ V′ v ∈ V \V′

Generalization of set cover: Submodular Cover

• Problem: Given a finite set , a utility function such that is monotone,
submodular, and satisfies , find a minimum size subset such that

• Notes:

• Problem statement doesn’t mention how function is given as input. We assume that it is
given by an oracle that, given as input a subset , will return in constant time.

• Call such that a “cover” of

• Set Cover is the special case of this problem where is a coverage function  
(where the answers to the oracle queries are easily computed from the given set system)

• Can extend to real-valued utility functions but results get a little messier

V u : 2V → ℤ≥0 u
u(∅) = 0 V′ ⊆ V u(V′) = u(V)

u
V′ ⊆ V u(V′)

V′ ⊆ V u(V′) = u(V) u

u

Generalization of Max (Set) Coverage Problem:
Submodular Max Coverage Problem

• Problem: Given a finite set , a utility function such that
is monotone, submodular, and satisfies , and an integer
such that , find a subset of size that maximizes

• Greedy algorithm and its analysis almost same as they were for Max (Set)
Coverage.

V u : 2V → ℝ≥0 u
u(∅) = 0 k ≥ 0

k ≤ |V | V′ ⊆ V k u(V′)

Greedy algorithm for Submodular Max Coverage
problem

• Input: Finite set of items, oracle for utility function , such that is monotone,
submodular, and

• \\ will contain the first items chosen

• for

• using oracle for , find an item that maximizes  
call this item \\ is the greedy choice

•

• return  
 

V u : 2V → ℛ≥0 u
u(∅) = 0

V′ 0 = ∅ V′ t t

t = 1 to k

u i ∈ V \V′ t−1 u(V′ t−1 ∪ {i}) − u(V′ t−1)
i* i*

V′ t = V′ t−1 ∪ {i*}

V′ k

Analysis of Greedy Algorithm for Submodular Max
Coverage problem

• Let be an optimal solution, a set of items that maximizes . Let

• At start of -th greedy step, think of as the remaining distance to

• In -th greedy step, greedily choose item to add to

• If you added all the elements in to , you’d reach utility value OPT, so increase in utility would be .

• By submodularity and monotonicity of , can show there must be an element of that when added to would increase

utility by at least of the remaining distance to OPT  

after adding -th greedy element, remaining distance to goal,

• Inductively:

• Therefore, Greedy outputs a solution that achieves utility at least

V* k u(V*) OPT = u(V*)

t OPT − u(Vt−1) OPT

t V′ t−1

V* V′ t−1 OPT − u(V′ t−1)

u V* V′ t−1
1

|V * |
=

1
k

⇒

t OPT − u(Vt) ≤ (1 −
1

|OPT |
) * (OPT − u(Vt−1))

OPT − u(V′ k) ≤ (1 −
1
k

)kOPT ≤
1
e

OPT ⇒ u(V′ k) ≥ (1 −
1
e

)OPT

(1 −
1
e

)OPT

Greedy algorithm for Submodular Cover
• Input: Finite set of items, oracle for utility function , such that is monotone, submodular, and

• =0

• \\ contains items already put into at end of step of greedy algorithm

• while

•

• using oracle for , find an item that maximizes  
call this item \\ is the greedy choice

•

• return  
 

V u : 2V → ℛ≥0 u u(∅) = 0

t

V′ t = ∅ V′ t V′ t

u(V′ t) ≠ u(V)

t = t + 1

u i ∈ V \V′ t−1 u(V′ t−1 ∪ {i}) − u(V′ t−1)
i* i*

V′ t = V′ t−1 ∪ {i*}

V′ t

Analysis of Greedy Algorithm for Submodular
Cover

• Let be the minimum size of a cover of , i.e., min size of a subset such that

• At start of -th greedy step, think of as the remaining distance to the goal utility
value,

• As in analysis of max-coverage can show that inductively,  

• Setting , we get , which implies that , since is
an integer valued function

• Therefore, Greedy algorithm runs for at most steps, so its
output solution has size at most

OPT u V* u(V*) = u(V)

t u(V) − u(Vt−1)
u(V)

u(V) − u(V′ t) ≤ (1 −
1

OPT
)tu(V) < e− t

OPT u(V)

t = ⌈OPT ln u(V)⌉ u(V) − u(V′ t) < 1 u(V′ t) = u(V) u

⌈OPT ln u(V)⌉ ≤ OPT(ln u(V) + 1)
OPT(ln u(V) + 1)

Sequencing problems

Sequencing problems
• Problems where we want to find the optimal order in which to do something

• Examples:

• Traveling salesman problem

• Find the “best” permutation of vertices, given graph with weighted
edges

• NP-hard problem

• polytime 1.5-approximation algorithm (assuming weights obey triangle
inequality)

• Scheduling problems, e.g.. Min-sum completion time problem:

• Set of n “jobs” to be scheduled on a single “processor”

• Processor can only process one job at a time

• Given the length of job for =1,…,n

• Find permutation of jobs that minimizes the sum of completion times of the jobs (same as
minimizing the average completion time)

• Optimal solution is to order jobs in increasing length

• If jobs have weights , and want to minimize weighted sum of completion times

• exercise: determine optimal solution for this case

ℓj j j

wj

Min-Sum Set Cover

Min-Sum Set Cover [Lovasz et al. 02]

• Input: Ground set (universe) = and family of subsets

 where each , such that  

• Task: Find the permutation of the subsets that minimizes the sum of the
covering times of the ground elements

• If an element is covered by the th element in the permutation, we say
that it is covered at time

𝒰 {e1, …, em}

ℱ = {R1, …, Rn} Ri ⊆ 𝒰
n

⋃
i=1

Ri = 𝒰

j
j

43

e1 e2
e3

e4 e5
e6

R1

R3

R2

44

e1 e2
e3

e4 e5
e6

R2,R3,R1

R1

R3

R2

45

e1 e2
e3

e4 e5
e6

R2,R3,R1 covers e4,e6 with R2 (at time 1)

R1

R3

R2

46

e1 e2
e3

e4 e5
e6

R2,R3,R1 covers e4,e6 with R2 (at time 1)

 then e2,e3,e5 with R3 (at time 2)

R1

R3

R2

47

e1 e2
e3

e4 e5
e6

R2,R3,R1 covers e4,e6 with R2 (at time 1)

 then e2,e3,e5 with R3 (at time 2)
 then e1 with R1 (at time 3)

R1

R3

R2

Sum of cover times is
2*1+3*2+1*3 = 11

Greedy Algorithm

• Greedy Rule: Choose subset that covers the
maximum number of uncovered elements

• Same greedy algorithm we used for “classical”
set cover problem.

• What approximation factor does it achieve for
Min-Sum Set Cover problem?

48

Approximation factor for Greedy Algorithm
applied to Min-Sum Set Cover?

• Consider “bad” instance for greedy algorithm applied to Classical Set
Cover. Greedy algorithm doesn’t do so badly! 
 
 
 
 
 
 
 
 
 

Greedy Algorithm

• Thm [Lovasz et al. 02] :
Greedy Algorithm is a 4-approximation
algorithm for Min-Sum Set Cover

 Proof based on histograms
 (next lecture)

50

51

W

52

