
Recent Developments in 
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Lecture 2: Generalizations and Variants of Set Cover 

(Hellerstein)



Recall Linear Program Duality



Linear Program (for minimization problem) in 
canonical form

• minimize  

 

        such that         

 
                                

n

∑
j=1

cjxj

n

∑
j=1

ai,jxj ≥ bi  for i, …, m

xj ≥ 0  for j = 1,…, n



Linear Program (for minimization problem) in 
canonical form — vector notation version

• minimize  
 
        such that         
 
                                

cTx

Ax ≤ b

x ≥ 0



Linear Program in canonical form and its dual — 
vector notation version

• minimize  
 
        such that         
 
                                


• maximize  
 
        such that         
 
                                

cTx

Ax ≥ b

x ≥ 0

bTy

ATy ≤ c

y ≥ 0



Linear Program (for minimization problem) in 
canonical form, and its dual

• minimize  

 

        such that         

 
                                


• maximize  

 

        such that         

 
                                

n

∑
j=1

cjxj

n

∑
j=1

ai,jxj ≥ bi  for i, …, m

xj ≥ 0  for j = 1,…, n

m

∑
i=1

biyi

m

∑
i=1

ai,jyi ≤ cj  for j = 1,…, n

yi ≥ 0  for i = 1,…, m



Terminology

• A solution to an LP is “feasible” if it satisfies all the constraints


• Given a feasible solution to an LP, we say that a constraint of the LP is 
made “tight” by this solution if it causes the left hand side of the 
constraint to equal the right hand side



Weak duality

• If  is a feasible solution to the primal LP (i.e., it satisfies all the constraints 
of the primal LP), and  is a feasible solution to the dual LP (i.e., it satisfies 
all the constraints of the dual LP), then 
 
                                              

̂x
̂y

cT ̂x ≥ bT ̂y



Strong duality

• If  is an optimal solution to the primal LP and  is an optimal solution 
to the dual LP, then 
 
                                              

x* y*

cTx* = bTy*



Primal-Dual Algorithm for Set Cover



Recall Set Cover Problem

•  Input: Ground set (universe) =  and family of subsets 

 where each , such that  

• Task: Find a minimum size subset of  that covers all the elements of 

𝒰 {e1, …, en}

ℱ = {S1, …, Sm} Si ⊆ 𝒰
m

⋃
i=1

Si = 𝒰

ℱ 𝒰



LP for Set Cover

• minimize  

 
        such that         

 
                                

∑
S∈ℱ

xS

∑
S:e∈S

xS ≥ 1 ∀e ∈ 𝒰

xS ≥ 0 ∀S ∈ ℱ



LP for weighted Set Cover
• Each  has an associated weight .   

Want minimum weight set cover.


• minimize  

 
        such that         

 
                                

S ∈ ℱ wS ≥ 0

∑
S∈ℱ

wSxS

∑
S:e∈S

xS ≥ 1 ∀e ∈ 𝒰

xS ≥ 0 ∀S ∈ ℱ



Primal LP and Dual LP for Set Cover
• Primal LP:   minimize  

 
        such that         

 
                                


• Dual LP: maximize  

 
        such that       

 
                                        

∑
S∈ℱ

wSxS

∑
S:e∈S

xS ≥ 1 ∀e ∈ 𝒰

xS ≥ 0 ∀S ∈ ℱ

∑
e∈𝒰

ye

∑
e:e∈S

ye ≤ wS ∀S ∈ ℱ

ye ≥ 0 ∀e ∈ 𝒰
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e1 e2

e4
e3

S1

S3

S2

Dual: 

max ye1
+ ye2

+ ye3
+ ye4

Primal: 
 

min 5xS1
+ 7xS2

+ 6xS3

w(S1) = 5, w(S2) = 7, w(S3) = 6
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e1 e2

e4
e3

S1

S3

S2

Dual: 

max ye1
+ ye2

+ ye3
+ ye4

Primal: 
 

min 5xS1
+ 7xS2

+ 6xS3

w(S1) = 5, w(S2) = 7, w(S3) = 6

xS1
≥ 1

ye1
+ ye2

≤ 5
ye3

+ ye4
≤ 7

ye2
+ ye4

≤ 6

xS1
+ xS3

≥ 1
xS2

≥ 1
xS2

+ xS3
≥ 1

s.t.

s.t.

xS1
, xS3

, xS3
≥ 0

ye1
, ye2

, ye3
, ye4

≥ 0



Primal-Dual algorithm for set cover

• Another approximation algorithm for (weighted) Set Cover, produces a 
cover of total weight , where  is max number of sets containing 
an element .   


• Simple, combinatorial algorithm, doesn't require using an LP solver to 
produce an optimal solution to the linear progam


• But LP and its dual used in motivation behind algorithm and in its analysis

f * OPT f
e ∈ 𝒰



Primal Dual algorithm for set cover
• Begin with feasible solution  for the Dual LP.   (i.e., for all , =0 is value assigned to )


•   \\ We will add subsets  to  until subsets in  cover all the elements in .


• while there is an element  such that  not covered by 


• Increase  until some constraint in the dual that contains   becomes tight  
          \\ if a constraint containing  already tight, “increase”  by 0


• Let  be subset associated with this constraint


•  


• return 

̂y = 0 e ̂ye ye

F′￼ = ∅ . S ∈ ℱ F′￼ F′￼ 𝒰

e ∈ 𝒰 e F′￼

̂ye ye
̂ye ̂ye

S

F′￼ = F′￼∪ {S}

F′￼
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e1 e2

e4
e3

S1

S3

S2

Dual: 

max ye1
+ ye2

+ ye3
+ ye4

w(S1) = 5, w(S2) = 7, w(S3) = 6
ye1

+ ye2
≤ 5

ye3
+ ye4

≤ 7
ye2

+ ye4
≤ 6

s.t.

ye1
, ye2

, ye3
, ye4

≥ 0
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e1 e2

e4
e3

S1

S3

S2

Dual: 

max ye1
+ ye2

+ ye3
+ ye4

w(S1) = 5, w(S2) = 7, w(S3) = 6
ye1

+ ye2
≤ 5

ye3
+ ye4

≤ 7
ye2

+ ye4
≤ 6

s.t.

ye1
, ye2

, ye3
, ye4

≥ 0

 

Increase  
 

Add  to cover 
 
 

 
Increase  

 
Add  to cover 

̂ye1
= ̂ye2

= ̂ye3
= ̂ye4

= 0

̂ye2

̂ye2
= 5

S1

e3 and e4 still uncovered
ye4

̂ye4
= 2

S2



Analysis of Primal-Dual algorithm for Set Cover

• Thm:  Primal-Dual algorithm constructs a set cover of size at most , where OPT is the value of the optimal solution (minimum weight 
set cover), and  is the max number of sets  covering any element 


• Pf: 
 
Can show that algorithm successfully produces cover 


• Consider cover   constructed by the algorithm, and final value of .  Total weight of constructed cover  is 


For each , the corresponding dual constraint is tight, , so the total weight of  is 

                      

 
                               belongs to at most  sets  

 
                              is feasible solution to Dual LP 
 
                                     

f × OPT
f S ∈ ℱ e ∈ 𝒰

F′￼

F′￼ ̂y F′￼ ∑
S∈F′￼

wS

S ∈ F′￼ ∑
e∈S

̂ye = wS F′￼

∑
S∈F′￼

wS = ∑
S∈F′￼

∑
e∈S

̂ye

≤ f ∑
e∈𝒰

̂ye since each e ∈ 𝒰 f S ∈ ℱ

≤ f × LP where LP is the optimal value of the LP, by duality and fact that  ̂y

≤ f × OPT



Greedy Algorithm for Weighted Set Cover



Generalization of (primal) Greedy algorithm for 
weighted set cover

• Previous greedy algorithm didn't handle weights on the subsets, just needed to minimize size 
of cover


• Natural generalization of greedy algorithm, using greedy rule:


• Choose subset  maximizing 
 

 

 
 
maximizing “bang-for-the-buck”


• Same approximation factor as for unweighted greedy algorithm, total weight of constructed 
cover is  at most               

S

number uncovered elements in S
wS

ln( |𝒰 | + 1)OPT



Summary of Algorithms for Weighted Set 
Cover



Summary of presented Weighted Set-Cover 
Algorithms

Approximation 
factor

Primal Dual f

Greedy ln U + 1

Solve LP and round 
deterministically f

Solve LP, 
randomized 

rounding with 
alteration

ln U + 1 (expected)



Submodular (Set) Cover



Submodular (Set) Cover

• Let  be a finite set.  Call the elements of  “items”


• Let         Function  assigns non-negative  
                                                real value to each subset of items 
                                     We will call  a “utility function”   
                                                           


• Monotonicity:   
Say  is monotone if for all  where ,  
            Adding additional items to a set can never decrease utility

V V

u : 2V → ℝ≥0 u

u

u A, B A ⊆ B ⊆ V u(A) ≤ u(B)



Submodularity
• Definition: 

 A function  :  is said to be submodular if for all  such that 
, and , 

                 


• Submodularity is sometimes called the diminishing returns property.  Why? 
 
 
 
 
 

u 2V → ℛ≥0 A, B
A ⊆ B ⊆ V i ∈ V \B

u(A ∪ {i}) − u(A) ≥ u(B ∪ {i}) − u(B)



Equivalent Definition of Submodularity

• Definition: 
 A function  :  is said to be submodular if for all  such that 

, and , 
                  

u 2V → ℛ≥0 A, B
A, B ⊆ V i ∈ V \B

u(A ∪ B) + u(A ∩ B) ≤ u(A) + u(B)



Coverage functions
• Recall that an instance of the set cover problem is a set system consisting of universe  and a family  of subsets of 


• Consider the utility function  where  and for all  
      # elements of  covered by the sets  in 


• This type of utility function, based on a set system, is called a “coverage function”


• The “items” of the coverage function correspond to the subsets  in  (each item is a subset of elements of universe )


• If  is a coverage function, it is


• monotone


• submodular


• has the property that  

𝒰 ℱ 𝒰

u : 2V → ℛ≥0 V = ℱ F ⊆ ℱ
u(F) = | ⋃

S∈F

S | = 𝒰 S F

S ℱ 𝒰

u

u(∅) = 0



Other examples of submodular functions
• Rank function of a vector space


•  = set of all vectors in a vector space, and rank of space spanned by vectors in 


• Modular (additive) functions


• Each item  has an associated real weight  and  

If weights are non-negative, then  is monotone.


• “Budget additive” functions


• Each item  has an associated weight  and for some , 


• Non-monotone example:  Graph cut functions


• set of all vertices in a graph ,  = number of edges  of  with , 

V u(V′￼) = V′￼

i ∈ V wi u(V′￼) = ∑
i∈V

wi

u

i ∈ V wi ≥ 0 B ≥ 0 u(V′￼) = min{B, ∑
i∈V

wi}

V = G u(V′￼) (u, v) G u ∈ V′￼ v ∈ V \V′￼



Generalization of set cover:  Submodular Cover

• Problem: Given a finite set , a utility function  such that  is monotone, 
submodular, and satisfies , find a minimum size subset  such that 


• Notes: 


• Problem statement doesn’t mention how function  is given as input.  We assume that it is 
given by an oracle that, given as input a subset , will return  in constant time.


• Call  such that  a “cover” of 


• Set Cover is the special case of this problem where  is a coverage function   
(where the answers to the oracle queries are easily computed from the given set system)


• Can extend to real-valued utility functions but results get a little messier

V u : 2V → ℤ≥0 u
u(∅) = 0 V′￼ ⊆ V u(V′￼) = u(V)

u
V′￼ ⊆ V u(V′￼)

V′￼ ⊆ V u(V′￼) = u(V) u

u



Generalization of Max (Set) Coverage Problem:  
Submodular Max Coverage Problem

• Problem: Given a finite set , a utility function  such that  
is monotone, submodular, and satisfies , and an integer  
such that , find a subset  of size  that maximizes 


• Greedy algorithm and its analysis almost same as they were for Max (Set) 
Coverage.

V u : 2V → ℝ≥0 u
u(∅) = 0 k ≥ 0

k ≤ |V | V′￼ ⊆ V k u(V′￼)



Greedy algorithm for Submodular Max Coverage 
problem

• Input: Finite set  of items, oracle for utility function , such that  is monotone, 
submodular, and 


•       \\  will contain the first  items chosen


• for 


• using oracle for , find an item  that maximizes  
call this item     \\  is the greedy choice


• 


• return  
 

V u : 2V → ℛ≥0 u
u(∅) = 0

V′￼0 = ∅ V′￼t t

t = 1 to k

u i ∈ V \V′￼t−1 u(V′￼t−1 ∪ {i}) − u(V′￼t−1)
i* i*

V′￼t = V′￼t−1 ∪ {i*}

V′￼k



Analysis of Greedy Algorithm for Submodular Max 
Coverage problem

• Let  be an optimal solution, a set of  items that maximizes .  Let 


• At start of -th greedy step, think of  as the remaining distance to 


• In -th greedy step, greedily choose item to add to  


• If you added all the elements in  to , you’d reach utility value OPT, so increase in utility would be .


• By submodularity and monotonicity of , can show there must be an element of  that when added to would increase 

utility by at least  of the remaining distance to OPT   

after adding -th greedy element, remaining distance to goal, 


• Inductively:   


• Therefore, Greedy outputs a solution that achieves utility at least 

V* k u(V*) OPT = u(V*)

t OPT − u(Vt−1) OPT

t V′￼t−1

V* V′￼t−1 OPT − u(V′￼t−1)

u V* V′￼t−1
1

|V * |
=

1
k

⇒

t OPT − u(Vt) ≤ (1 −
1

|OPT |
) * (OPT − u(Vt−1))

OPT − u(V′￼k) ≤ (1 −
1
k

)kOPT ≤
1
e

OPT ⇒ u(V′￼k) ≥ (1 −
1
e

)OPT

(1 −
1
e

)OPT



Greedy algorithm for Submodular Cover
• Input: Finite set  of items, oracle for utility function , such that  is monotone, submodular, and 


• =0


•       \\  contains items already put into  at end of step  of greedy algorithm


• while 


• 


• using oracle for , find an item  that maximizes  
call this item     \\  is the greedy choice


• 


• return  
 

V u : 2V → ℛ≥0 u u(∅) = 0

t

V′￼t = ∅ V′￼t V′￼ t

u(V′￼t) ≠ u(V )

t = t + 1

u i ∈ V \V′￼t−1 u(V′￼t−1 ∪ {i}) − u(V′￼t−1)
i* i*

V′￼t = V′￼t−1 ∪ {i*}

V′￼t



Analysis of Greedy Algorithm for Submodular 
Cover

• Let  be the minimum size of a cover of , i.e., min size of a subset  such that 


• At start of -th greedy step, think of  as the remaining distance to the goal utility 
value,   


• As in analysis of max-coverage can show that inductively,  

 


• Setting , we get , which implies that , since  is 
an integer valued function


• Therefore, Greedy algorithm runs for at most  steps, so its 
output solution has size at most 

OPT u V* u(V*) = u(V)

t u(V) − u(Vt−1)
u(V)

u(V) − u(V′￼t) ≤ (1 −
1

OPT
)tu(V) < e− t

OPT u(V)

t = ⌈OPT ln u(V)⌉ u(V) − u(V′￼t) < 1 u(V′￼t) = u(V) u

⌈OPT ln u(V)⌉ ≤ OPT(ln u(V) + 1)
OPT(ln u(V) + 1)



Sequencing problems



Sequencing problems
• Problems where we want to find the optimal order in which to do something


• Examples:


• Traveling salesman problem


• Find the “best” permutation of vertices, given graph with weighted 
edges


• NP-hard problem


• polytime 1.5-approximation algorithm (assuming weights obey triangle 
inequality)



• Scheduling problems, e.g.. Min-sum completion time problem:  


• Set of n “jobs” to be scheduled on a single “processor”


•  Processor can only process one job at a time


•  Given the length  of job  for =1,…,n  


• Find permutation of jobs that minimizes the sum of completion times of the jobs (same as 
minimizing the average completion time)


• Optimal solution is to order jobs in increasing length


• If jobs have weights  , and want to minimize weighted sum of completion times


• exercise:  determine optimal solution for this case

ℓj j j

wj



Min-Sum Set Cover



Min-Sum Set Cover [Lovasz et al. 02]

•  Input: Ground set (universe) =  and family of subsets 

 where each , such that  

• Task: Find the permutation of the subsets that minimizes the sum of the 
covering times of the ground elements


• If an element is covered by the th element in the permutation, we say 
that it is covered at time 

𝒰 {e1, …, em}

ℱ = {R1, …, Rn} Ri ⊆ 𝒰
n

⋃
i=1

Ri = 𝒰

j
j
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e1 e2
e3

e4 e5
e6

                     
              

R1

R3

R2
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e1 e2
e3

e4 e5
e6

R2,R3,R1                                          
              

R1

R3

R2
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e1 e2
e3

e4 e5
e6

R2,R3,R1               covers e4,e6       with R2   (at time 1) 

                     
              

R1

R3

R2
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e1 e2
e3

e4 e5
e6

R2,R3,R1  covers e4,e6       with R2   (at time 1) 

                      then    e2,e3,e5   with R3  (at time 2) 
              

R1

R3

R2
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e1 e2
e3

e4 e5
e6

R2,R3,R1  covers e4,e6       with R2   (at time 1) 

                      then    e2,e3,e5   with R3  (at time 2) 
               then   e1             with R1  (at time 3) 

R1

R3

R2

Sum of cover times is  
2*1+3*2+1*3 = 11



Greedy Algorithm 

• Greedy Rule: Choose subset that covers the 
maximum number of uncovered elements 

• Same greedy algorithm we used for “classical”
set cover problem. 

• What approximation factor does it achieve for 
Min-Sum Set Cover problem?

48



Approximation factor for Greedy Algorithm 
applied to Min-Sum Set Cover?

• Consider “bad” instance for greedy algorithm applied to Classical Set 
Cover.  Greedy algorithm doesn’t do so badly! 
 
 
 
 
 
 
 
 
 



Greedy Algorithm 

• Thm [Lovasz et al. 02] :    
Greedy Algorithm is a 4-approximation 
algorithm for Min-Sum Set Cover 
 
               Proof based on histograms  
                      (next lecture)
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