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SPECULATIVE DECODING

Issue: Even if then next token distribution for the drafter
model, P , and the product model, Q are very similar, it could
be unlikely for the draft to be correct.

If a → P and b → Q, Pr[a = b] ≈
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COUPLING

Solution: Coordinate the sampling!

Definition (Coupling)
Let P and Q be distributions over ,ࠀ} . . . ,n}. A coupling
between P and Q is any distribution over pairs
(a,b) ∈ ,ࠀ} . . . ,n}× ,ࠀ} . . . ,n} such that a’s marginal
distribution is P and b’s marginal distribution is Q.

Goal: Efficiently sample from a coupling C between the small
and large model distributions which maximizes

Pr[a = b].

Always possible to find a coupling which ensures that
Pr[a = b] = −ࠀ DTV(P,Q).
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TOTAL VARIANCE DISTANCE

Reminder: For discrete distributions P and Q over ,ࠀ} . . . ,n}
represented by length n probability vectors p,q ∈ ,߿] ,n[ࠀ

DTV(P,Q) = −ࠀ
n∑

i=ࠀ

min(pi,qi).
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SPECULATIVE DECODING COUPLING

The following procedure achieves the optimal bound of
Pr[a = b] = −ࠀ DTV(P,Q).

Drafter:

• Sample a → P . Sends both a and p to FullModel.

Full Model:
• Await (a,p) from Drafter.

• With probability min(ࠀ,qa/pa) return b = a.

• Otherwise, sample b from Q→ = {q→
,ࠀ . . . , q→

n}, where:

q→
i =

max(߿,qi − pi)∑n
i=ࠀ max(߿,qj − pj)

Important that the Drafter could sample without knowing the Full
Model’s Distribution, q! There is only “one-way communication”.
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DRAFTER-INVARIANT SPECULATIVE DECODING

Is it posssible to do anything with no communication between
the samplers?

Why would we care? The output of the Full Model is always
sampled from Q, but the exact value sampled depends on the
Drafter distribution P .

• Cannot immediately verify that adding speculative
decoding did not change the model distribution.

• If drafter changes, model output is not deterministic from
the user’s point of view given a fixed random seed.
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DRAFTER-INVARIANT SPECULATIVE DECODING

“Coupling without Communication and Drafter-Invariant
Speculative Decoding” [Daliri, Musco, Suresh, ISIT .[ࠄࠁ߿ࠁ

Basically the same idea appeared in:

• Anari, Gao, Rubinstein, STOC ࠃࠁ߿ࠁ
• Liu, Yin, STOC ࠁࠁ߿ࠁ
• Bavarian, Ghazi, Haramaty, Kamath, Rivest, Sudan, .߿ࠁ߿ࠁ
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WEIGHTED MINHASH COUPLING

Fix public random variables uࠀ,uࠁ, . . . → Unif[߿,n].

Drafter:
• For k = ,ࠀ ,ࠁ . . . ,

• If k ∈ [j− ,ࠀ j− +ࠀ pj] for some j, return a = j.

Full Model:
• For k = ,ࠀ ,ࠁ . . . ,

• If k ∈ [j− ,ࠀ j− +ࠀ qj] for some j, return b = j.
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WEIGHTED MINHASH COUPLING

Claim: Pr[a = b] ≥
∑n

i=ࠀ min(pi,qi)∑n
i=ࠀ max(pi,qi)
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COMMUNICATION FREE COUPLING

Optimal Coupling:

Pr[a = b] = −ࠀ DTV(P,Q)

. Communication-Free Coupling:

Pr[a = b] ≥
∑n

i=ࠀmin(pi,qi)∑n
i=ࠀmax(pi,qi)

=
−ࠀ DTV(P,Q)

+ࠀ DTV(P,Q)
.

Takeaway: Pay very little for no communication!

Possible to show that this is optimal. No communication-free
protocol can achieve for all distributions:

Pr[a = b] > −ࠀ DTV(P,Q)

+ࠀ DTV(P,Q)
.

[Bavarian, Ghazi, Haramaty, Kamath, Rivest, Sudan, .[߿ࠁ߿ࠁ ࠀࠀ
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GUMBEL SAMPLING

Fix public random variables uࠀ,uࠁ, . . . → Unif[߿, .[ࠀ

Drafter:
• Return a = argmini→{ࠀ,...,n}

− ln(ui)
pi

.

Full Model:
• Return b = argmini→{ࠀ,...,n}

− ln(ui)
qi

.

This is already how samples are typically obtained! In
particular, standard to use the “Gumbel Max Trick”:

b = argmax
i→{ࠀ,...,n}

[ln(qi)− ln(ln(ࠀ/ui))] .

Not too hard to check that a → P and b → Q.

ࠁࠀ

-

← - , and

= a g a i n k¥1)
i .argue;E÷⇒

e .arguexlloglei)

( - - ) -1%1%1%2



GUMBEL SAMPLING

Gumbel sampling gives a pareto improvement over weighted
MinHash.

Theorem (Daliri, Musco, Suresh, ISIT 2025)
For any two distributions P,Q,

Pr
(a,b)∼Gumbel

[a = b] ≥ Pr
(a,b)∼MinHash

[a = b],

and there exist distributions where inequality is strict.

Question one group is studying for the project: Is Gumbel
pareto optimal?
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EFFICIENT SAMPLING IN HIGH-DIMENSIONS
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EFFICIENT SAMPLING IN HIGH-DIMENSIONS

Increasingly common goal in machine learning: Sample from a
distribution over Rd with density p(x)

Assume p(x) ∝ exp(−f(x)) for some function f : Rd → R and
that we are given gradient oracle access to ∇f(x).
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EFFICIENT SAMPLING IN HIGH-DIMENSIONS

What I hope to cover:

• Where/why does this problem arise in machine learning?
• What is the (stochastic) gradient Langevin dynamics
algorithm and why does is work?

• Where is the area headed / where are opportunities for
algorithms research?
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GRADIENT REMINDER

Recall that ∇f : Rd → Rd returns the vector of partial
derivatives at a point x:

∇f(x) =

⎡

⎢⎢⎣

∂
∂xࠀ f(x)...
∂
∂xd f(x)

⎤

⎥⎥⎦ .

The gradient determines the instantanious change in f’s value
with respect to changes in the input variables:

lim
h→߿

f(x+ hv)− f(x)
h

= 〈∇f(x), v〉.
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LOSS MINIMIZATION

Where do gradients show up in machine learning?

Let Mx : Rd → R be a model parameterized by x. Given a
labeled dataset (aࠀ,bࠀ), . . . , (an,bn), goal in supervised
learning is to find parameters such that:

Mx(ai) ≈ bi.

Typically accomplished by writing down some loss function
f(θ) and minimizing. For example, least squares loss:

f(x) =
n∑

i=ࠀ

(Mx(ai)− bi)ࠁ.

Goal: Find x∗ = argminx f(x).
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GRADIENT DESCENT

Most common algorithm to do so: gradient descent.

• Choose starting point x߿ ∈ Rd, step size η.
• For t = ,߿ . . . , T

• xt+ࠀ ← xt − η ·∇f(xt).
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GRADIENT DESCENT

Gradient descent:

• Choose starting point x߿ ∈ Rd, step size η.
• For t = ,߿ . . . , T

• xt+ࠀ ← xt − η ·∇f(xt).

Justification: We want to make a small change, η · v to xt that
decreases the value of f.

f(x+ η · v)− f(x) ≈ η · 〈∇f(x), v〉.

Choosing v = −∇f(x) ensures that, if we take η → ,߿

f(x+ η · f(v))− f(x) < ߿
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WHY GRADIENT DESCENT

• Simple and general. We only need to implement a
gradient oracle for computing ∇f(x). For almost all models
with d parameters, can be done in O(nd) time.

• Stochastic approximation of gradient is even faster.
Typically O(d) time:

∇f(x) =
n∑

i=ࠀ

∇"(x, ai,bi).

• Guaranteed to converge to a stationary point (e.g., local
min) of f for sufficiently small step size.

• Dimension independent convergence rates can be
obtained under mild assumptions.
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EXAMPLE CONVERGENCE BOUND

f is β-smooth if for all x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ࠁ ≤ β‖x− y‖ࠁ.

Theorem (Convergence to Stationary Point)
For any β-smooth, differentiable function f, if we run GD for T
steps, we can find a point xT such that:

‖∇f(xT)‖ࠁࠁ ≤
βࠁ
T

(f(x߿)− f(x∗))

Corollary: If f is convex and ‖x߿ − x∗‖ࠁ = R, then after
T = O

(
βRࠁ

ε

)
stepsࠀ we have f(xT)− f(x∗) ≤ ε.

Otherࠀ methods (e.g., Center-of-Gravity Method) can achieve a better
dependence on ε, but at the cost of a dependence on d.
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ALGORITHMIC WORK AROUND GRADIENT DESCENT

Huge amount of algorithmic research centered around
gradient descent and its variants.

• Acceleration/momentum to speed up convergence.
• Generalized steppest descent, mirror descent, etc.
• Stochastic gradient methods, variance reduction.
• Preconditioning, quasi-second order methods, adaptive
step size methods.

• Lower bounds (e.g, in first order oracle model).
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BAYESIAN MACHINE LEARNING

Where does least squares loss comes from?

Assume fixed dataset aࠀ, . . . , an with targets generated from
ground truth model, Mx, plus Gaussian noise:

bࠀ = Mx(aࠀ) + εࠀ,

...
bn = Mx(an) + εn,

where εࠀ, . . . , εn → N .(ࠁσ,߿)

Would like to choose params. most likely to have generated
the targets we observed. Likelihood of data given parameters:

L(x) = p(bࠀ, . . . ,bn | x) ∝
n∏

i=ࠀ

exp

(
−(bi −Mx(ai))ࠁ

ࠁσࠁ

)
.
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BAYESIAN MACHINE LEARNING

Goal: Compute the maximium likelihood estimator (MLE):

x∗ = argmax
x

L(x).

Equivalent to minimizing the negative log-likelihood:

f(x) = − log L(x) = ࠀ
ࠁσࠁ

n∑

i=ࠀ

(bi −Mx(ai))ࠁ + const.

Most standard ML loss functions are negative log-likelihoods
for some other data generation process, including
logistic/cross-entropy loss, ࠀ" loss, etc.
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BAYESIAN MACHINE LEARNING

One step further: Assume prior distribution over parameters x.
E.g. xi → N ,߿) γࠁ) for all i.

Lets us define a posterior probability of x given the data:

p(x | bࠀ, . . . ,bn) =
p(bࠀ, . . . ,bn | x) · p(x)

p(bࠀ, . . . ,bn)
=

likelihood · prior
evidence

.

Goal: Compute the maximum a posteriori (MAP) estimator:

x∗ = argmax
x

p(x | bࠀ, . . . ,bn)

= argmax
x

p(bࠀ, . . . ,bn | x) · p(x)
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BAYESIAN MACHINE LEARNING

Again, can equivalently minimize the negative log-posterior:

f(x) = − log(p(bࠀ, . . . ,bn | x))− log(p(x)).

Example: Least squares loss with Gaussian prior.

p(bࠀ, . . . ,bn | x) ∝
n∏

i=ࠀ

exp

(
−(bi −Mx(ai))ࠁ

ࠁσࠁ

)

p(x) ∝
d∏

i=ࠀ

exp

(
−

xࠁi
ࠁγࠁ

)

f(x) = ࠀ
ࠁσࠁ

n∑

i=ࠀ

(bi −Mx(ai))ࠁ +
ࠀ

ࠁγࠁ

d∑

i=ࠀ

xࠁi

=
ࠀ

ࠁσࠁ

n∑

i=ࠀ

(bi −Mx(ai))ࠁ +
ࠀ

ࠁγࠁ ‖x‖
ࠁ
.ࠁ
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BAYESIAN MACHINE LEARNING

Optimization (usually solved with gradient descent) computes
the mode of the posterior distribution p(x | bࠀ, . . . ,bn).

Another important goal: Sample parameter vector x from the
posterior distribution. I.e., sample x → c · e−f(x) given a gradient
oracle for f
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BAYESIAN MACHINE LEARNING

Original Bayesian motivation: Confidence intervals and
uncertainty quantification. For new data point an+ࠀ with
unknown label yn+ࠀ, can sample from p(yi | bࠀ, . . . ,bn) by
sampling x from posterior and computing Mx(an+ࠀ).
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BAYESIAN MACHINE LEARNING

For simple models (linear models, GLMS, kernel or Gaussian
process regression, etc.) we have model-specific methods to
sample from the posterior or compute confidence intervals.

Goal: Extend posterior sampling to any model that we can
efficiently compute the gradient of (e.g., neural networks).

Why work with negative log posterior instead of directly
working with posterior?

n∏

i=ࠀ

exp

(
−(bi −Mx(ai))ࠁ

ࠁσࠁ

)
vs.

n∑

i=ࠀ

(bi −Mx(ai))ࠁ
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UNADJUSTED LANGEVIN ALGORITHM

Unadjusted Langevin algorithm to sample from e−f(x):

• Choose starting point x߿ ∈ Rd, step size η.
• For t = ,߿ . . . , T

• xt+ࠀ ← xt − η ·∇f(xt) +
∝
ηࠁ · gt, where gt → N ,߿) I).

Like gradient descent. Far harder to analyze!
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LANGEVIN ALGORITHM

Widely used throughout computational science, statistics, and
other fields since at least the .s߿ࠈࠈࠀ
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UNADJUSTED LANGEVIN ALGORITHM

Unadjusted Langevin algorithm:

• Choose starting point x߿ ∈ Rd, step size η.
• For t = ,߿ . . . , T

• Sample gt → N ,߿) I).
• xt+ࠀ ← xt − η ·∇f(xt) +

∝
ηࠁ · gt.

Informal claim: For η → ,߿ the distribution of xt converges to
c · e−f(x) for many natural distributions.

Suffices for f to be is strongly convex, mixture of distributions
with this property, anything with Poincaré inequality, etc.

Non-asymptotic convergence rates have only been proven
relatively recently, starting with [Durmus, Moulines, .[ࠆࠀ߿ࠁ
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MORE RECENT MOTIVATION: GENERATIVE AI

We have seen insane progress in (conditional) image generation.

Just a few years ago, we got excited about images like:
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MORE RECENT MOTIVATION: GENERATIVE AI

Older methods: Variational Auto-Encoders, Generative
Adversarial Networks, normalizing flows, energy-based models,
etc.

Leading modern methods: Denoising Diffusion Models,
Score-based Generative Models
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ENERGY-BASED MODELS

View image generation as a sampling problem: p(x) is the
distribution over “natural images”. Want to sample from p, or p
conditioned on some prompt.

Energy-based models: Train model Mθ that takes in an image x
and returns a negative log probability. Given a training set of
images xࠀ, . . . , xn, goal is to minimize:

n∑

i=ࠀ

Mθ(xi) =
n∏

i=ࠀ

e−Mθ(xi).

Can sample new images using Langevin dynamics, where
f(x) = Mθ(xi).

Lots of issues with normalization... how do you ensure Mθ

models a normalized probability density?
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SCORE-BASED MODELS

Train a model that directly predicts ∇(− log(p(x))). This is
called the score function, but it is no different from the
gradient ∇f we needed to implement Langevin dynamics.

How to train the model without input/output pairs?(
xi,∇(− log(p(xi)))

)

Methods to do so are called score-matching methods. Lots of
cool algorithmic ideas. One approach based on adding noise:

Intuitivtely, ∇f(x+ n) = −n. ࠅࠂ
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UNADJUSTED LANGEVIN ALGORITHM

Unadjusted Langevin algorithm:

• Choose starting point x߿ ∈ Rd, step size η.
• For t = ,߿ . . . , T

• Sample gt → N ,߿) I).
• xt+ࠀ ← xt − η ·∇f(xt) +

∝
ηࠁ · gt.

Informal claim: For η → ,߿ the distribution of xt converges to
c · e−f(x) for many natural distributions.
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LANGEVIN DYNAMICS

Continuous-time Langevin Dynamics: Typical analysis begins
by considering the continuous-time limit of the unadjusted
Langevin algorithm as η → .߿

To do so, we need to define a Brownian motion, which is the
continuous limit of a Gaussian random walk.
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BROWNIAN MOTION

(One-dimensional) Brownian motion: A Brownian motion Bt is
a continuous function of time t ≥ ߿ with the properties:

• B߿ = ߿
• For any tࠀ < tࠁ < . . . < tn, Btࠁ−tࠀ ,Btࠂ−tࠁ , . . . ,Btn−tn−ࠀ are
independent r.v.s.

• For any tࠀ < tࠁ, Btࠁ − Btࠀ → N ,߿) tࠁ − tࠀ).

dBt denotes the instantanious change of the Brownian motion
at time t. Think of dBt as

∝
dt · g, where g → N ,߿) .(ࠀ

Langevin Stochastic Differential Equation:

dXt = −f′(Xt)dt︸ ︷︷ ︸
drift term

+
∝
ࠁ · dBt︸ ︷︷ ︸

diffusion term

.
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STEADY-STATE OF LANGEVIN EQUATION

dXt = −f′(Xt)dt+
∝
dBtࠁ

Claim: The distribution c · e−f(X) is an invariant distribution of
the Langevin SDE. If X߿ → c · e−f(X), then Xt → c · e−f(X) ∀t > .߿

Let pt be the distribution of Xt. The goal is to show that
d
dtpt(X) = ߿ for all X ∈ R when pt(X) = c · e−f(X).
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STEADY-STATE OF LANGEVIN EQUATION

Fokker-Planck Equation: If dXt = z(Xt)dt+
∝
,dBtࠁ then

d
dt

pt(X) = −
d
dX

[z(X)pt(X)] + p′′t (x)

= −z′(X)pt(X)− z(X)p′t(X) + p′′t (x)

(p′t and p′′t denote the derivatives of pt with respect to X.)
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STEADY-STATE OF LANGEVIN EQUATION

Fokker-Planck Equation: If dXt = z(Xt)dt+
∝
,dBtࠁ then

d
dt

pt(X) = −z′(X)pt(X)− z(X)p′t(X) + p′′t (x)

Claim: If z(X) = −f′(X) for some f, then d
dtpt(X) = ߿ for all X ∈ R

when pt(X) = c · e−f(X).

Proof:
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FOKKER-PLANCK INTUITION

Diffusion-only Fokker-Planck Equation: If dXt =
∝
,dBtࠁ then

d
dt

pt(X) = p′′t (x)

Adding Gaussian noise at each time step smooths the
distribution. Can be thought of as a moving average.
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FOKKER-PLANCK INTUITION

Diffusion-only Fokker-Planck Equation: If dXt =
∝
,dBtࠁ then

d
dt

pt(X) = p′′t (x)

How does moving avergage change pt(X)?
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FOKKER-PLANCK INTUITION

Diffusion-only Fokker-Planck Equation: If dXt =
∝
,dBtࠁ then

d
dt

pt(X) = p′′t (x)

How does moving avergage change pt(X)?
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FOKKER-PLANCK INTUITION

Diffusion-only Fokker-Planck Equation: If dXt =
∝
,dBtࠁ then

d
dt

pt(X) = p′′t (x)

How does moving avergage change pt(X)?
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FOKKER-PLANCK INTUITION

Diffusion-only Fokker-Planck Equation: If dXt =
∝
,dBtࠁ then

d
dt

pt(X) = p→→
t (x)

d
dt

pt(X) = lim
h→߿

pt+h(X)− pt(X)
h

Very informal argument:
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FOKKER-PLANCK INTUITION

Drift-only Fokker-Planck Equation: If dXt = z(Xt)dt, then

d
dt

pt(X) = −
d
dX

[z(X)pt(X)] = −z′(X)pt(X)− z(X)p′t(X)
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STEADY-STATE OF LANGEVIN EQUATION

dXt = −f′(Xt)dt+
∝
dBtࠁ

Claim: The distribution c · e−f(X) is an invariant distribution of
the Langevin SDE. If X߿ → c · e−f(X), then Xt → c · e−f(X) ∀t > .߿

To get meaningful algorithmic results, need to show:

.ࠀ (Fast) convergence to this invariant distribution.
.ࠁ Discretization argument to show that the discrete-time

ULA also converges close ot the invariant distribution.
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EXAMPLE THEORETICAL RESULT

Flavor of result people are interested in proving:

Theorem (See e.g., Chewi 2024)
Suppose f is an α-smooth, β-strongly convex function with
condition number κ = α/β. Then after:

T = Õ(κd/εࠁ) iterations,

the unadjusted Langevin algorithm returns a sample from a
distribution P satisfying:

Wࠁ(P, c · e−f(x)) ≤ ε,

where Wࠁ is the Wasserstein-2 distance.
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SIMPLE CASE: GAUSSIAN DENSITY

Suppose we want to sample from N (µ,Σ). Let H = Σ−ࠀ.

p(x) ∝ exp(−f(x)) where f(x) = ࠀ
ࠁ
(x− µ)TH(x− µ)

∇f(x) = H(x− µ).

Unadjusted Langevin algorithm:

• xt ← xt−ࠀ − η ·∇f(xt−ࠀ)+
∝
ηࠁ · gt−ࠀ.

If we initialized x߿ as a Gaussain, then every iterate is Gaussian
distributed. I.e. xt → N (µt,Σt). Want to show:

µt → µ Σt → Σ.
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SIMPLE CASE: GAUSSIAN DENSITY

Suppose we want to sample from N (µ,Σ). Let H = Σ−ࠀ.

p(x) ∝ exp(−f(x)) where f(x) = ࠀ
ࠁ
(x− µ)TH(x− µ)

∇f(x) = H(x− µ).

Unadjusted Langevin algorithm:

• xt ← xt−ࠀ − η ·∇f(xt−ࠀ)+
∝
ηࠁ · gt−ࠀ.

Plugging in definition of gradient:

xt = xt−ࠀ − ηH(xt−ࠀ − µ) +
√

ηࠁ · gt−ࠀ

(xt − µ) = (xt−ࠀ − µ)− ηH(xt−ࠀ − µ) +
√

ηࠁ · gt−ࠀ

= (I− ηH)(xt−ࠀ − µ) +
√

ηࠁ · gt−ࠀ
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CONVERGENCE OF MEAN

Unrolling the iteration:

(xt − µ) = (I− ηH)(xt−ࠀ − µ) +
√

ηࠁ · gt−ࠀ

= (I− ηH)((I− ηH)(xt−ࠁ − µ) +
√

ηࠁ · gt−ࠁ) +
√

ηࠁ · gt−ࠀ

...

= (I− ηH)t(x߿ − µ) +
√

ηࠁ
t−ࠀ∑

i=߿

(I− ηH)t−ࠀ−igi

First observation: If we choose η = ,λmax(H)/ࠀ then
‖E[xt]− µ‖ࠁ ≤ ε‖E[x߿]− µ‖ࠁ after t = O(κ log(ࠀ/ε)) iterations.

In other words, we quickly converge to a Gaussian distribution
with the correct mean!
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CONVERGENCE OF MEAN
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CONVERGENCE OF COVARIANCE

What about the covariance matrix?

Σt = E
[
(xt − µt)(xt − µt)

T]

=
(
(I− ηH)t(x߿ − µ) +

√
ηࠁ

t−ࠀ∑

i=߿

(I− ηH)t−ࠀ−igi − (µt − µt)
)(

· · ·
)T

=
(
(I− ηH)t(x߿ − µ߿) +

√
ηࠁ

t−ࠀ∑

i=߿

(I− ηH)t−ࠀ−igi
)(

· · ·
)T

Basically all cross-terms cancel. If we assume x߿ → N (µ߿, I), we get:

Σt = (I− ηH)ࠁt + ηࠁ
t−ࠀ∑

i=߿

(I− ηH)ࠁt−ࠁ−ࠁi

= (I− ηH)ࠁt + ηࠁ
t−ࠀ∑

i=߿

(I− ηH)ࠁi
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CONVERGENCE OF COVARIANCE

Σt = (I− ηH)ࠁt + ηࠁ
t−ࠀ∑

i=߿

(I− ηH)ࠁi

We have that
∑∞

i=߿ Ai = (I− A)−ࠀ and thus:
t−ࠀ∑

i=߿

Ai = (I− A)−ࠀ − At(I− A)−ࠀ.

Apply to A = (I− ηH)ࠁ = I− +ηHࠁ ηࠁHࠁ

Σt = ηࠁ
(
−ηHࠁ ηࠁH

ࠀ−( − (I− ηH)ࠁt
(
−ηHࠁ ηࠁH

ࠀ−(
+ (I− ηH)ࠁt

= (H+ ࠀ−(ࠁηHࠄ. − (I− ηH)ࠁt
(
−ηHࠁ ηࠁH

ࠀ−(
+ (I− ηH)ࠁt

≈ H−ࠀ

for small enough η.
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ALGORITHMIC QUESTIONS

Can we accelerate convergence using the existing toolkit of
optimization tricks?

• Acceleration/momentum, preconditioning, variance
reduction, etc.

Can we take advantage of additional oracles, e.g. that can
draw samples x → e−f(x)?

• See e.g. [Koehler, Vuong, [ࠂࠁ߿ࠁ

Lower bounds on gradient oracle complexity?

• See e.g. [Chewi, de Dios Pont, Li, Lu, Narayanan, [ࠃࠁ߿ࠁ
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