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ALGORITHMS FOR MODERN MACHINE LEARNING

Characteristics of recent Al systems: Used at internet scale,
demand real-time performance, significant test-time compute.
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Algorithms for machine learning have gotten a lot more
interesting in the past 3 years! Focus is no longer just on
efficient training.
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ALGORITHMS FOR MODERN MACHINE LEARNING

Goal for next three lectures: Three vignettes on recent
algorithms relevant in modern machine learning.

: High—DimensionalVectorSearch.)
. (Fast Autoregressive Language Generation)

- Sampling from high-dimensional distributions given an
oracle (for image generation, Bayesian inference, private
. coldlt TTETed
learning, and more)

Focus on recent. In many cases, methods in use are poorly
understood and theory is in its very early stages.




NEW PARADIGM FOR SEARCH

My new puppy! o 7 é %
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Use neural network (BERT, CLIP, etc.) to convert documents,
images, etc. to high dimensional vectors. Matching results
should have similar vector embeddings.




THE NEW PARADIGM FOR SEARCH

— d =100-1000
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Finding results for a query reduces to finding the nearest
vector in a vector databasd X' )with similarity typically
measured by Euclidean distance. l.e, return
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VECTOR SEARCH

Vector search has been studied for a long time, but it is now
used far more pervasively than even a few years ago:

* Web-scale image search and even text document search.
( Retrieval Augmented Generation for language models and
Al autocomplete. )

- Multi-media search on Amazon, Wayfair, etc.
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WHAT CAN BE DONE?

Goal: Let X be a database of n vectors in R?. Find x € X
minimzing |x - qll2 fora query . O(&) o comgortiom

- Naive w: O(nd) time. 5(‘45 PYa ce
, : . 9dY 1i
kd trees: O(d log(n) - 29) time. (s (4 ))




HIGH-DIMENSIONAL NEAR NEIGHBOR SEARCH

When d is large, we now have lots of other options available:

{ Locality-sensitive hashing [Indyk, Motwani, 1998])

- Spectral hashing [Weiss, Torralba, and Fergus, 2008] )

(- Vector quantization/IVF data structures [Jégou, Douze,
Schmid, 2009] )

- Graph-based vector search [Malkov, Yashunin, 2016,
Subramanya et al., 2019] )

Key ideas behind all of these methods:

(1. Allow forapproximation.>
2. Trade worse space-complexity + preprocessing time for
{ better time-complexity. l.e, preprocess database in data
structure that uses Q(n) space.
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EXAMPLE WORST-CASE GUARANTEE

Theorem (Andoni, Indyk, FOCS 2006) )

For any approximation factor ¢ > 1, there is a data structure
based on locality sensitive hashing that,gor any query g,
returns X satisfying: J

X — < C-min|lx —
X —ql2 < ;neggH qall>

—

and uses:
- Time: O @n1/52>, Av\‘/q
c Space:((? (_rlq + n1+1/62>. Av\( (/¢

O(-) hides log(A) factor where A = %M is the
dynamic range of our dataset.



LOCALITY SENSITIVE HASHING

Rough idea behind LSH:

1. Pic@,@mtmgm—hypems.

2. Check which side of each hyperplane g lies on.

3. Return closest point that lies in the same region as q.
4. Repeat multiple times to avoid missing anything.

/ =) O(éu‘fs




NEAREST-NEIGHBOR SEARCH IN PRACTICE

In practice, we can often get partitions with better margin by
partitioning in a data-dependent way, e.g. via clustering.

Main idea behind the improvements | listed earlier. Used in
state-of-thea-art near-neighbor search libraries like Meta’s

FAISS and Google's SCANN. !



NEAREST-NEIGHBOR SEARCH IN PRACTICE

(

New(ish) kid on the block: Graph-based near-neighbor search.

( Navigating Spreading-out Graphs (NSG) [Fu, Xiang, Wang,
Cai, 2017]
[ Hierarchical Navigable Small World (HNSW))N\alkov,

Yashunin, 2016]
- Microsoft DiskANN [Subramanya, Devvrit, Kadekodi,

Krishaswamy, Simhadri 2019]

Inspired by(Milgram’s famous “small world” experiments)from
the 1960s and later work on the small world phenomenon by
Watts, Strogatz, Bébhy Kleinberg, and others.

D~
Similar methods proposed for low-dimensions in 1990s by

Arya, Mount, Kleinberg and others.
12



BASIC IDEA BEHIND GRAPH-BASED SEARCH

1. Construct a directed search graph over our dataset.

SR s
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ri

2. Run greedy search in the graph.
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GREEDY SEARCH

Let G = (V,E) be our graph where each node 1,...,nis
associated with a vector x; € RY. Consider a query q € RY.

Let A’/_(i_) = {j: (i,J) € E} be the out-neighborhood of i.

Greedy Search:

» Choose arbitrary starting node@

- Loop until termination:
- letc=arg minye v(s) Hy__—_gl\z
“Iflc—ql2 < |Is — all2, sets « ¢
- Else, terminate loop and return s.

14



CONNECTION TO SMALL-WORLD EXPERIMENTS
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GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions!
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GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions!

Results of the NeurIPS’Z}/éhallenge on Billion-Scale Results of the Big ANN: NeurIPS"23
Approximate Nearest Neighbor Search
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Open theory challenge: Can we explain the empirical success

of graph-based nearest-neighbor search methods?
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PLAN FOR TODAY

|

1. Formalize desirable properties for a nearest-neighbor
search graph. Discuss some of my recent work with
Torsten Suel, Haya Diwan, Jerry Gou, and Cameron Musco
(NeurIPS 2024) on constructing graphs with these
properties.

2. Dive into a recent result of Indyk and Xu (NeurIPS 2023)

on worst-case theoretical guarantees for graph-based
search. Currently, require strong (?) assumptions on the
dataset X (low intrinsic dimension).

17



NAVIGABLE GRAPHS

& X
c-approximate nearest neighgor search: Return_X satisfying
C-minjcg, .y [IX;i — qll2 for some ¢ > 1.
Standard and reasonable guarantee for LSH methods.
Although people care about other metrics too.

Observation: Assuming there are no duplicates in
X ={X1,...,Xn}, if query q = x; for some i, we must return x;.
.7 -—

Search graph G should be chosen to at least ensure that We)
find q if it is in the dataset.

Ideally, G should also be sparse and require few steps to find g
(i.e, the graph should be “small-world”).

18



NAVIGABLE GRAPHS

Definition (Navigable Graph)

A directed graph G for a point set xq, ..., Xa_is navigable if, for
alli,j € {1,...,n}, greedy search run on G with start nod

and query@retumsi

Listed as a desirable property in many empirical papers,
including work on Navigable Spreading-our Graphs and
Hierarchical Navigable Small World Graphs.

But none of this work produces provably navigable graphs.

J

19



SPARSE NAVIGABLE GRAPHS

Known results when x1, ..., X, are in low-dimensional
Euclidean space: O

- 2-dimensions: The Delaunjay graph can be proven to be
navigable. This graph has pverage degree @#y. ©C \)

e
§

- d-dimensions: The Sparse Neighborhod Graph of(&rya
and Mount [SODA, 1993])is navigable and has querage
degree 0(29). e

pa——

20



SPARSE NAVIGABLE GRAPHS

Claim (Upper Bound, DGMVS, 2024)

For any dataset X1, ..., Xa, It IS possible to construct in
0(n?log n) time a navigable graph G with average out-degree
O(v/nlogn). In fact, holds for any distance function.

We will prove this under the mild assumption that, for all I,/, R,
[IX;i — Xjll2 # [[X;i — Xg||2. Eliminates tedious corner cases related
to tie-breaking. Can be ensured by adding arbitrarily small
random perturbation to every data point.

Claim (Nearly Matching Lower Bound)

Let X1,...,Xy be random vectors in {—1,1}™ where
m = O(log n). With high probability, any navigable graph for
Xi1,...,Xn requires average out-degree Q(n"/?=<) for any fixed

constant e.

21



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Definition (Equivalent Navigabability Definition)
A directed graph G for a point set xy, ..., X, is navigable if, for
all nodeéor all j # i, there is some k € N(i) satisfying:

—

o)
1% — Xell2 < (1% — X;[|2-

,YV* Yu=x')

22



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

The above property is purely local! We can construct a

navigable graph by separately checking the out-neighborhood
of each node.

Can view graph construction as n seperate instances of set
cover. For instance /, our elements to cover are {1,...,n}\ {i}.
We have a set S, for all k # 1. —

Se= 23 ey -x, We I - %09

G50 \6g

23



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Definition (Equivalent Navigabability Definition)
A directed graph G for a point set X, ..., X, is navigable if, for
all nodes i, for all j # i, there is some k € N (i) satisfying:

1% — Xell2 < (1% — X;[|2-

Unfortunately, we can come up with point sets where any
particular x; ecessarily has high-degree: w-\

s K Yoo, Xu U Xi =X W= h |t <
i (1 (o =
11! ks 1292 for ol wyd
0 14 .
b a2 0 h?"\)
d Tk {7 e



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Approach: Consider all set cover instances in aggregate.
W o
Distance-Based Permutation Matrix:

Node 1 VEaIGR

ode X1 X0 X2 X3 Xs X9 Xo X3 X4 X7
Node2 X Xi Xg X1 X0 X5 X3 Xo X7 Xg
—— \W
C T X e

v~
Noden Xio Xo X1 X5 X7 X2 Xu Xg X3 Xe
— - B ~—

Requirement: Need at least one “left pointing” edge from

o o \eo 9 °
every node in every list. .
/
2 @ood
>
)/ I\)

oo \




UPPER BOUND CONSTRUCTION

Construction: Choos@< n.

-\,

1. For all i, add an edge from j to i if j is one of i's m closest
neighbors.  W.un  ed<ps e A

2. Add 3% log n uniformly random out-edges from every

node.

Node1 Xi X;0 X2 X3
Node2 X5 Xu X¢ X

X)
X5 Xo Xe@ X4 X7

X110 X5 X3 X9 X7 Xg

oy

Noden Xio Xo X1 Xs

—
SN

X7 X2 X4 Xs X3 Xe

26



UPPER BOUND ANALYSIS

Fix a node |I.

Claim 1: Suppose X Is one ofx, s m closest neighbors. Then_’,
has an out-edge t5 some Xp Wlthz < 1% = Xi[l2-

Xi 15 o weahes of X;.

Yu = X3

Claim 2: Suppose x; is not one of x;'s m closest neighbors.
Then, with probability > 1 — % X; has an out-edge to some Xg
ill2 < 1% = Xill2-

27



UPPER BOUND ANALYSIS

Claim 2: Suppose x; is not one of x;'s m closest neighbors.
Then, with probability > 1 — % X; has an out-edge to some X
WIth [[Xe = Xill2 < [1%; — Xill2.

Node1 xiXw X X3

Node2 X, Xu Xe X1 X10 X5 X3 Xo X7 Xs

n
’l)v/" {'b}("t)

Noden X0 X9 X1 Xs{X7 X2 Xs Xg X3 Xe

"
~ W
P Crodom (%) seb Ix, 1 2 g7 ¥ 3l

7 ok o — & 10N 721- (-4
|f£°¢"_‘&’/.7/lb— road ¢,<§C31_, 3} ) —(L>1,\f§24)= \-;\%

e



UPPER BOUND ANALYSIS

Node 1
Node 2

Noden

X2 Xs X5 Xq

X10 X9 X1 Xj

2 X4 X8 X3 X

By a union bound, we have a left-pointing edge for every node

in every permutation with probability > 1 —

navigable.

. .
-, S0 our graph is

Total degree of constructed graph: Vwm + 1. :‘: ]ob(ﬁ)

- WleHh

0( n?> b)@)
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FINAL BOUND

Claim (Upper Bound)

For any dataset X,, ..., Xp, it is possible to construct in
0(n?log n) time a navigable graph G with average out-degree
O(v/nlogn). In fact, holds for any distance function.

Oberservation: The graph we constructed is “small-world”.
Only two hops required for any starting node and query.

30



LOWER BOUND SKETCH

Claim (Nearly Matching Lower Bound)

Let Xq,...,X, be random vectors in {—1,1}" where

m = O(log n). With high probability, any navigable graph for
X1, ..., Xy requires average out-degree Q(n"/?=€) for any fixed
constant e.

Pt
“hard” region wo= 0 ()

N
Node1 X1 Xi7 X2 X3 X\ X9 Xc Xs X4 X

Node n X10 X9 X1 X3 Xy

n1
Observation: Hard region involves If/j edge constraints.

Node2 X X: X6 X1 Xq

31



LOWER BOUND SKETCH

“hard” region
Node1 X; X0 X2 X3 X5 Xo Xo Xs Xs X7
Ce—
Node2 X X; Xs X1 Xi0 Xs X3 Xo X7 Xs
D )

Noden X0 Xo X1 X3 X7 X2 Xz Xg X5 Xe

For sake of proof sketch,[assume permutations are uniformly
random)In the paper, we show that this is “close” to true for
random”data points in O(log n) dimensions.

Claim: Adding any edge (I,j) to the graph only covers at most
O(log(n)) of the n3/2 fiard constraint3 with high probability.

32



LOWER BOUND SKETCH

Claim: Under random permutations, adding any (i, /) to G only covers
at most O(log(n)) hard constraints with high prob.

“ ” e Y
hard” re ion C\)))
Node 1 m Xs X9 Xo X3 Xu X7
Node 2 Xo X4 X X1 X0 X5 X3 Xo X7 Xsg 'p(“ ( | Q\"i’ ‘) Qe i A

Wk of vade | wa

e V\lofc)'l' \/Lc‘yg\« 6/$>3 Eva 3
Noden Xio Xo X1 X3 X7 X2 X4 Xs X5 Xe v
TR N

el Dt‘ﬂ> (4 68 ros e =Y

\ ot \)) s herd Mgc-»?

= 1.

! . .
Qs Yo d 229 gy 09) M e
e O(Loy() .
\AVA. f€>vb-’9~



LOWER BOUND SKETCH

Completing the argument:
V\?//I. (DH!,’_(Q(\—\"J

2 /2
17

_9 0" lmﬂ— ]

[oy(L)  (emiberea¥ S 9 edyy eyt
€dse 5.
Claim (Nearly Matching Lower Bound)
Let x1,...,X, be random vectors in {—1,1}" where
m = O(log n). With high probability, any navigable graph for
X1,..., X, has average out-degree Q(n'/?=€) for any fixed

constant e.
34



CONCLUSION

. -3
Positives: b L 50 pes

- For queries q € X, greedy search + navigable graph
returns exact result.
- Data structure takes O(n'~) space.

- Runtime for q € & should be roughly O(v/n) given
small-world property, but difficult to say anything formally.

Negatives:

f v/n degree is still pretty dense. In practice, graphs can be
pruned and yield good empirical results.

( No approx. guarantees for queries not in the data set X.
- No formal runtime guarantees.
-
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INDYK, XU

Approximate Nearest Neighbor Search Implementations:

NeurlPS 2023 paper: “Worst-case Performance of Popular >
Guarantees and Limitations” by Piotr Indyk and Haike Xu.

Addresses these issues, albeit under additional assumptions

about the dataset X. &
v 7\ w-? 2 4c

Two components of result: o= | b 2, c

1. If G is a-shortcut reachable then, for any query g, greedy
search converges to an (g—ﬂ + e)—approximate nearest
neighbor in ~ log(1/¢) steps!

2. Any dataset with(doubling dimensior}d/has an a-shortcut
reachable graph with maximum degree O ((8a)d> )

V- (%o?y& 36




a-SHORTCUT REACHABILITY

First introduced in the DiskANN paper out of Microsoft Research.
Strictly strengthens navigability.

Definition (Navigabability, aka 1-shortcut reachability)

A directed graph G for a point set x;,..., X, is navigable if, for all
nodes i, for all  # i, there is some k € N(i) satisfying:

1% = Xl < {1 — x|

o~ 2
Definition (a-shortcut reachability)

A directed graph G for a point set xq,..., X, IS a-shortcut
reachability for o > 1if, for all nodes i, for all j # I, there is some

k € N(i) satisfying: Yu e
1 (4 4 ¥
I —xell < JIx =%l /S
*

J
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a-SHORTCUT REACHABILITY

Theorem (ANN from Shortcut Reachability)

Letc= g—ﬂ If greedy search is run on an a-shortcu

graph G with arbitrary start node and query q, aftelr log,, (cA/e)
steps it returns a point X satisfying:

X — < (c i Xi —ql|.
%~ all < (c+) _min |~ al

A= gméx = maxy XXl g the dynamic range of our dataset.

min; ; [[X;—X; |

Intuitive why larger a leads to faster convergence. Less clear why it
leads to a better approximate nearest neighbor.

38



WHAT'S WRONG WITH NAVIGABILITY?

Why does navigability fail to return provable approximate
nearest neigbhors for queries outside the data set?

Q}(O{Xy\.v
[x q
P o
sz.é f .X3

Why would a-shortcut reachability fix this hard case?

39



CONVERGENCE ANALYSIS

Let Vo, v1,... be the iterates of greedy search run on a graph G. So v;
is an out-neighbor of vi_y and || — vo| > lg —vi|| > lg —va| > ...
o

Claim (Aanost Monotonic Convergence of Greedy Search)
If G is a-shortcut reachable then: a7 |

X“L‘/ ri™ “X—%hu
1 1 . X eX
[vi—all < =[lvies —all + (1 + =)IIx" — ql|.
(e (0%

—_— e, —
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CONVERGENCE ANALYSIS

Let vg, Vs, ... be the iterates of greedy search run on a graph G. So v;
is an out-neighbor of vi_; and ||q — vo|| > [l —wi|| > lg = vo > ...

P

Claim (Almost Monotonic Convergence of Greedy Search)

If G is a-shortcut reachable then: A L
[ (-4
1 (N x¥
lvi = all < ~llvis —all + (1 + =) Ix* —al. :U(\
Lt vl s acswss lw-x¥l -
l \a(?N(Ui-() K N7
gl z
Proof:

ot -x*lr ix®- gl

IN

Ivi-gl € Wu;- gl

[(hN

Ly, o+ IxE g
v
VI“’QK(}V\J\ \\va/ %“ ¢ i,/ [[NM ~(\Uh 4’“%'7‘*"} " “X*,[\h)\
CNWH)
! v, -G v (1+ \;;> Jx¥- gl

A
Y 4



CONVERGENCE ANALYSIS

Claim (Almost Monotonic Convergence of Greedy Search)l
Nead Yo ot “l U* (I*J—>

|5 <D.

If G is a-shortcut reachable then:

[ W=al Livics —allye 1+ 1)||x*—o|.)

\_v_—

Consequence 1: Greedy search eventually converges to some X with:
e R

IIquH<— [[x* =
o — oy ) h 4,—0‘7\\
Proof: Glfis te e fuek ab (i gh Y S fix

| \71’%\\ < W= g

-0 € v -§h (o _\>hv(,j—:__5 ho*- T ]
L _ < O S et
-4t = e ‘5‘ @(( ot ) - 17 (1)

e A\SYWA { ) + 4 )?:Q,
\mv«mu ° a1 (%) D700 o



CONVERGENCE ANALYSIS

Claim (Almost Monotonic Convergence of Greedy Search)
If G is a-shortcut reachable then:

1 T,
Vi =all < = vy = all + (14 2)lIx* = all
-

Consefjuence 2: For all i > 1, Tuduwdny 0-\2 :

Vo — 1
(,Y/ (6%

- x* —ql].
=X —al

(e e x —
Vel PeeBh gy e

[

€ ol “L‘) I -5
3

-

eV -4 )
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CONVERGENCE ANALYSIS

Claim (Almost Monotonic Convergence of Greedy Search)
If G is a-shortcut reachable then:

1 1
vl < a|@ (1+ 1) —al.
Zol = gl a0+ i

Consequence 2: Foralli > 1,

U
s & (g ozl 4 ox q||>

li-gh e L @v -9l and ey j U"u)'\h«‘-
Ne- orl + all
(“ 0’ % ¥ {Jj)l\x % g)

ot
o0

: \\w\u(g(g‘ Jr(g)) i
o .

1"

@H)(;_ |) w(f"’ - vt

vl Pl A

o> -o? NS



CONVERGENCE ANALYSIS

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Letc = g—ﬂ If greedy search is run on an a-shortcut reachable

graph G with arbitrary start node and query q, after O(log, (CA/¢))

steps it returns a point X satisfying ||X — q|| < (¢ + €) min; ||x; — q||.

Key Lemma: For all i > 1, ||v; — ClH < Mozdlf ) ot e q||. < (C‘H_l‘l'(-)‘%/%(

Case 1: ”VO q” 6 : dmax for B

Yoo Dol | B g
i x*-q («’7 Nduex  ¢7)

) \
b o+ & u—:f v
-z — = 7 - . A [VES
o) e a e

[FAZY] 7/((5'0 deex 45



CONVERGENCE ANALYSIS

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Letc = g—ﬂ If greedy search is run on an a-shortcut reachable
graph G with arbitrary start node and query q, after O(log, (CA/¢))
steps it returns a point X satisfying ||X — q|| < (¢ + €) min; ||x; — q||.

. o X* ~
Key Lemma:(For alli>1, |lvi—q <+ ol |x* — Q|Q X

Q « ]
Case 2: |[Vo — Q| < % dinge and X" — qf| < 785 dmin- amo
r])&‘c /2

\M&:: \oy o, Q¢ @l ¥/ o)1 dus
A e®
O\.)\A o X {,/%\\ ﬂ\,i,%lé(o/«\)g»,cxb . :J(,AM\_, /4'(\/’(_“_ DSN(MB
o \ ARA —a .
o ¢ S9Nz X

X |

o 7% Lo <l duen/s 2 Suin

AR
“\/\'%n Y/ Am\-' - “K"—%‘\ bﬁb Pag.;-\pbz/ ‘)F (o(—r‘)éuq,ﬁ/;, > 1 é\nw
(W - % e Ao ' s 46



CONVERGENCE ANALYSIS

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Letc = g—ﬂ If greedy search is run on an a-shortcut reachable
graph G with arbitrary start node and query q, after O(log, (CA/¢))
steps it returns a point X satisfying ||X — q|| < (¢ + €) min; ||x; — q||.

Key Lemma: Foralli > 1, ||v; — q|| <@ ol x* —q.

Case 2: |[Vo — q| < % dmax and [x* — q|| < 7221 drmin.
()

4 a+1)
b s (d/e) = ebh g nye-g)
v\

gl (25 o) x5l
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CONVERGENCE ANALYSIS

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Letc = g—ﬂ If greedy search is run on an a-shortcut reachable
graph G with arbitrary start node and query q, after O(log, (CA/¢))
steps it returns a point X satisfying ||X — q|| < (¢ + €) min; ||x; — q||.

Key Lemma: Forall i > 1, [[vi — q| < HVOJQH + ot |Ix* — q]|.

Case 3: [[Vo — gl < 2 dmax and [IX* — @] > 7255 dmin-
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SPARSE SHORTCUT REACHABLE GRAPHS

In contrast to navigability, it is possible to come up with datasets
where any a-shortcut reachable graph (for any a > 1) must have

Q(n?) edges: (IR —— yow*i ™ O(\l(\)) Lovas,

—

X, o K, o~ Bk 51,19

VR

whg g -xy s (1) fixg -l
boc o1y K2

Fortunately, Indyk and Xu show that this not possible ifthe(doubling
dimension] of our dataset is low. Doubling dimension is a natural
measure of “intrinsic dimension” that has been considered in prior

work on NN-search (e.g. [Beygelzimer, Kakade, Langford, ICML 2006]). 49



DOUBLING DIMENSION

For a point x, let B(x,r) be a ball of radius r centered around x.

Definition (Doubling Dimension)
The doubling constant of a point set X is the smallest C such that,

for any "nd any x € X, B(x,r) N X' can be covered with C balls of

radi The doubling dimension,g;, of X equals d’ = log,(C).

—_—

s

We always have that d’ < d if xi,...,X, € RY and often (?) d’ < d. 50



DOUBLING DIMENSION

For a point x, let B(x,r) be a ball of radius r centered around x.

Definition (Doubling Dimension)

The doubling constant of a point set X is the smallest C such that,
forany rand any x € X, B(x,r) N X can be covered with C balls of
radius r/2. The doubling dimension, d’, of X equals d’ = log,(C).

We always have that d’ < d if xi,...,X, € RY and often (?) d’ < d. 50



SPARSE SHORTCUT REACHABLE GRAPHS

Theorem (Shortcut Reachability from Doubling Dim. (Indyk, Xu))

Any points set X with doubling dimension d' and dynamic range A
has an a-shortcut reachable graph G with maximum degree:

(Sa)d’ log A (gushact  ta O(n*)

—

e .

Simple fact: If X has doubling dimension d’, then for any x € X and
any r, B(x,r) N X can be covered with (2k)?" balls of radius ﬂ@
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PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius
r/2) with balls of radius r/4a. Connect x to any point in each ball.

é\u\_, flJW"\—; \14\4.7\ s d“‘vcx

r/yv B

@~ Haﬂ)él
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PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius
r/2) with balls of radius r/4a. Connect x to any point in each ball.
ot by gk ok eedadh
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PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius
r/2) with balls of radius r/4a. Connect x to any point in each ball.

By previous fact, we need (2 - 4@)6" such balls to cover each ring.
There are log, A rings.

Theorem (Shortcut Reachability from Doubling Dim. (Indyk, Xu))

Any points set X with doubling dimension d’ and dynamic range A
has an a-shortcut reachable graph G with maximum degree:

(82)? log A

This graph can be constructed in O(n?) time.
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PUTTING IT ALL TOGETHER

Two components of [Indyk, Xu, 2023] result: Let c = 2. Disk ANN

1. If G is a-shortcut reachable then, for any query g, greedy search
converges to an (% + e)—approximate nearest neighbor in
O(log,(cA/e)) steps.

2. Any dataset with doubling dimension d’ has an a-shortcut
reachable graph with maximum degree O ((8a)d' log, A).

Final space complexity: (

n - (%ﬂ) lo5(0)

. H . !
Final query time: Cgéb,fv . (”bw(w/@

55



CONCLUSION

Positives:

- Theoretical tradeoff between time/space and accuracy.

- Covering-based graph can be constructed greedily in
polynomial time. In fact, the algorithm was already
proposed in DiskANN (NeurlPS, 2019).

Negatives:

- Not clear how small doubling dimension d’ is in practice
and it's difficult to verify / people haven't really tried
thoroughly.
- No approx. guarantees for queries not in the data set X.
- No formal runtime guarantees.
- 0(n3) preprocessing time is slow, but could be faster.
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NEXT WEEK

- Vector compression beyond Johnson-Lindenstrauss.
- Coordinated random sampling.

- Two different applications to speeding up language
models.

X1 Xy X3 X, X1 biltion
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