Recent Developments in Algorithm Design: Graph-Based Nearest Neighbor Search

Prof. Christopher Musco, New York University

ALGORITHMS FOR MODERN MACHINE LEARNING

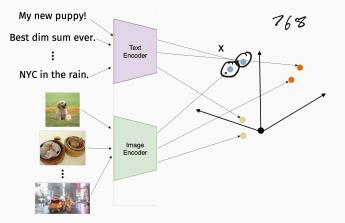
Characteristics of recent AI systems: Used at internet scale, demand real-time performance, significant test-time compute.

Algorithms for machine learning have gotten a lot more interesting in the past 3 years! Focus is no longer just on efficient training. **Goal for next three lectures:** Three vignettes on <u>recent</u> <u>algorithms</u> relevant in modern machine learning.

- High-Dimensional Vector Search.
- (Fast Autoregressive Language Generation)
- Sampling from high-dimensional distributions given an oracle (for image generation, Bayesian inference, private learning, and more)

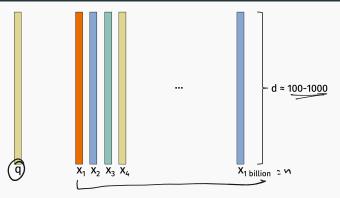
Focus on <u>recent</u>. In many cases, methods in use are poorly understood and theory is in its very early stages.

NEW PARADIGM FOR SEARCH



Use neural network (BERT, CLIP, etc.) to convert documents, images, etc. to high dimensional vectors. Matching results should have similar vector embeddings.

THE NEW PARADIGM FOR SEARCH



Finding results for a query reduces to finding the nearest vector in a vector database \mathcal{X} with similarity typically measured by Euclidean distance. I.e., return; $\int_{x \in \mathcal{X}} \arg \min_{x \in \mathcal{X}} ||x - q||_2 = \left(\sum_{i \in \mathcal{X}} (x_i - b_i)^2\right)^{1/2}$ $||\tilde{x} - b_i| \leq C \cdot ||x - b_i|^2$

VECTOR SEARCH

Vector search has been studied for a long time, but it is now used far more pervasively than even a few years ago:

- Web-scale image search and even text document search.
 Retrieval Augmented Generation for language models and AI autocomplete.
- Multi-media search on Amazon, Wayfair, etc.

WHAT CAN BE DONE?

Goal: Let \mathcal{X} be a database of n vectors in \mathbb{R}^d . Find $\mathbf{x} \in \mathcal{X}$ minimzing $\|\mathbf{x} - \mathbf{q}\|_2$ for a query \mathbf{q} . $\mathcal{O}(\mathcal{E})$ for composition

• Naive linear scan: O(nd) time. B(4) space O(105(4)) • kd trees: $O(d \log(n) \cdot 2^d)$ time.

When *d* is large, we now have lots of other options available:

- (Locality-sensitive hashing [Indyk, Motwani, 1998])
- Spectral hashing [Weiss, Torralba, and Fergus, 2008] Vector quantization/IVF data structures [Jégou, Douze, Schmid, 2009]
- Graph-based vector search [Malkov, Yashunin, 2016, Subramanya et al., 2019]

Key ideas behind all of these methods:

- (1. Allow for approximation.)
 - 2. Trade worse space-complexity + preprocessing time for
 - better time-complexity. I.e., preprocess database in data structure that uses $\Omega(n)$ space.

HIGH-DIMENSIONAL NEAR NEIGHBOR SEARCH

When d is large, we now have lots of other options available:

- Locality-sensitive hashing [Indyk, Motwani, 1998]
- Spectral hashing [Weiss, Torralba, and Fergus, 2008]
- Vector quantization/IVF data structures [Jégou, Douze, Schmid, 2009]
- Graph-based vector search [Malkov, Yashunin, 2016, Subramanya et al., 2019]

Key ideas behind all of these methods:

- 1. Allow for approximation.)
- Trade worse space-complexity + preprocessing time for better time-complexity. I.e., preprocess database in data structure that uses Ω(n) space.

EXAMPLE WORST-CASE GUARANTEE

Theorem (Andoni, Indyk, FOCS 2006)

For any approximation factor $c \ge 1$, there is a data structure based on **locality sensitive hashing** that, for any query \underline{q} , returns $\underline{\tilde{x}}$ satisfying:

$$\|\mathbf{\tilde{x}} - \mathbf{q}\|_2 \le c \cdot \min_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} - \mathbf{q}\|_2$$

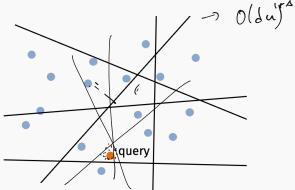
and uses:

• Time:
$$\tilde{O}\left(dn^{1/c^2}\right)$$
. $dn^{1/4}$
• Space: $\tilde{O}\left(nd + n^{1+1/c^2}\right)$. $dn^{1/1/c^4}$

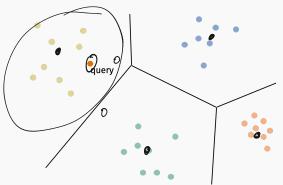
 $\tilde{O}(\cdot)$ hides $\log(\Delta)$ factor where $\underline{\Delta} = \frac{\max_{x,y\in\mathcal{X}} \|x-y\|_2}{\min_{x,y\in\mathcal{X}} \|x-y\|_2}$ is the dynamic range of our dataset.

Rough idea behind LSH:

- 1. Pick a bunch of random hyperplanes.
- 2. Check which side of each hyperplane q lies on.
- 3. Return closest point that lies in the same region as q.
- 4. Repeat multiple times to avoid missing anything.



In practice, we can often get partitions with better <u>margin</u> by partitioning in a data-dependent way, e.g. via clustering.



Main idea behind the improvements I listed earlier. Used in state-of-thea-art near-neighbor search libraries like Meta's FAISS and Google's SCANN.

New(ish) kid on the block: Graph-based near-neighbor search.

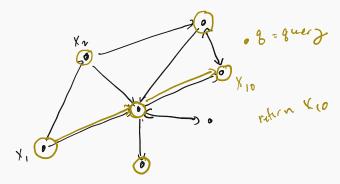
- (Navigating Spreading-out Graphs (NSG) [Fu, Xiang, Wang, Cai, 2017]
- •(Hierarchical Navigable Small World (HNSW))Malkov, Yashunin, 2016]
- **Microsoft DiskANN** [Subramanya, Devvrit, Kadekodi, Krishaswamy, Simhadri 2019]

Inspired by (Milgram's famous "small world" experiments) from the 1960s and later work on the small world phenomenon by Watts, Strogatz, Boobby Kleinberg, and others.

Similar methods proposed for low-dimensions in 1990s by Arya, Mount, Kleinberg and others.

BASIC IDEA BEHIND GRAPH-BASED SEARCH

1. Construct a directed search graph over our dataset.



2. Run greedy search in the graph.

Let $G = (V, \underline{E})$ be our graph where each node $\underline{1}, \dots, \underline{n}$ is associated with a vector $\mathbf{x}_i \in \mathbb{R}^d$. Consider a query $\mathbf{q} \in \mathbb{R}^d$.

Let $\mathcal{N}(i) = \{j : (i,j) \in E\}$ be the out-neighborhood of *i*.

Greedy Search:

- Choose arbitrary starting nodes.
- Loop until termination:
 - Let $\underline{\mathbf{c}} = \arg \min_{\underline{\mathbf{y}} \in \mathcal{N}(\underline{\mathbf{s}})} \|\underline{\mathbf{y}} \underline{\mathbf{q}}\|_2$.
 - $\cdot \ \text{ If } \|\boldsymbol{c}-\boldsymbol{q}\|_2 < \|\boldsymbol{s}-\boldsymbol{q}\|_2 \text{, set } \underline{\boldsymbol{s}\leftarrow\boldsymbol{c}}.$
 - Else, terminate loop and return **s**.

CONNECTION TO SMALL-WORLD EXPERIMENTS

19605

Steve Surth Boston Teacher Age: 40

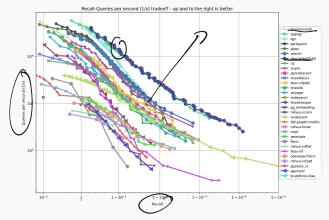
(Stanley Milgram)

h 6 degrees of Sepretion 11

GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions!





GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions!

Results of the NeurIPS'21 Challenge on Billion-Scale Approximate Nearest Neighbor Search

Harsha Vardhan Simhadri ¹
George Williams ²
Martin Aumüller ³
Matthijs Douze ⁴
Artem Babenko ⁵
Dmitry Baranchuk ⁵
Qi Chen ¹
Lucas Hosseini ⁴
Ravishankar Krishnaswamy ¹
Gopal Srinivasa ¹
Suhas Jayaram Subramanya ⁶
Jingdong Wang ⁷

¹ Microsoft Research ² GSI Technology ³ IT University of Copenhagen ⁴ Meta AI Research ⁵ Yandex ⁶ Carnegie Mellon University ⁷ Baidu

Open theory challenge: Can we explain the empirical success of graph-based nearest-neighbor search methods?

PLAN FOR TODAY

- Formalize desirable properties for a nearest-neighbor search graph. Discuss some of my recent work with Torsten Suel, Haya Diwan, Jerry Gou, and Cameron Musco (NeurIPS 2024) on constructing graphs with these properties.
- Dive into a recent result of Indyk and Xu (NeurIPS 2023) on worst-case theoretical guarantees for graph-based search. Currently, require strong (?) assumptions on the dataset X (low intrinsic dimension).

c-approximate nearest neighbor search: Return $\tilde{\mathbf{x}}$ satisfying $\|\tilde{\mathbf{x}} - \mathbf{q}\|_2 \le c \cdot \min_{i \in \{1,...,n\}} \|\mathbf{x}_i - \mathbf{q}\|_2$ for some $c \ge 1$.

Standard and reasonable guarantee for LSH methods. Although people care about other metrics too.

('Observation: Assuming there are no duplicates in $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, if query $\mathbf{q} = \mathbf{x}_i$ for some i, we must return \mathbf{x}_i .

Search graph G should be chosen to at least ensure that we find q if it is in the dataset.

Ideally, *G* should also be <u>sparse</u> and <u>require few steps to find *q*</u> (i.e, the graph should be "small-world").

Definition (Navigable Graph)

A directed graph G for a point set $\mathbf{x}_1, \ldots, \mathbf{x}_n$ is navigable if, for all $i, j \in \{1, \ldots, n\}$, greedy search run on G with start node \mathbf{x}_i and query \mathbf{x}_j returns \mathbf{x}_j .

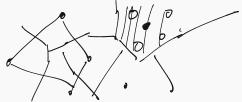
Listed as a desirable property in many empirical papers, including work on <u>Navigable</u> Spreading-our Graphs and Hierarchical <u>Navigable</u> Small World Graphs.

But none of this work produces provably navigable graphs.

Question: What is the sparsest navigable graph that can be constructed for a dataset x_1, \ldots, x_n ?

Known results when $\mathbf{x}_1, \dots, \mathbf{x}_n$ are in low-dimensional Euclidean space:

• 2-dimensions: The Delaunay graph can be proven to be navigable. This graph has average degree $\mathcal{M}(\mathcal{A})$. $\mathcal{O}(\mathcal{V})$



 d-dimensions: The Sparse Neighborhod Graph of Arya and Mount [SODA, 1993]) is navigable and has average degree O(2^d).

Claim (Upper Bound, DGMMS, 2024)

For any dataset $\underline{x}_{1,...,x_{nr}}$ it is possible to construct in $O(n^2 \log n)$ time a navigable graph G with average out-degree $O(\sqrt{n \log n})$. In fact, holds for any distance function.

We will prove this under the mild assumption that, for all i, j, k, $\|\mathbf{x}_i - \mathbf{x}_j\|_2 \neq \|\mathbf{x}_i - \mathbf{x}_k\|_2$. Eliminates tedious corner cases related to tie-breaking. Can be ensured by adding arbitrarily small random perturbation to every data point.

Claim (Nearly Matching Lower Bound)

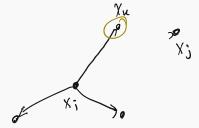
Let $\underline{\mathbf{x}_1, \ldots, \mathbf{x}_n}$ be random vectors in $\{-1, 1\}^m$ where $m = O(\log n)$. With high probability, any navigable graph for $\mathbf{x}_1, \ldots, \mathbf{x}_n$ requires average out-degree $\Omega(n^{1/2-\epsilon})$ for any fixed constant ϵ .

NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Definition (Equivalent Navigabability Definition)

A directed graph *G* for a point set $\underline{\mathbf{x}}_1, \ldots, \underline{\mathbf{x}}_n$ is navigable if, for all node i, for all $j \neq i$, there is some $k \in \mathcal{N}(i)$ satisfying:

$$\|\mathbf{x}_j - \mathbf{x}_k\|_2 < \|\mathbf{x}_j - \mathbf{x}_i\|_2.$$



The above property is purely local! We can construct a navigable graph by separately checking the out-neighborhood of each node.

Can view graph construction as *n* seperate instances of <u>set</u> <u>cover</u>. For instanc<u>e</u> *i*, our elements to cover are $\{1, ..., n\} \setminus \{i\}$. We have a set S_k for all $k \neq i$.

$$S_{k} = \{ \{ j : \| k_{j} - x_{k} \| < \| x_{i} - x_{j} \| \}$$

S1 ... Sn 15 813

Definition (Equivalent Navigabability Definition)

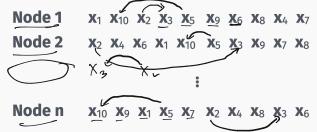
A directed graph G for a point set $\mathbf{x}_1, \ldots, \mathbf{x}_n$ is navigable if, for all nodes *i*, for all $j \neq i$, there is some $k \in \mathcal{N}(i)$ satisfying:

$$\|\mathbf{x}_{j} - \mathbf{x}_{k}\|_{2} < \|\mathbf{x}_{j} - \mathbf{x}_{i}\|_{2}.$$

Unfortunately, we can come up with point sets where any particular x_i necessarily has high-degree: n-1

Approach: Consider all set cover instances in aggregate.

Distance-Based Permutation Matrix:



Requirement: Need at least one "left pointing" edge from every node in every list.

1. For all *i*, add an edge from *j* to *i* if *j* is one of *i*'s *m* closest neighbors. N.m. edges Mr. In

 $x_1 x_{10} x_2 x_3 x_5 x_9 x_6 (x_8) x_4 x_7$

X2 X4 X6 X1 X10 X5 X3 X9 X7 X8

- 2. Add $3\frac{n}{m} \log n$ uniformly random out-edges from every node.
 - Node 1

 - Node 2
 - Node n
- X10 X9 X1 X5 X7 X2 X4 X8 X3 X6

26

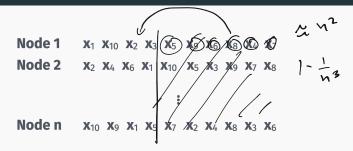
Fix a node *i*.

Claim 1: Suppose \mathbf{x}_j is one of \mathbf{x}_i 's *m* closest neighbors. Then \mathbf{x}_j has an out-edge to some \mathbf{x}_k with $||\mathbf{x}_k - \mathbf{x}_j||_2 < ||\mathbf{x}_j - \mathbf{x}_i||_2$. χ_i is a unsue of χ_j . $\chi_k = \chi_j$

Claim 2: Suppose \mathbf{x}_j is <u>not</u> one of \mathbf{x}_i 's *m* closest neighbors. Then, with probability $\geq 1 - \frac{1}{n^3}$, \mathbf{x}_j has an out-edge to some $\underline{\mathbf{x}}_k$ with $\|\mathbf{x}_k - \mathbf{x}_i\|_2 < \|\mathbf{x}_j - \mathbf{x}_i\|_2$.

Claim 2: Suppose \mathbf{x}_i is not one of \mathbf{x}_i 's *m* closest neighbors. Then, with probability $\geq 1 - \frac{1}{n^3}$, \mathbf{x}_i has an out-edge to some \mathbf{x}_k with $\|\mathbf{x}_k - \mathbf{x}_i\|_2 < \|\mathbf{x}_j - \mathbf{x}_i\|_2$. $X_{1} X_{10} X_{2} X_{3} X_{5} X_{9} X_{6} X_{8} X_{4} X_{7} \frac{3}{m} \log(4)$ Node 1 Node 2 X₂ X₄ X₆ X₁ X₁₀ X₅ X₃ X₉ X₇ X₈ Node n X₁₀ X₉ X₁ X₅ X₇ X₂ X₄ X₈ X₃ X₆ Pr (vondom (j,k) sot. ||x ... - xi || < ||xj - x;] > M/n. $Pr\left[\text{ at least one random edge st. 11} \right] 7, 1 - \left(1 - \frac{14}{5}\right)$ $Pr\left[\text{ at least one random edge st. 11} \right] 7, 1 - \left(1 - \frac{14}{5}\right)$ $Pr\left[\text{ at least one random edge st. 11} \right] 7, 1 - \left(1 - \frac{14}{5}\right)$

UPPER BOUND ANALYSIS



By a union bound, we have a left-pointing edge for every node in every permutation with probability $\geq 1 - \frac{1}{n}$, so our graph is navigable.

Total degree of constructed graph: $nm + n \cdot \frac{n}{m} \log(n)$ M = nm(0.5n) $O(n^{3/2} f(0.5(n)))$

Claim (Upper Bound)

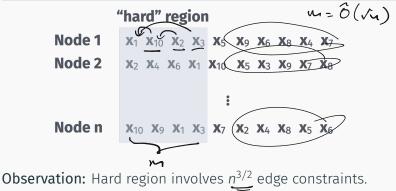
For any dataset $\mathbf{x}_1, \ldots, \mathbf{x}_n$, it is possible to construct in $O(n^2 \log n)$ time a navigable graph G with average out-degree $O(\sqrt{n \log n})$. In fact, holds for any distance function.

Oberservation: The graph we constructed is "small-world". Only two hops required for any starting node and query.

LOWER BOUND SKETCH

Claim (Nearly Matching Lower Bound)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be random vectors in $\{-1, 1\}^m$ where $m = O(\log n)$. With high probability, any navigable graph for $\mathbf{x}_1, \ldots, \mathbf{x}_n$ requires average out-degree $\Omega(n^{1/2-\epsilon})$ for any fixed constant ϵ .



LOWER BOUND SKETCH

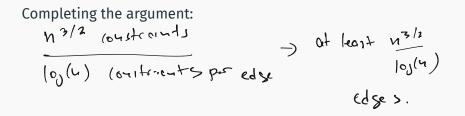
4	'hard" region	
Node 1	X ₁ X ₁₀ X ₂ X ₃ X ₅ X ₉ X ₆ X ₈ X ₄ X	7
Node 2	X ₂ X ₄ X ₆ X ₁ X ₁₀ X ₅ X ₃ X ₉ X ₇ X ₈	8
Node n	X ₁₀ X ₉ X ₁ X ₃ X ₇ X ₂ X ₄ X ₈ X ₅ X ₆	6

For sake of proof sketch, assume permutations are <u>uniformly</u> <u>random</u>.)In the paper, we show that this is "close" to true for random data points in *O*(log *n*) dimensions.

Claim: Adding any edge $(\underline{i}, \underline{j})$ to the graph only covers at most $O(\log(n))$ of the $\underline{n^{3/2}}$ hard constraints with high probability.

Claim: Under random permutations, adding any (i, j) to G only covers at most $O(\log(n))$ hard constraints with high prob.

"hard" region (i,j)Node 1 X1 X10 X2 X5 X9 X6 X8 X4 X7 Pr(i and ; are in the \mathbf{X}_{2} \mathbf{X}_{4} \mathbf{X}_{6} \mathbf{X}_{1} \mathbf{X}_{10} \mathbf{X}_{5} \mathbf{X}_{3} \mathbf{X}_{9} \mathbf{X}_{7} \mathbf{X}_{8} Node 2 list of yode is m nearest neighors] 5 mm **X**₁₀ **X**₉ **X**₁ **X**₃ **X**₇ **X**₂ **X**₄ **X**₈ **X**₅ **X**₆ Node n d(0)(m)) ~ E(# of rows were both 1, in hard region) = 1/m = 1. (hernoff bornd -> w.p. 1-1 (ij) hot in non from O(log(u)) hard regions. 33



Claim (Nearly Matching Lower Bound)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be random vectors in $\{-1, 1\}^m$ where $m = O(\log n)$. With high probability, any navigable graph for $\mathbf{x}_1, \ldots, \mathbf{x}_n$ has average out-degree $\Omega(n^{1/2-\epsilon})$ for any fixed constant ϵ .

CONCLUSION

Positives:

- For queries $\mathbf{q} \in \mathcal{X}$, greedy search + navigable graph returns exact result.
- Data structure takes $O(n^{1.5})$ space.
- Runtime for $\mathbf{q} \in \mathcal{X}$ should be roughly $O(\sqrt{n})$ given small-world property, but difficult to say anything formally.

Negatives:

- $\int \sqrt{n}$ degree is still pretty dense. In practice, graphs can be pruned and yield good empirical results.
- No approx. guarantees for queries not in the data set \mathcal{X} .
- No formal runtime guarantees.

NeurIPS 2023 paper: "Worst-case Performance of Popular Approximate Nearest Neighbor Search Implementations: Guarantees and Limitations" by Piotr <u>Indy</u>k and Haike Xu.

Addresses these issues, albeit under additional assumptions about the dataset \mathcal{X} . $q \neq 1$ q = 2 $\frac{3}{2} + c$

Two components of result:

3+6

1. If *G* is <u>*a*-shortcut reachable</u> then, for any query **q**, greedy search converges to an $\left(\frac{\alpha+1}{\alpha-1}+\epsilon\right)$ -approximate nearest neighbor in $\sim \log(1/\epsilon)$ steps.

2. Any dataset with (doubling dimension) d' has an α -shortcut reachable graph with maximum degree $\tilde{O}((8\alpha)^d)$.

First introduced in the DiskANN paper out of Microsoft Research. Strictly strengthens navigability.

Definition (Navigabability, aka 1-shortcut reachability)

A directed graph G for a point set $\underline{x}_1, \dots, \underline{x}_n$ is navigable if, for all nodes i, for all $j \neq i$, there is some $\underline{k} \in \mathcal{N}(i)$ satisfying:

$$\|\mathbf{x}_j-\mathbf{x}_k\|<\|\mathbf{x}_j-\mathbf{x}_i\|.$$

0=2

Definition (α -shortcut reachability)

A directed graph G for a point set x_1, \ldots, x_n is α -shortcut reachability for $\alpha \ge 1$ if, for all nodes *i*, for all $j \ne i$, there is some $k \in \mathcal{N}(i)$ satisfying:

$$\|\underline{\mathbf{x}_j - \mathbf{x}_k}\| < \frac{1}{\alpha} \|\underline{\mathbf{x}_j - \mathbf{x}_i}\|.$$

Theorem (ANN from Shortcut Reachability)

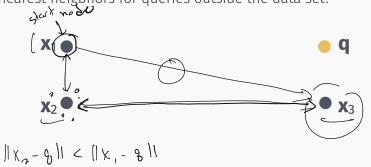
Let $c = \frac{\alpha+1}{\alpha-1}$. If greedy search is run on an α -shortcut reachable graph G with arbitrary start node and query **q**, after $\log_{\alpha}(c\Delta/\epsilon)$ steps it returns a point $\tilde{\mathbf{x}}$ satisfying:

$$\|\mathbf{\tilde{x}}-\mathbf{q}\| \leq (c+\epsilon) \min_{j\in\{1,\ldots,n\}} \|\mathbf{x}_j-\mathbf{q}\|.$$

$$\Delta = \frac{d_{\max}}{d_{\min}} = \frac{\max_{i,j} \|\mathbf{x}_i - \mathbf{x}_j\|}{\min_{i,j} \|\mathbf{x}_i - \mathbf{x}_j\|} \text{ is the } \underline{dynamic range} \text{ of our dataset.}$$

Intuitive why larger α leads to faster convergence. Less clear why it leads to a better approximate nearest neighbor.

Why does navigability fail to return provable approximate nearest neighbors for queries outside the data set?



Why would α -shortcut reachability fix this hard case?

Let $\underline{\mathbf{v}}_0, \mathbf{v}_1, \dots$ be the iterates of greedy search run on a graph *G*. So \mathbf{v}_i is an out-neighbor of \mathbf{v}_{i-1} and $\|\mathbf{q} - \mathbf{v}_0\| > \|\mathbf{q} - \mathbf{v}_1\| > \|\mathbf{q} - \mathbf{v}_2\| > \dots$

Claim (Almost Monotonic Convergence of Greedy Search)

If G is α -shortcut reachable then: $\gamma = 1$ $\chi = 1$ $\chi = 1$ $\chi = 1$

$$\|\mathbf{v}_{i}-\mathbf{q}\| \leq \frac{1}{\alpha} \|\mathbf{v}_{i-1}-\mathbf{q}\| + (1+\frac{1}{\alpha})\|\mathbf{x}^{*}-\mathbf{q}\|.$$

Let $\mathbf{v}_0, \mathbf{v}_1, \ldots$ be the iterates of greedy search run on a graph G. So \mathbf{v}_i is an out-neighbor of \mathbf{v}_{i-1} and $\|\mathbf{q} - \mathbf{v}_0\| > \|\mathbf{q} - \mathbf{v}_1\| > \|\mathbf{q} - \mathbf{v}_2\| > \dots$ Claim (Almost Monotonic Convergence of Greedy Search) If G is α -shortcut reachable then: $\|\mathbf{v}_i - \mathbf{q}\| \leq \frac{1}{\alpha} \|\mathbf{v}_{i-1} - \mathbf{q}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{q}\|.$ Let vil = arguing 11 y-X*11 yEN(vi-1) Vi-1 Proof: $||v_i - q_i|| \le ||v_i| - q_i|| \le ||v_i| - x^* || + ||x^* - q_i||$ $\leq \frac{1}{N} ||v_{i-1} - x^{*}|| + ||x^{*} - g||$ $\leq \int (||v_{i-1} - c_{i}|| + ||c_{i} - x^{*}||) + ||x^{*} - c_{i}||$ V:= arguin 11 - 811 YEH(Vin) $= \frac{1}{N} ||V_{i-1} - Q_i|| + (|x + \frac{1}{N}) ||X^{*} - Q_i||$ 41

Claim (Almost Monotonic Convergence of Greedy Search) If G is α -shortcut reachable then: Newdodo show: $\left(\frac{1}{\sqrt{n}} - 1\right) \underbrace{\underbrace{v_{i-1}^{+1}}_{\sqrt{n-1}} + \left(1 + \frac{1}{\sqrt{n}}\right)$ $\left(\|\mathbf{v}_i - \mathbf{q}\| \leq \frac{1}{\alpha} \|\mathbf{v}_{i-1} - \mathbf{q}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{q}\|. \right)$ is < 0.

Consequence 1: Greedy search eventually converges to some \tilde{x} with:

$$\begin{split} \|\tilde{\mathbf{x}} - \mathbf{q}\| &\leq \frac{\alpha + 1}{\alpha - 1} \cdot \|\mathbf{x}^* - \mathbf{q}\|. \\ \text{Proof: Suffices to show fluct 1f} & (\|\mathbf{v}_{i-1} - \mathbf{b}\| \neq \frac{\alpha + 1}{\alpha - 1} \|\mathbf{x}^* - \mathbf{q}\|. \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \neq \frac{\alpha + 1}{\alpha - 1} \|\mathbf{x}^* - \mathbf{q}\|. \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \neq \frac{\alpha + 1}{\alpha - 1} \|\mathbf{x}^* - \mathbf{b}\|. \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \leq \|\mathbf{v}_{i-1} - \mathbf{b}\| + (\frac{1}{\alpha} - 1) \|\mathbf{v}_{i-1} - \mathbf{b}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \leq ((\frac{1}{\alpha} - 1) \|\mathbf{v}_{i-1} - \mathbf{b}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \leq ((\frac{1}{\alpha} - 1) \|\mathbf{v}_{i-1} - \mathbf{b}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \leq ((\frac{1}{\alpha} - 1) \|\mathbf{v}_{i-1} - \mathbf{b}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \leq ((\frac{1}{\alpha} - 1) \|\mathbf{v}_{i-1} - \mathbf{b}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| = (1 + \frac{1}{\alpha}) \|\mathbf{v}_{i-1} - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| \leq (1 + \frac{1}{\alpha}) \|\mathbf{v}_{i-1} - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| = (1 + \frac{1}{\alpha}) \|\mathbf{v}_{i-1} - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| = (1 + \frac{1}{\alpha}) \|\mathbf{v}_{i-1} - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| = (1 + \frac{1}{\alpha}) \|\mathbf{v}_{i-1} - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| = (1 + \frac{1}{\alpha}) \|\mathbf{v}_{i-1} - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} - \mathbf{b}\| + (1 + \frac{1}{\alpha}) \|\mathbf{v}_{i-1} - \mathbf{b}\| \\ \|\mathbf{v}_{i-1} -$$

Claim (Almost Monotonic Convergence of Greedy Search) If G is α -shortcut reachable then: $\|\mathbf{v}_i - \mathbf{q}\| \leq \frac{1}{\alpha} \|\mathbf{v}_{i-1} - \mathbf{q}\| + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{q}\|.$ Inductively. **Consequence 2:** For all i > 1. Bax con $\|\underline{\mathbf{v}}_i - \underline{\mathbf{q}}\| \le \frac{\|\mathbf{v}_0 - \underline{\mathbf{q}}\|}{\alpha^i} + \frac{\alpha + 1}{\alpha - 1} \cdot \|\underline{\mathbf{x}}^* - \underline{\mathbf{q}}\|.$ $|z-1| \| v_{i} - g \| \leq \| \frac{|v_{0} - g||}{|v_{0} - g||} + \left(| + \frac{1}{q'} \right) \| x^{4} - g \|$ - (100-8 11 + (0+1) 11×4-8 11 $\stackrel{\leq}{=} \frac{||v_0 - \mathcal{G}||}{\underbrace{-}} + \left(\frac{\alpha + 1}{\underbrace{-}}\right) ||\chi^{\bullet} - \mathcal{G}||$

Claim (Almost Monotonic Convergence of Greedy Search)

If G is α -shortcut reachable then:

$$\|\mathbf{v}_i - \mathbf{q}\| \leq \frac{1}{\alpha} \left(\mathbf{v}_{i-1} - \mathbf{q} \right) + (1 + \frac{1}{\alpha}) \|\mathbf{x}^* - \mathbf{q}\|.$$

Consequence 2: For all $i \ge 1$,

$$\begin{aligned} \int_{\mathcal{U}_{i}} \int_{\mathcal{U}_{i}} \int_{\mathcal{U}_{i}} \frac{||\mathbf{v}_{i} - \mathbf{q}|| \leq \frac{||\mathbf{v}_{0} - \mathbf{q}||}{\alpha^{i}} + \frac{\alpha + 1}{\alpha - 1} \cdot ||\mathbf{x}^{*} - \mathbf{q}||. \\ ||\mathbf{v}_{i} - \mathbf{b}|| \leq \frac{1}{\omega} \cdot \left[\frac{||\mathbf{v}_{0} - \mathbf{b}||}{\alpha^{i-1}} + \frac{\alpha + 1}{\omega - 1} ||\mathbf{x}^{*} - \mathbf{b}|| \right] + \left(1 + \frac{1}{\omega}\right) ||\mathbf{x}^{*} - \mathbf{b}|| \\ &= \frac{||\mathbf{v}_{0} - \mathbf{b}||}{\alpha^{i}} + \left(\frac{1}{\omega^{i}} \left(\frac{\alpha + 1}{\alpha - 1}\right) + \left(\frac{\alpha + 1}{\omega^{i}}\right)\right) ||\mathbf{x}^{*} - \mathbf{b}|| = \left(\frac{||\mathbf{v}_{0} - \mathbf{b}||}{\omega^{i}} + \left(\frac{\alpha + 1}{\omega^{i-1}}\right) ||\mathbf{x}^{*} - \mathbf{b}|| \right) \\ &= \frac{||\mathbf{v}_{0} - \mathbf{b}||}{\omega^{i}} + \left(\frac{1}{\omega^{i}} \left(\frac{\alpha + 1}{\alpha - 1}\right) + \left(\frac{\alpha + 1}{\omega^{i}}\right)\right) ||\mathbf{x}^{*} - \mathbf{b}|| = \left(\frac{||\mathbf{v}_{0} - \mathbf{b}||}{\omega^{i}} + \left(\frac{\alpha + 1}{\omega^{i-1}}\right) ||\mathbf{x}^{*} - \mathbf{b}|| \right) \\ &= \frac{||\mathbf{v}_{0} - \mathbf{b}||}{(\mathbf{v}^{*} - \mathbf{c})} = \frac{\omega + 1}{\omega^{*} - \omega^{*}} = \frac{\omega + 1}{\omega^{*} - 1} \end{aligned}$$

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Let $c = \frac{\alpha+1}{\alpha-1}$. If greedy search is run on an α -shortcut reachable graph G with arbitrary start node and query **q**, after $O(\log_{\alpha}(c\Delta/\epsilon))$ steps it returns a point $\tilde{\mathbf{x}}$ satisfying $\|\tilde{\mathbf{x}} - \mathbf{q}\| \le (c + \epsilon) \min_{j} \|\mathbf{x}_{j} - \mathbf{q}\|$.

Key Lemma: For all $i \ge 1$, $\|\mathbf{v}_i - \mathbf{q}\| \le \frac{\|\mathbf{v}_0 - \mathbf{q}\|}{\alpha'} + \frac{\alpha+1}{\alpha-1} \cdot \|\mathbf{x}^* - \mathbf{q}\| \le \left(\frac{\alpha+1}{\mathbf{v}-1} + \zeta\right) \|\mathbf{x}\|$ **Case 1:** $\|\mathbf{v}_0 - \mathbf{q}\| = \beta \cdot d_{\max}$ for $\beta \neq \underbrace{\alpha + 1}_{2}$. $\int \frac{||v_0 - b||}{||x^* - g||} = \frac{G \cdot ducx}{(G - 1) ducx} = \frac{G}{G - 1}$ $\begin{array}{c} B \cdot \delta_{vot} & \frac{B}{N-1} \leq \begin{pmatrix} 0+1 \\ 0+1 \end{pmatrix} \\ \hline & B \cdot 1 \\ \hline & & 0 \end{pmatrix} \\ \begin{array}{c} B \cdot 1 \\ \hline & & 0 \end{pmatrix} \\ \begin{array}{c} B \cdot 1 \\ \hline & & 0 \end{pmatrix} \\ \begin{array}{c} B \cdot 1 \\ \hline & & 0 \end{pmatrix} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & & 0 \\ \hline & & 0 \end{array} \\ \begin{array}{c} A + 1 \\ \hline & 0 \end{array} \\ \end{array} \\ \begin{array}{c} A + 1 \\ \hline & 0 \end{array} \\ \end{array} \\ \begin{array}{c} A + 1 \\ \hline \\ \end{array} \\ \begin{array}{c} A + 1 \\ \hline \end{array} \\ \end{array} \\ \end{array}$ 45

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Let $c = \frac{\alpha+1}{\alpha-1}$. If greedy search is run on an α -shortcut reachable graph G with arbitrary start node and query **q**, after $O(\log_{\alpha}(c\Delta/\epsilon))$ steps it returns a point $\tilde{\mathbf{x}}$ satisfying $\|\tilde{\mathbf{x}} - \mathbf{q}\| \le (c + \epsilon) \min_{i} \|\mathbf{x}_{i} - \mathbf{q}\|$.

$$\begin{array}{c} \text{Key Lemma:} \left(\text{For all } i \geq 1, \|\mathbf{v}_{i} - \mathbf{q}\| \leq \underbrace{\left(\|\mathbf{v}_{0} - \mathbf{q}\| \right)}_{\alpha^{i}} + \frac{\alpha + 1}{\alpha - 1} \cdot \|\underline{\mathbf{x}^{*}} - \mathbf{q}\| \right), \quad \mathbf{x}^{*} \\ \text{Case 2: } \|\mathbf{v}_{0} - \mathbf{q}\| \leq \underbrace{\frac{\alpha + 1}{2} d_{\max}}_{\alpha \max} \text{ and } \|\mathbf{x}^{*} - \mathbf{q}\| \leq \frac{\alpha - 1}{4(\alpha + 1)} d_{\min} \cdot \epsilon \stackrel{i}{\downarrow} d_{\max}, \quad \mathbf{v}_{i} \\ \text{Necd to} \\ \text{Choose i vorse } \|\mathbf{v}_{i} \cdot \mathbf{g}\| \leq \underbrace{\left(\frac{\alpha + 1}{2} \right) d_{\max} / 2}_{\sigma^{i}} + \frac{\alpha + 1}{\sqrt{r}} \sqrt{\frac{\alpha - 1}{4(\alpha + 1)}} d_{\min} \cdot \epsilon \stackrel{i}{\downarrow} d_{\max}, \quad \mathbf{v}_{i} \\ \text{Choose i vorse } \|\mathbf{v}_{i} \cdot \mathbf{g}\| \leq \underbrace{\left(\frac{\alpha + 1}{2} \right) d_{\max} / 2}_{\sigma^{i}} + \frac{\alpha + 1}{\sqrt{r}} \sqrt{\frac{\alpha - 1}{2}} \cdot \frac{1}{4} d_{\max}, \quad \mathbf{v}_{i} \\ \text{Choose i vorse } \|\mathbf{v}_{i} \cdot \mathbf{g}\| \leq \underbrace{\left(\frac{\alpha + 1}{2} \right) d_{\max} / 2}_{\sigma^{i}} + \frac{\alpha + 1}{\sqrt{r}} d_{\max}, \quad \mathbf{v}_{i} \\ \text{Choose i vorse } \|\mathbf{v}_{i} - \mathbf{g}\| \leq \underbrace{\left(\frac{\alpha + 1}{2} \right) d_{\max} / 2}_{\sigma^{i}} + \frac{\alpha + 1}{\sqrt{r}} d_{\max}, \quad \mathbf{v}_{i} \\ \text{Choose i vorse } \|\mathbf{v}_{i} - \mathbf{g}\| \\ \text{Choose } \|\mathbf{v}_{i} - \mathbf{g}\| \\ \text{Choose i vorse } \|\mathbf{v}_{i} - \mathbf{g}\| \\ \text{Choose i vorse } \|\mathbf{v}_{i} - \mathbf{g}\| \\ \text{Choose i vorse } \|\mathbf{v}_{i} - \mathbf{g}\| \\ \text{Choose } \|\mathbf{v}_{i} - \mathbf{g}\| \\ \text{Choose i vorse } \|\mathbf{v}_{i} - \mathbf{g}\| \\ \text{Choose i vor$$

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Let $c = \frac{\alpha+1}{\alpha-1}$. If greedy search is run on an α -shortcut reachable graph G with arbitrary start node and query **q**, after $O(\log_{\alpha}(c\Delta/\epsilon))$ steps it returns a point $\tilde{\mathbf{x}}$ satisfying $\|\tilde{\mathbf{x}} - \mathbf{q}\| \le (c + \epsilon) \min_{j} \|\mathbf{x}_{j} - \mathbf{q}\|$.

Key Lemma: For all $i \ge 1$, $\|\mathbf{v}_i - \mathbf{q}\| \le \frac{\|\mathbf{v}_0 - \mathbf{q}\|}{\alpha^i} + \frac{\alpha+1}{\alpha-1} \cdot \|\mathbf{x}^* - \mathbf{q}\|$. Case 2: $\|\mathbf{v}_0 - \mathbf{q}\| \le \frac{\alpha+1}{2} d_{\max}$ and $\|\mathbf{x}^* - \mathbf{q}\| \le \frac{\alpha-1}{4(\alpha+1)} d_{\min}$. $i = |o_{\mathcal{S}, \mathcal{I}}(\mathcal{A}/\mathcal{A}) \implies (|v_0 - \mathcal{S}|| \le q || \mathbf{x}^* - q||$. $||v_i - \mathbf{g}|| \le (\frac{\alpha+1}{\mathbf{v}-1} + c) || \mathbf{x}^* - q||$.

Theorem (ANN from Shortcut Reachability (Indyk, Xu))

Let $c = \frac{\alpha+1}{\alpha-1}$. If greedy search is run on an α -shortcut reachable graph G with arbitrary start node and query **q**, after $O(\log_{\alpha}(c\Delta/\epsilon))$ steps it returns a point $\tilde{\mathbf{x}}$ satisfying $\|\tilde{\mathbf{x}} - \mathbf{q}\| \le (c + \epsilon) \min_{j} \|\mathbf{x}_{j} - \mathbf{q}\|$.

Key Lemma: For all
$$l \ge 1$$
, $\|V_{l} - q\| \le \frac{n+0}{\alpha'} + \frac{n+1}{\alpha-1} \cdot \|X^{*} - q\|$.
Case 3: $\|V_{0} - q\| \le \frac{\alpha+1}{2} d_{\max}$ and $\|X^{*} - q\| \ge \frac{\alpha-1}{4(\alpha+1)} d_{\min}$.
 $\|V_{l} - g\| \le \frac{\sigma+1}{\sigma'} d_{\max} + \frac{\sigma+1}{\sigma'-1} \|X^{*} - g\|$
 $= \left(\frac{\sigma+1}{\|X^{*} - g\|\sigma_{l}} \cdot d_{\max} + \frac{\sigma+1}{\sigma'-1}\right) \|X^{*} - g\|$
Goal: Show that $\frac{\sigma+1}{\|X^{*} - g\|\sigma_{l}} d_{\max} \le C$.
 $\frac{\sigma+1}{\|X^{*} - g\|\sigma_{l}} d_{\max} \le \frac{1}{\sigma'} \cdot \frac{\sigma+1}{\gamma_{L}} \cdot \frac{d_{\max}}{d_{\max}} \le D\left(\frac{1}{\sigma'} \cdot \frac{1}{c^{*}} \cdot \Delta\right)$, which $\le c$ if
 $i = D(\log_{\sigma}(c\Delta/c))$. 48

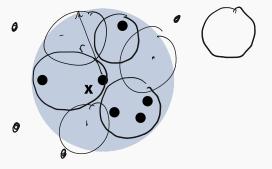
In contrast to navigability, it is possible to come up with datasets where any α -shortcut reachable graph (for any $\alpha > 1$) must have $\Omega(n^2)$ edges: $\beta \alpha d = 0$ $\beta \alpha (-1, -1)$ $\beta \alpha d = 0$ $\chi_1, \dots, \chi_n \sim 0 (1 \ge 1, -1)$ $\chi_1, \dots, \chi_n \sim 0 (1 \ge 1, -1)$ $\omega h \beta || \chi_1 - \chi_1 || = (1 \pm 4) || \chi_n - \chi_e ||$ for all 1, j, k, k.

Fortunately, Indyk and Xu show that this not possible if the <u>doubling</u> <u>dimension</u> of our dataset is low. Doubling dimension is a natural measure of "intrinsic dimension" that has been considered in prior work on NN-search (e.g. [Beygelzimer, Kakade, Langford, ICML 2006]).

For a point **x**, let $\underline{B(\mathbf{x}, r)}$ be a ball of radius *r* centered around **x**.

Definition (Doubling Dimension)

The doubling constant of a point set \mathcal{X} is the smallest C such that, for any r and any $\underline{x} \in \mathcal{X}$, $\mathcal{B}(\underline{x}, r) \cap \mathcal{X}$ can be covered with C balls of radius r/2. The doubling dimension, d', of \mathcal{X} equals $d' = \log_2(C)$.

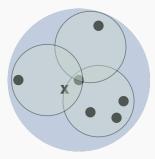


We always have that $d' \leq d$ if $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$, and often (?) $d' \ll d$.

For a point **x**, let $\mathcal{B}(\mathbf{x}, r)$ be a ball of radius *r* centered around **x**.

Definition (Doubling Dimension)

The doubling constant of a point set \mathcal{X} is the smallest C such that, for any r and any $\mathbf{x} \in \mathcal{X}$, $\mathcal{B}(\mathbf{x}, r) \cap \mathcal{X}$ can be covered with C balls of radius r/2. The doubling dimension, d', of \mathcal{X} equals $d' = \log_2(C)$.



We always have that $d' \leq d$ if $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$, and often (?) $d' \ll d$.

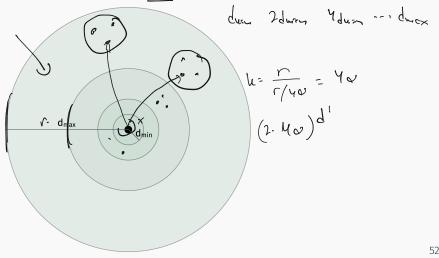
Theorem (Shortcut Reachability from Doubling Dim. (Indyk, Xu)) Any points set \mathcal{X} with doubling dimension \underline{d}' and dynamic range $\underline{\Delta}$ has an α -shortcut reachable graph \underline{G} with maximum degree:

$$\frac{(8\alpha)^{d'}\log\Delta}{fime}.$$

Simple fact: If \mathcal{X} has doubling dimension $\underline{d'}$, then for any $\mathbf{x} \in \mathcal{X}$ and any $r, \mathcal{B}(\mathbf{x}, r) \cap \mathcal{X}$ can be covered with $(2k)^{d'}$ balls of radius r/k.

PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius r/2) with balls of radius $r/4\alpha$. Connect **x** to any point in each ball.



PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius r/2) with balls of radius $r/4\alpha$. Connect **x** to any point in each ball. Why chart wit machalle? For any j, node : has as edge to some k where $\||X_{u}-X_{j}|| \in \frac{1}{2}$ $\||X_{i}-Y_{j}||$ X dmax 1|x1-x;11 > r/2 11 Xu-Xj |1 ≤ ⊆ α - 2 11×4-X;14 + 11×1-X;11

Construction: Cover points in ring with outer radius r (inner radius r/2) with balls of radius $r/4\alpha$. Connect **x** to any point in each ball.

By previous fact, we need $(2 \cdot 4\alpha)^{d'}$ such balls to cover each ring. There are $\log_2 \Delta$ rings.

Theorem (Shortcut Reachability from Doubling Dim. (Indyk, Xu)) Any points set \mathcal{X} with doubling dimension d' and dynamic range Δ has an α -shortcut reachable graph G with maximum degree:

 $(8\alpha)^{d'}\log\Delta$

This graph can be constructed in $O(n^3)$ time.

Two components of [Indyk, Xu, 2023] result: Let $c = \frac{\alpha+1}{\alpha-1}$.

1. If G is $\underline{\alpha}$ -shortcut reachable then, for any query q, greedy search converges to an $\left(\frac{\alpha+1}{\alpha-1}+\epsilon\right)$ -approximate nearest neighbor in $O(\log_{\alpha}(c\Delta/\epsilon))$ steps.

2. Any dataset with <u>doubling dimension</u> d' has an α -shortcut reachable graph with maximum degree $O\left((\underline{8\alpha})^{d'} \log_2 \Delta\right)$.

Final space complexity:

$$n \cdot (9 \circ)^{d'} \log(\Delta)$$

Final query time:

$$(\mathcal{G}_{\omega})^{d'} \cdot (\mathcal{O}_{\mathcal{O}_{\omega}})$$

Positives:

- Theoretical tradeoff between time/space and accuracy.
- Covering-based graph can be constructed greedily in polynomial time. In fact, the algorithm was already proposed in DiskANN (NeurIPS, 2019).

Negatives:

- Not clear how small doubling dimension d' is in practice and it's difficult to verify / people haven't really tried thoroughly.
- \cdot No approx. guarantees for queries not in the data set $\mathcal{X}.$
- No formal runtime guarantees.
- $O(n^3)$ preprocessing time is slow, but could be faster.

NEXT WEEK

- Vector compression beyond Johnson-Lindenstrauss.
- Coordinated random sampling.
- $\cdot\,$ Two different applications to speeding up language

