
Recent Developments in Algorithm Design:
Graph-Based Nearest Neighbor Search

Prof. Christopher Musco, New York University

1



ALGORITHMS FOR MODERN MACHINE LEARNING

Characteristics of recent AI systems: Used at internet scale,
demand real-time performance, significant test-time compute.

Algorithms for machine learning have gotten a lot more
interesting in the past 3 years! Focus is no longer just on
efficient training.

2



ALGORITHMS FOR MODERN MACHINE LEARNING

Goal for next three lectures: Three vignettes on recent
algorithms relevant in modern machine learning.

• High-Dimensional Vector Search.
• Fast Autoregressive Language Generation.
• Sampling from high-dimensional distributions given an
oracle (for image generation, Bayesian inference, private
learning, and more)

Focus on recent. In many cases, methods in use are poorly
understood and theory is in its very early stages.

3



NEW PARADIGM FOR SEARCH

Use neural network (BERT, CLIP, etc.) to convert documents,
images, etc. to high dimensional vectors. Matching results
should have similar vector embeddings.

4



THE NEW PARADIGM FOR SEARCH

Finding results for a query reduces to finding the nearest
vector in a vector database X , with similarity typically
measured by Euclidean distance. I.e., return:

argmin
x∈X

∥x− q∥2.

5



VECTOR SEARCH

Vector search has been studied for a long time, but it is now
used far more pervasively than even a few years ago:

• Web-scale image search and even text document search.
• Retrieval Augmented Generation for language models and
AI autocomplete.

• Multi-media search on Amazon, Wayfair, etc.

6



WHAT CAN BE DONE?

Goal: Let X be a database of n vectors in Rd. Find x ∈ X
minimzing ∥x− q∥2 for a query q.

• Naive linear scan: O(nd) time.
• kd trees: O(d log(n) · 2d) time.

7



HIGH-DIMENSIONAL NEAR NEIGHBOR SEARCH

When d is large, we now have lots of other options available:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization/IVF data structures [Jégou, Douze,
Schmid, 2009]

• Graph-based vector search [Malkov, Yashunin, 2016,
Subramanya et al., 2019]

Key ideas behind all of these methods:

1. Allow for approximation.
2. Trade worse space-complexity + preprocessing time for

better time-complexity. I.e., preprocess database in data
structure that uses Ω(n) space.

8



HIGH-DIMENSIONAL NEAR NEIGHBOR SEARCH

When d is large, we now have lots of other options available:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization/IVF data structures [Jégou, Douze,
Schmid, 2009]

• Graph-based vector search [Malkov, Yashunin, 2016,
Subramanya et al., 2019]

Key ideas behind all of these methods:

1. Allow for approximation.
2. Trade worse space-complexity + preprocessing time for

better time-complexity. I.e., preprocess database in data
structure that uses Ω(n) space.

8



EXAMPLE WORST-CASE GUARANTEE

Theorem (Andoni, Indyk, FOCS 2006)
For any approximation factor c ≥ 1, there is a data structure
based on locality sensitive hashing that, for any query q,
returns x̃ satisfying:

∥x̃− q∥2 ≤ c ·min
x∈X
∥x− q∥2

and uses:

• Time: Õ
(
dn1/c2

)
.

• Space: Õ
(
nd+ n1+1/c2

)
.

Õ(·) hides log(∆) factor where ∆ =
maxx,y∈X ∥x−y∥2
minx,y∈X ∥x−y∥2 is the

dynamic range of our dataset.
9



LOCALITY SENSITIVE HASHING

Rough idea behind LSH:

1. Pick a bunch of random hyperplanes.
2. Check which side of each hyperplane q lies on.
3. Return closest point that lies in the same region as q.
4. Repeat multiple times to avoid missing anything.

10



NEAREST-NEIGHBOR SEARCH IN PRACTICE

In practice, we can often get partitions with better margin by
partitioning in a data-dependent way, e.g. via clustering.

Main idea behind the improvements I listed earlier. Used in
state-of-thea-art near-neighbor search libraries like Meta’s
FAISS and Google’s SCANN. 11



NEAREST-NEIGHBOR SEARCH IN PRACTICE

New(ish) kid on the block: Graph-based near-neighbor search.

• Navigating Spreading-out Graphs (NSG) [Fu, Xiang, Wang,
Cai, 2017]

• Hierarchical Navigable Small World (HNSW) [Malkov,
Yashunin, 2016]

• Microsoft DiskANN [Subramanya, Devvrit, Kadekodi,
Krishaswamy, Simhadri 2019]

Inspired by Milgram’s famous “small world” experiments from
the 1960s and later work on the small world phenomenon by
Watts, Strogatz, Bobby Kleinberg, and others.

Similar methods proposed for low-dimensions in 1990s by
Arya, Mount, Kleinberg and others.

12



BASIC IDEA BEHIND GRAPH-BASED SEARCH

1. Construct a directed search graph over our dataset.

2. Run greedy search in the graph.

13



GREEDY SEARCH

Let G = (V, E) be our graph where each node 1, . . . ,n is
associated with a vector xi ∈ Rd. Consider a query q ∈ Rd.

Let N (i) = {j : (i, j) ∈ E} be the out-neighborhood of i.

Greedy Search:
• Choose arbitrary starting node s.
• Loop until termination:

• Let c = argminy∈N (s) ∥y− q∥2.
• If ∥c− q∥2 < ∥s− q∥2, set s← c.
• Else, terminate loop and return s.

14



CONNECTION TO SMALL-WORLD EXPERIMENTS

Stanley Milgram

15



GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions!

16



GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions!

Open theory challenge: Can we explain the empirical success
of graph-based nearest-neighbor search methods?

16



PLAN FOR TODAY

1. Formalize desirable properties for a nearest-neighbor
search graph. Discuss some of my recent work with
Torsten Suel, Haya Diwan, Jerry Gou, and Cameron Musco
(NeurIPS 2024) on constructing graphs with these
properties.

2. Dive into a recent result of Indyk and Xu (NeurIPS 2023)
on worst-case theoretical guarantees for graph-based
search. Currently, require strong (?) assumptions on the
dataset X (low intrinsic dimension).

17



NAVIGABLE GRAPHS

c-approximate nearest neighbor search: Return x̃ satisfying
∥x̃− q∥2 ≤ c ·mini∈{1,...,n} ∥xi − q∥2 for some c ≥ 1.

Standard and reasonable guarantee for LSH methods.
Although people care about other metrics too.

Observation: Assuming there are no duplicates in
X = {x1, . . . , xn}, if query q = xi for some i, we must return xi.

Search graph G should be chosen to at least ensure that we
find q if it is in the dataset.

Ideally, G should also be sparse and require few steps to find q
(i.e, the graph should be “small-world”).

18



NAVIGABLE GRAPHS

Definition (Navigable Graph)
A directed graph G for a point set x1, . . . , xn is navigable if, for
all i, j ∈ {1, . . . ,n}, greedy search run on G with start node xi
and query xj returns xj.

Listed as a desirable property in many empirical papers,
including work on Navigable Spreading-our Graphs and
Hierarchical Navigable Small World Graphs.

But none of this work produces provably navigable graphs.

Question: What is the sparsest navigable graph that can be
constructed for a dataset x1, . . . , xn?

19



SPARSE NAVIGABLE GRAPHS

Known results when x1, . . . , xn are in low-dimensional
Euclidean space:

• 2-dimensions: The Delaunay graph can be proven to be
navigable. This graph has average degree O(n).

• d-dimensions: The Sparse Neighborhod Graph of Arya
and Mount [SODA, 1993] is navigable and has average
degree O(2d).

20



SPARSE NAVIGABLE GRAPHS

Claim (Upper Bound, DGMMS, 2024)
For any dataset x1, . . . , xn, it is possible to construct in
O(n2 log n) time a navigable graph G with average out-degree
O(
√
n log n). In fact, holds for any distance function.

We will prove this under the mild assumption that, for all i, j, k,
∥xi − xj∥2 ̸= ∥xi − xk∥2. Eliminates tedious corner cases related
to tie-breaking. Can be ensured by adding arbitrarily small
random perturbation to every data point.
Claim (Nearly Matching Lower Bound)
Let x1, . . . , xn be random vectors in {−1, 1}m where
m = O(log n). With high probability, any navigable graph for
x1, . . . , xn requires average out-degree Ω(n1/2−ϵ) for any fixed
constant ϵ. 21



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Definition (Equivalent Navigabability Definition)
A directed graph G for a point set x1, . . . , xn is navigable if, for
all nodes i, for all j ̸= i, there is some k ∈ N (i) satisfying:

∥xj − xk∥2 < ∥xj − xi∥2.

22



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

The above property is purely local! We can construct a
navigable graph by separately checking the out-neighborhood
of each node.

Can view graph construction as n seperate instances of set
cover. For instance i, our elements to cover are {1, . . . ,n} \ {i}.
We have a set Sk for all k ̸= i.

Sk =

23



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Definition (Equivalent Navigabability Definition)
A directed graph G for a point set x1, . . . , xn is navigable if, for
all nodes i, for all j ̸= i, there is some k ∈ N (i) satisfying:

∥xj − xk∥2 < ∥xj − xi∥2.

Unfortunately, we can come up with point sets where any
particular xi necessarily has high-degree:

24



NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Approach: Consider all set cover instances in aggregate.

Distance-Based Permutation Matrix:

Requirement: Need at least one “left pointing” edge from
every node in every list.

25



UPPER BOUND CONSTRUCTION

Construction: Choose m < n.

1. For all i, add an edge from j to i if j is one of i’s m closest
neighbors.

2. Add 3 n
m log n uniformly random out-edges from every

node.

26



UPPER BOUND ANALYSIS

Fix a node i.

Claim 1: Suppose xj is one of xi’s m closest neighbors. Then xj
has an out-edge to some xk with ∥xk − xi∥2 < ∥xj − xi∥2.

Claim 2: Suppose xj is not one of xi’s m closest neighbors.
Then, with probability ≥ 1− 1

n3 , xj has an out-edge to some xk
with ∥xk − xi∥2 < ∥xj − xi∥2.

27



UPPER BOUND ANALYSIS

Claim 2: Suppose xj is not one of xi’s m closest neighbors.
Then, with probability ≥ 1− 1

n3 , xj has an out-edge to some xk
with ∥xk − xi∥2 < ∥xj − xi∥2.

28



UPPER BOUND ANALYSIS

By a union bound, we have a left-pointing edge for every node
in every permutation with probability ≥ 1− 1

n , so our graph is
navigable.

Total degree of constructed graph:

29



FINAL BOUND

Claim (Upper Bound)
For any dataset x1, . . . , xn, it is possible to construct in
O(n2 log n) time a navigable graph G with average out-degree
O(
√
n log n). In fact, holds for any distance function.

Oberservation: The graph we constructed is “small-world”.
Only two hops required for any starting node and query.

30



LOWER BOUND SKETCH

Claim (Nearly Matching Lower Bound)
Let x1, . . . , xn be random vectors in {−1, 1}m where
m = O(log n). With high probability, any navigable graph for
x1, . . . , xn requires average out-degree Ω(n1/2−ϵ) for any fixed
constant ϵ.

Observation: Hard region involves n3/2 edge constraints.
31



LOWER BOUND SKETCH

For sake of proof sketch, assume permutations are uniformly
random. In the paper, we show that this is “close” to true for
random data points in O(log n) dimensions.

Claim: Adding any edge (i, j) to the graph only covers at most
O(log(n)) of the n3/2 hard constraints with high probability.

32



LOWER BOUND SKETCH

Claim: Under random permutations, adding any (i, j) to G only covers
at most O(log(n)) hard constraints with high prob.

33



LOWER BOUND SKETCH

Completing the argument:

Claim (Nearly Matching Lower Bound)
Let x1, . . . , xn be random vectors in {−1, 1}m where
m = O(log n). With high probability, any navigable graph for
x1, . . . , xn has average out-degree Ω(n1/2−ϵ) for any fixed
constant ϵ.

34



CONCLUSION

Positives:

• For queries q ∈ X , greedy search + navigable graph
returns exact result.

• Data structure takes O(n1.5) space.
• Runtime for q ∈ X should be roughly O(

√
n) given

small-world property, but difficult to say anything formally.

Negatives:

•
√
n degree is still pretty dense. In practice, graphs can be

pruned and yield good empirical results.
• No approx. guarantees for queries not in the data set X .
• No formal runtime guarantees.

35



INDYK, XU

NeurIPS 2023 paper: “Worst-case Performance of Popular
Approximate Nearest Neighbor Search Implementations:
Guarantees and Limitations” by Piotr Indyk and Haike Xu.

Addresses these issues, albeit under additional assumptions
about the dataset X .

Two components of result:

1. If G is α-shortcut reachable then, for any query q, greedy
search converges to an

(
α+1
α−1 + ϵ

)
-approximate nearest

neighbor in ∼ log(1/ϵ) steps.

2. Any dataset with doubling dimension d has an α-shortcut
reachable graph with maximum degree Õ

(
(8α)d

)
.

36



α-SHORTCUT REACHABILITY

First introduced in the DiskANN paper out of Microsoft Research.
Strictly strengthens navigability.

Definition (Navigabability, aka 1-shortcut reachability)
A directed graph G for a point set x1, . . . , xn is navigable if, for all
nodes i, for all j ̸= i, there is some k ∈ N (i) satisfying:

∥xj − xk∥ < ∥xj − xi∥.

Definition (α-shortcut reachability)
A directed graph G for a point set x1, . . . , xn is α-shortcut
reachability for α ≥ 1 if, for all nodes i, for all j ̸= i, there is some
k ∈ N (i) satisfying:

∥xj − xk∥ <
1
α
∥xj − xi∥.

37



α-SHORTCUT REACHABILITY

Theorem (ANN from Shortcut Reachability)
Let c = α+1

α−1 . If greedy search is run on an α-shortcut reachable
graph G with arbitrary start node and query q, after logα(c∆/ϵ)

steps it returns a point x̃ satisfying:

∥x̃− q∥ ≤ (c+ ϵ) min
j∈{1,...,n}

∥xj − q∥.

∆ = dmax

dmin
=

maxi,j ∥xi−xj∥
mini,j ∥xi−xj∥ is the dynamic range of our dataset.

Intuitive why larger α leads to faster convergence. Less clear why it
leads to a better approximate nearest neighbor.

38



WHAT’S WRONG WITH NAVIGABILITY?

Why does navigability fail to return provable approximate
nearest neigbhors for queries outside the data set?

Why would α-shortcut reachability fix this hard case?

39



CONVERGENCE ANALYSIS

Let v0, v1, . . . be the iterates of greedy search run on a graph G. So vi
is an out-neighbor of vi−1 and ∥q− v0∥ > ∥q− v1∥ > ∥q− v2∥ > . . ..

Claim (Almost Monotonic Convergence of Greedy Search)
If G is α-shortcut reachable then:

∥vi − q∥ ≤ 1
α
∥vi−1 − q∥+ (1+ 1

α
)∥x∗ − q∥.

40



CONVERGENCE ANALYSIS

Let v0, v1, . . . be the iterates of greedy search run on a graph G. So vi
is an out-neighbor of vi−1 and ∥q− v0∥ > ∥q− v1∥ > ∥q− v2∥ > . . ..

Claim (Almost Monotonic Convergence of Greedy Search)
If G is α-shortcut reachable then:

∥vi − q∥ ≤ 1
α
∥vi−1 − q∥+ (1+ 1

α
)∥x∗ − q∥.

Proof:

41



CONVERGENCE ANALYSIS

Claim (Almost Monotonic Convergence of Greedy Search)
If G is α-shortcut reachable then:

∥vi − q∥ ≤ 1
α
∥vi−1 − q∥+ (1+ 1

α
)∥x∗ − q∥.

Consequence 1: Greedy search eventually converges to some x̃ with:

∥x̃− q∥ ≤ α+ 1
α− 1 · ∥x

∗ − q∥.

Proof:

42



CONVERGENCE ANALYSIS

Claim (Almost Monotonic Convergence of Greedy Search)
If G is α-shortcut reachable then:

∥vi − q∥ ≤ 1
α
∥vi−1 − q∥+ (1+ 1

α
)∥x∗ − q∥.

Consequence 2: For all i ≥ 1,

∥vi − q∥ ≤ ∥v0 − q∥
αi +

α+ 1
α− 1 · ∥x

∗ − q∥.

43



CONVERGENCE ANALYSIS

Theorem (ANN from Shortcut Reachability (Indyk, Xu))
Let c = α+1

α−1 . If greedy search is run on an α-shortcut reachable
graph G with arbitrary start node and query q, after O(logα(c∆/ϵ))

steps it returns a point x̃ satisfying ∥x̃− q∥ ≤ (c+ ϵ)minj ∥xj − q∥.

Key Lemma: For all i ≥ 1, ∥vi − q∥ ≤ ∥v0−q∥
αi + α+1

α−1 · ∥x∗ − q∥.

Case 1: ∥v0 − q∥ ≥ α+1
2 dmax.

44



CONVERGENCE ANALYSIS

Theorem (ANN from Shortcut Reachability (Indyk, Xu))
Let c = α+1

α−1 . If greedy search is run on an α-shortcut reachable
graph G with arbitrary start node and query q, after O(logα(c∆/ϵ))

steps it returns a point x̃ satisfying ∥x̃− q∥ ≤ (c+ ϵ)minj ∥xj − q∥.

Key Lemma: For all i ≥ 1, ∥vi − q∥ ≤ ∥v0−q∥
αi + α+1

α−1 · ∥x∗ − q∥.

Case 2: ∥v0 − q∥ ≤ α+1
2 dmax and ∥x∗ − q∥ ≤ α−1

4(α+1)dmin.

45



CONVERGENCE ANALYSIS

Theorem (ANN from Shortcut Reachability (Indyk, Xu))
Let c = α+1

α−1 . If greedy search is run on an α-shortcut reachable
graph G with arbitrary start node and query q, after O(logα(c∆/ϵ))

steps it returns a point x̃ satisfying ∥x̃− q∥ ≤ (c+ ϵ)minj ∥xj − q∥.

Key Lemma: For all i ≥ 1, ∥vi − q∥ ≤ ∥v0−q∥
αi + α+1

α−1 · ∥x∗ − q∥.

Case 3: ∥v0 − q∥ ≤ α+1
2 dmax and ∥x∗ − q∥ ≥ α−1

4(α+1)dmin.

46



SPARSE SHORTCUT REACHABLE GRAPHS

In contrast to navigability, it is possible to come up with datasets
where any α-shortcut reachable graph (for any α > 1) must have
Ω(n2) edges:

Fortunately, Indyk and Xu show that this not possible if the doubling
dimension of our dataset is low. Doubling dimension is a natural
measure of “intrinsic dimension” that has been considered in prior
work on NN-search (e.g. [Beygelzimer, Kakade, Langford, ICML 2006]). 47



DOUBLING DIMENSION

For a point x, let B(x, r) be a ball of radius r centered around x.

Definition (Doubling Dimension)
The doubling constant of a point set X is the smallest C such that,
for any r and any x ∈ X , B(x, r) ∩ X can be covered with C balls of
radius r/2. The doubling dimension, d′, of X equals d′ = log2(C).

We always have that d′ ≤ d if x1, . . . , xn ∈ Rd, and often (?) d′ ≪ d. 48



DOUBLING DIMENSION

For a point x, let B(x, r) be a ball of radius r centered around x.

Definition (Doubling Dimension)
The doubling constant of a point set X is the smallest C such that,
for any r and any x ∈ X , B(x, r) ∩ X can be covered with C balls of
radius r/2. The doubling dimension, d′, of X equals d′ = log2(C).

We always have that d′ ≤ d if x1, . . . , xn ∈ Rd, and often (?) d′ ≪ d. 48



SPARSE SHORTCUT REACHABLE GRAPHS

Theorem (Shortcut Reachability from Doubling Dim. (Indyk, Xu))
Any points set X with doubling dimension d′ and dynamic range ∆

has an α-shortcut reachable graph G with maximum degree:

(8α)d
′
log∆

Simple fact: If X has doubling dimension d′, then for any x ∈ X and
any r, B(x, r) ∩ X can be covered with (2k)d′ balls of radius r/k.

49



PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius
r/2) with balls of radius r/4α. Connect x to any point in each ball.

50



PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius
r/2) with balls of radius r/4α. Connect x to any point in each ball.

51



PROOF BY PICTURE

Construction: Cover points in ring with outer radius r (inner radius
r/2) with balls of radius r/4α. Connect x to any point in each ball.

By previous fact, we need (2 · 4α)d′ such balls to cover each ring.
There are log2 ∆ rings.

Theorem (Shortcut Reachability from Doubling Dim. (Indyk, Xu))
Any points set X with doubling dimension d′ and dynamic range ∆

has an α-shortcut reachable graph G with maximum degree:

(8α)d
′
log∆

52



PUTTING IT ALL TOGETHER

Two components of [Indyk, Xu, 2023] result: Let c = α+1
α−1 .

1. If G is α-shortcut reachable then, for any query q, greedy search
converges to an

(
α+1
α−1 + ϵ

)
-approximate nearest neighbor in

O(logα(c∆/ϵ)) steps.

2. Any dataset with doubling dimension d′ has an α-shortcut
reachable graph with maximum degree O

(
(8α)d′

log∆
)
.

Final space complexity:

Final runtime:

53



CONCLUSION

Positives:

• Theoretical tradeoff between time/space and accuracy.
• Covering-based graph can be constructed greedily in
polynomial time. In fact, the algorithm was already
proposed in DiskANN (NeurIPS, 2019).

Negatives:

• Not clear how small doubling dimension d′ is in practice
and it’s difficult to verify / people haven’t really tried
thoroughly.

• No approx. guarantees for queries not in the data set X .
• No formal runtime guarantees.

54


