
Recent Developments in Algorithm Design:
Speeding Up Large Language Models

Prof. Christopher Musco, New York University

1



A BRIEF INTRODUCTION TO LARGE LANGUAGE MODELS

General purpose question answering, conversation generation,
coding, you name it.
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LANGUAGE MODELING
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LANGUAGE MODELING
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TRAINING LANGUAGE MODELS

These models are trained using self-supervised learning. In
particular, trained on “next-word prediction”:

NYU is a private research university in .

Technically, next token prediction.
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TOKENS

Tokens:

Token IDs ∈ {1, . . . , 50257}:
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AUTOGRESSIVE MODELS

Formally, given an input sequence of tokens like ”NYU is a
private research university in”, the model is tasked with
returning a probability distribution p, which we can think of as
a vector:

p ∈ R50257 0 ≤ p ≤ 1 ∥p∥1 = 1.
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AUTOGRESSIVE MODELS

The color of the dress is .

Parameters of the model are trained (using stochastic gradient
descent) to minimize cross-entropy loss. If the next token is y
a model that returns distribution p pay loss:

− log(py) 8



AUTOGRESSIVE MODELS

How does this lead to a chatbot? Combine user question with
“system prompt”:

“You are ChatGPT, a large language model trained by OpenAI.
You are chatting with a user.

User: Where is New York University?

You: .”

Next token is sampled from probability distribution p.
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AUTOGRESSIVE MODELS

How does this lead to a chatbot? Combine user question with
“system prompt”:

“You are ChatGPT, a large language model trained by OpenAI.
You are chatting with a user.

User: Where is New York University?

You: New .”
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ORIGIN OF AUTOREGRESSIVE LANGUAGE GENERATION

Model studied as early as Claude Shannon’s seminal paper:

This paper also introduced:

• Idea of a communciation channel, channel capacity, noisy
channel coding theorem.

• Information entropy, concept of coding, Shannon-Fano coding.

• The term “bit”.
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ORIGIN OF AUTOREGRESSIVE LANGUAGE GENERATION

Shannon used a simple k-gram model. Given a sequence of
tokens t1, t2, . . . , tn−1, the next token distribution, p, is set to the
empirical distribtion of tokens given sequence tn−k, . . . , tn−1.

Example text using a 2-gram model: THE HEAD AND IN FRONTAL
ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT
IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT HE TIME OF
WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

What do modern LLMs do?
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TRANFORMER MODELS
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TRANFORMER MODELS

Based on token embeddings, which encode meaning about
different tokens via high-dimensional representations.

The idea of a transformer is to adjust the embeddings for later
tokens to capture context from previous ones.
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TRANFORMER MODELS
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TRANFORMER MODELS
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TRANFORMER MODELS
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TRANFORMER MODELS
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TRANFORMER MODELS
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TRANFORMER MODELS
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TRANFORMER MODELS
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COMPUTATIONAL CHALLENGES IN LLMS

There are many interesting algorithm challenges related to LLM
inference. Two vignettes we will focus on today:

1. Speeding up next-token generation via inner product
sketching.

2. Parallelizing transformers via speculative decoding. Not
obvious how to do – these models are inherently
sequential!
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DOT PRODUCT ATTENTION

A key sub-block in transforming the current token embedding
is the attention head, which compares the current token
embedding to all previous embeddings to find other tokens
that might be relevant to it.

Concretely, for a one layer in the network, suppose we have
embeddings x1, . . . , xn−1 ∈ Rm from n previous tokens, and an
embedding xn ∈ Rm for the current token. Attention scores are
computed as:

⟨Kx1,Qxn⟩ ⟨Kx2,Qxn⟩ ⟨Kxn−1,Qxn⟩,

where K and Q are learned d×m matrices. Typically,
m ≈ 10000, d ≈ 128.

17



INNER PRODUCT

Reminder: The inner product between two vectors
a = [a1, . . . , ad] and b = [b1, . . . ,bd] is:

⟨a,b⟩ =
d∑
i=1

aibi =
cos(θ)

∥a∥2∥b∥2
.

Natural measure of similarity between vectors:
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ATTENTION

Complexity of attention scales quadratically with the length of
the prompt + output – i.e., as O(n2). Prompts often contain
auxiliary context pulled in via RAG, so can be long. GPT-4’s
context is 8192 tokens.

Back-of-the-envelope computation:

Space is also an issue. Kx1,Kx2, . . . are cached to avoid
recomputation at every step. 128*8192*8 bytes = 8 megabytes
of storage per layer. 19



ATTENTION

Can we beat O(n2)? Final operation is:

softmax (Kx1, . . . ,Kxn) · XV,

. Lots of methods have sought to speed up this task:

• Linformer [Wang et al. 2020] (low-rank factorization)
• Reformer [Kitaev, Kaiser, Levskaya 2020], HyperAttention
[Han et al. 2023] (locality sensitive hashing)

• PolySketchFormer, KDEFormer, Nyströmformer, Random
Feature Attention, NameYourFavoriteAlgorithmFormer.
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TRANFORMER MODELS

Under natural assumptions in fine-grained complexity, Ω(n2)
time is necessary for exact or high-accuracy computation:

Need to settle for some amount of approximation. 21



INNER PRODUCT SKETCHING

Directly approximate attention inner products via sketching.

⟨Kx1,Qxn⟩ ⟨Kx2,Qxn⟩ ⟨Kxn−1,Qxn⟩,

Task: Given vectors a,b ∈ Rd, independently compute
small-space compressions S(a),S(b) that use m ≪ d space so
that, for some function F and error parameter ∆,

|F(S(a),S(b))− ⟨a,b⟩| ≤ ∆.

Ideally:

• S(a) can be computed in O(d) time.
• F(S(a),S(b)) can be computed in O(m) time.
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INNER PRODUCT SKETCHING

Compressions can used shared random coins, but sketch for a
should not depend on b, c, etc.

F(S(a),S(b)) ≈ ⟨a,b⟩
F(S(a), S(c)) ≈ ⟨a, c⟩
F(S(b), S(c)) ≈ ⟨b, c⟩ 23



INNER PRODUCT SKETCHING

Sketching simultaneously addresses computational complexity
and space complexity challenges.

Lots of work using this approach [Zandieh, Daliri, Han, 2024].
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INNER PRODUCT SKETCHING

Important in vector search too! Can be used for inner product
similarity or Euclidean distance:

∥a− b∥22 = ∥a∥22 + ∥b∥22 − 2⟨a,b⟩

.

Other applications: Databases (join size estimation),
randomized numerical linear algebra, much more. 25



BASELINE: AMS SKETCH/JL

Amazing approach of Alon, Matias and Szegedy [STOC, 1996].

Compress a and b by multiplying by a random matrix, Π. E.g.,
random ±1 or Gaussian entries.

Then we simply estimate ⟨a,b⟩ as:

⟨a,b⟩ = ⟨S(a),S(b)⟩ = ⟨Πa,Πb⟩.
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LINEAR SKETCHING

Let Π be constructed by setting each entry to a mean 0,
variance 1 random variable, and then scaling by 1/

√
m.

Claim: E[⟨Πa,Πb⟩] = ⟨a,b⟩.
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LINEAR SKETCHING

Theorem
For random Gaussian entries, ±1, etc. and Π scaled by 1/

√
m.

E[⟨Πa,Πb⟩] = ⟨a,b⟩,

and, if Π is chosen to have m rows, then:

Var[⟨Πa,Πb⟩] ≤ 2
m∥a∥2∥b∥2.

Corollary: If we use sketches of size m = O(1/δϵ2), then with
probability (1− δ),

|⟨Πa,Πb⟩ − ⟨a,b⟩| ≤ ϵ · ∥a∥2∥b∥2.
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REMINDER ON CONCENTRATION INEQUALITIES

Chebyshev’s Inequality:
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JOHNSON-LINDENSTRAUSS LEMMA

Dependence on δ can be improved using fancier concentration
inequalities. In particular, possible to show that with sketches
of size m = O(log(1/δ)/ϵ2),

|⟨Πa,Πb⟩ − ⟨a,b⟩| ≤ ϵ · ∥a∥2∥b∥2.

Special case:

(1− ϵ)∥a∥22 ≤ ∥Πa∥2 ≤ (1+ ϵ)∥Πa∥22
.

Can be used to prove the famous Johnson-Lindenstrauss
Lemma.

[Dasgupta, Gupta, 2003], [Indyk, Motwani 1998], [Arriage,
Vempala 1999], [Achlioptas, 2001].
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points x1, . . . , xn ∈ Rd there exists a
linear map Π : Rd → Rm where m = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥xi − xj∥2 ≤ ∥Πxi −Πxj∥2 ≤ (1+ ϵ)∥xi − xj∥2.

Main idea:
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FAST LINEAR SKETCHING

Naive cost of dense linear sketching is O(d ·m).

This can be accelerated to O(d) (linear) time without sacrificing
accuracy by using an ultra-sparse random matrix. [Charikar,
Chen, Farach-Colton, 2002]. Still achieve with m = O(1/δϵ2):

|⟨Πa,Πb⟩ − ⟨a,b⟩| ≤ ϵ · ∥a∥2∥b∥2.
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QUANTIZED JL SKETCHES

Recent developments on JL sketches: Typically every entry of
the compression is a real-value. In you computer, a double or
a single precission float taking 32 or 64 bits. Can we reduce
cost per dimension down to fewer bits?

Method of Zandieh, Daliri, Han [AAAI, 2025]1:

• Let Π ∈ Rm×d be a random Gaussian matrix.
• Let S(a) = sign(Πa), S(b) = Πa
• Estimate inner produt via FQJL =

√
π

m · ∥a∥2 · ⟨S(a),S(b)⟩.

1Related to SimHash [Charikar, 2002], [Jacques, 2013], and a few other.
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QUANTIZED JL SKETCHES

Theorem
Let FQJL be the inner product estimate returned by QJL for
vectors a, b, we have:

E[FQJL] = ⟨a,b⟩

Var[FQJL] ≤
1.6
m ∥a∥22∥b∥22.

Sighly better variance than JL! But only using one bit per entry
of S(a) (and need to store ∥a∥2).

Lots of other recent work on the setting where only a needs to
be compressed. E.g. RaBitQ skethes of [Gao, Long, 2024]
addresses the setting where we want to target error ≤ 1√

d
.
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BEYOND LINEAR SKETCHING

Goal: Present a completely different alternative to JL-style
linear sketches that:

1. Is as simple as linear sketching to implement and analyze.
2. Can be applied in linear time (like CountSketch).
3. Matches theoretical bounds for linear sketching in the

worst case, better for sparse vectors.
4. Typically beats linear sketching in experiments.

Appeared in Sampling Methods for Inner Product Sketching
[Daliri, Freire, Musco, Santos, Zhang. VLDB 2024].

Similar to “End-Biased Sampling” [Estan, Naughton, 2006]. Also very
related to the MinHash Sketch [Broder, 1997] and KMV Sketches
[Bar-Yossef, Jayram, Kumar, Sivakumar, Trevisan, 2002], [Haas,
Reinwald, Sismanis, Gemulla, 2007]. 35
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BASIC IDEA

Sketch consists of subset of index/value pairs from a and b.

Let T be the set of indices common to S(a), S(b). Estimate:

⟨a,b⟩ =
d∑
i=1

aibi ≈
∑
i∈T

wi · aibi,

where wi > 1 is an appropriately chosen weight.
36



BASIC IDEA

Natural tension:

• Larger entries in a and b contribute more to
⟨a,b⟩ =

∑d
i=1 aibi. I.e., choice of indices should depend on

magnitude of entries in vector being sketched.
• Want S(a) and S(b) to have many of the same indices. I.e.,
choice of indices should be coordinated between vectors.
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BASIC IDEA

Coordinate Random Sampling: Collect a sample from two
different distributions while maximizing probability the
samples are the same.
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COORDINATED WEIGHTED SAMPLING

Threshold Sampling:
• Set target sketch size m.
• Draw uniform random numbers u1, . . . ,ud ∼ [0, 1].
• For i ∈ 1, . . . ,d:

• Add (i,ai) to S(a) if ui ≤ m · a2i
∥a∥22

.

• Add (i,bi) to S(b) if ui ≤ m · b2i
∥b∥22

.

Estimation:
• Let T be the set of indices common to S(a), S(b).
• Return F(S(a),S(b)) =

∑
i∈T

1
piaibi, where

pi = min
(
1,m · a2i

∥a∥22
,m · b2i

∥b∥22

)
.
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THEORETICAL GUARANTEE

Theorem
Let S(a),S(b) be sketches for a,b obtained via Threshold
Sampling and let F(S(a),S(b)) be the corresponding
estimate for ⟨a,b⟩ obtained from those sketches.

We have that E[|S(a)|] = m, E[|S(b)|] = m, and:

E[F(S(a),S(b))] = ⟨a,b⟩

Var[F(S(a),S(b))] ≤ 2
m max(∥aI∥22∥b∥22, ∥a∥22∥bI∥22)

Corollary: If m = O(1/ϵ2), then with high probability,
|F(S(a),S(b))− ⟨a,b⟩| ≤ ϵ ·max(∥aI∥2∥b∥2, ∥a∥2∥bI∥2).
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THEORETICAL GUARANTEE

|F(S(a),S(b))− ⟨a,b⟩| ≤ ϵ ·max(∥aI∥2∥b∥2, ∥a∥2∥bI∥2).

So always tighter than the AMS/JL/CountSketch bound of
ϵ∥a∥2∥b∥2. Some implications for vector search involving
sparse embeddings (e.g., SPLADE embeddings [Formal,
Piwowarski, Clinchant, 2021]).
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ANALYSIS: SKETCH SIZE

Threshold Sampling:
• Set target sketch size m.
• Draw uniform random numbers u1, . . . ,ud ∼ [0, 1].
• For i ∈ 1, . . . ,d:

• Add (i,ai) to S(a) if ui ≤ m · a2i
∥a∥22

.

Claim: E [|S(a)|] ≤ m.
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ANALYSIS: SKETCH SIZE

Threshold Sampling:
• Set target sketch size m.
• Draw uniform random numbers u1, . . . ,ud ∼ [0, 1].
• For i ∈ 1, . . . ,d:

• Add (i,ai) to S(a) if ui ≤ m · a2i
∥a∥22

.

Claim: E [|S(a)|] ≤ m.

E [|S(a)|] =
d∑
i=1

Pr

[
ui ≤ m ·

a2i
∥a∥22

]
=

d∑
i=1

min

(
1,m ·

a2i
∥a∥22

)

≤ m
∥a∥22

d∑
i=1

a2i

= m.

Can also be shown to hold with high probability. 43



ANALYSIS: EXPECTATION

Threshold Sampling:
• Draw uniform random numbers u1, . . . ,ud ∼ [0, 1].
• For i ∈ 1, . . . ,d:

• Add (i,ai) to S(a) if ui ≤ m · a2i
∥a∥22

.

• Add (i,bi) to S(b) if ui ≤ m · b2i
∥b∥22

.

Claim:
Pr [i ∈ S(a) and i ∈ S(b)] = pi = min

(
1,m · a2i

∥a∥22
,m · b2i

∥b∥22

)
.
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ANALYSIS: EXPECTATION

Claim:
Pr [i ∈ S(a) and i ∈ S(b)] = pi = min

(
1,m · a2i

∥a∥22
,m · b2i

∥b∥22

)
.

Estimation:
• Let T be the set of indices common to S(a), S(b).
• Return F(S(a),S(b)) =

∑
i∈T

1
piaibi.

Claim: E[F(S(a),S(b))] = ⟨a,b⟩.
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ANALYSIS: EXPECTATION

Claim:
Pr [i ∈ S(a) and i ∈ S(b)] = pi = min

(
1,m · a2i

∥a∥22
,m · b2i

∥b∥22

)
.

Estimation:
• Let T be the set of indices common to S(a), S(b).
• Return F(S(a),S(b)) =

∑
i∈T

1
piaibi.

Claim: E[F(S(a),S(b))] = ⟨a,b⟩.

E[F(S(a),S(b))] = E

[ d∑
i=1

1[i ∈ T ] · 1
pi
aibi

]
=

d∑
i=1

Pr[i ∈ T ] · 1
pi
aibi

=
d∑
i=1

pi ·
1
pi
aibi =

d∑
i=1

aibi = ⟨a,b⟩.
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ANALYSIS: VARIANCE

Claim: Var[F(S(a),S(b))] ≤ 2
m max(∥aI∥22∥b∥22, ∥a∥22∥bI∥22).
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ANALYSIS: VARIANCE

Claim: Var[F(S(a),S(b))] ≤ 2
m max(∥aI∥22∥b∥22, ∥a∥22∥bI∥22).
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ANALYSIS: VARIANCE

Takeaway: Just elementary calculations.

Var[F(S(a),S(b))] =
∑
i∈I

Var

[
1[i ∈ T ] · aibi

pi

]
=
∑
i∈I

(aibi)
2

p2
i

Var[1[i ∈ T ]]

≤
∑

i∈I,pi ̸=1

(aibi)
2

pi
.

∑
i∈I,pi ̸=1

(aibi)
2

pi
≤

∑
i∈I,pi ̸=1

∥a∥22∥b∥22
(a2i /∥a∥22)(b2

i /∥b∥22)
m ·min(a2i /∥a∥22,b2

i /∥b∥22)

=
∑

i∈I,pi ̸=1

∥a∥22∥b∥22
max(a2i /∥a∥22,b2

i /∥b∥22)
m

≤ ∥a∥22∥b∥22
m

∑
i∈I

a2i
∥a∥22

+
b2
i

∥b∥22

=
1
m
(
∥aI∥22∥b∥22 + ∥a∥22∥bI∥22

)
. 49



THEORETICAL GUARANTEE

Theorem
Let S(a),S(b) be sketches for a,b obtained via Threshold
Sampling and let F(S(a),S(b)) be the corresponding
estimate for ⟨a,b⟩ obtained from those sketches.

We have that E[|S(a)|] = m, E[|S(b)|] = m, and:

E[F(S(a),S(b))] = ⟨a,b⟩

Var[F(S(a),S(b))] ≤ 2
m max(∥aI∥22∥b∥22, ∥a∥22∥bI∥22)

One annoying feature of Threshold Sampling: Sketch size is
random. Ideally it would be exactly equal to m.
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FIXED SKETCH SIZE

Priority Sampling2

• Set sketch size m.
• Draw uniform random numbers u1, . . . ,ud ∼ [0, 1].
• Let i1, . . . , im be the indices corresponding to the m
smallest values of ui/a2i .

• Add (i1,ai1), (i2,ai2), . . . , (im,aim) to S(a).

Bound: Var[F(S(a),S(b))] ≤ 2
m−1 max(∥aI∥22∥b∥22, ∥a∥22∥bI∥22)

Almost identical to the bound given by Threshold Sampling.

2[Duffield, Lund, Thorup, 2004], [Ohlsson, 1998].
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PARALLELIZING LARGE LANGUAGE MODELS

51



AUTOREGRESSIVE LANGUAGE GENERATION

Modern large language models are inherently sequential.

NYU is a private research university .

Even if cost per word can come down, limits the speed at
which text can be generated.
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SPECULATIVE DECODING

Introduced concurrently by [Leviathan, Kalman, Matias, 2023] at
Google and [Chen, Borgeaud, Irving, Lespiau, Sifre, Jumper,
2023] at Google Deepmind

Key idea: Use small model to “draft” a response, and verify
with multiple instances of a large model.
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SPECULATIVE DECODING

Above, we got three tokens from one batch of parallel
invocations of the large model. 54



SPECULATIVE DECODING
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SPECULATIVE DECODING

Obvious issue: Even if then next token distribution for the
drafter model, P , and the product model, Q are very similar, it
could be unlikely for the draft to be correct.

If a ∼ P and b ∼ Q, Pr[a = b] ≈

56



COUPLING

Solution: Coordinate the sampling!

Definition (Coupling)
Let P and Q be distributions over {1, . . . ,n}. A coupling
between P and Q is any distribution over pairs
(a,b) ∈ {1, . . . ,n} × {1, . . . ,n} such that a’s marginal
distribution is P and b’s marginal distribution is Q.

Goal: Efficiently sample from a coupling C between the small
and large model distributions which maximizes

Pr[a = b].

Simple case: If P = Q, can find a C for which Pr[a = b]. Do you
see how?
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TOTAL VARIANCE DISTANCE

Definition
The total variation distance, DTV(P,Q), between two
distributions equals:

DTV(P,Q) = 1− max
couplings C

[
Pr

(a,b)∼C
[a = b].

]

Claim: Let P and Q be discrete disributions over {1, . . . ,n}
represented by length n probabiity vectors p,q ∈ [0, 1]n.

DTV(P,Q) = 1−
n∑
i=1

min(pi,qi).
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TOTAL VARIANCE DISTANCE

Claim: Let P and Q be discrete disributions over {1, . . . ,n}
represented by length n probabiity vectors p,q ∈ [0, 1]n.

DTV(P,Q) ≥ 1−
n∑
i=1

min(pi,qi).

Proof: Under any coupling C, Pr[a = b] =
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OPTIMAL COUPLING

There is a simple procedure that achieves this bound in the
speculative decoding setting.

Drafter:
• Sample a ∼ P . Sends both a and p to FullModel.

FullModel:
• Await (a,p) from Drafter.

• With probability min(1,qa/pa) return b = a.

• Otherwise, sample b from Q′ = {q′1, . . . , q′n}, where:

q′i =
max(0,qi − pi)∑n
i=1 max(0,qj − pj)
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OPTIMAL COUPLING

Drafter:
• Sample a ∼ P . Sends both a and p to FullModel.

FullModel:
• With probability min(1,qa/pa) return b = a.

• Otherwise, set b = i w.p. q′i =
max(0,qi−pi)∑n
i=1 max(0,qj−pj)

.
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OPTIMAL COUPLING

Drafter:
• Sample a ∼ P . Sends both a and p to FullModel.

FullModel:
• With probability min(1,qa/pa) return b = a.

• Otherwise, set b = i w.p. q′i =
max(0,qi−pi)∑n
i=1 max(0,qj−pj)

.

Claim: Procedure samples from a coupling. I.e., a ∼ P ,b ∼ Q.

Case to check: qa > pa.
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OPTIMAL COUPLING

Drafter:
• Sample a ∼ P . Sends both a and p to FullModel.

FullModel:
• With probability min(1,qa/pa) return b = a.

• Otherwise, set b = i w.p. q′i =
max(0,qi−pi)∑n
i=1 max(0,qj−pj)

.

Claim: Pr[a = b] =
∑n

i=1 min(pi,qi).

Earlier showed that DTV(P,Q) ≥ 1−
∑n

i=1 min(pi,qi), so this is
optimal.
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DRAFTER-INVARIANT SPECULATIVE DECODING

FullModel:
• With probability min(1,qa/pa) return b = a.
• Otherwise, set b = i w.p. q′i =

max(0,qi−pi)∑n
i=1 max(0,qj−pj)

.

Seemingly small but annoying issue: The output of the
FullModel is always sampled from Q, but the exact value
sampled depends on the Drafter distribution P .

• Cannot immediately verify that adding speculative
decoding did not change the model distribution.

• Model output is not deterministic from the user’s point of
view given a fixed random seed.
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DRAFTER-INVARIANT SPECULATIVE DECODING

Key idea: Basic protocol requires communication between the
Drafter and FullModel. Try to couple samples without
communication at all but just using shared randomness.

“Coupling without Communication and Drafter-Invariant
Speculative Decoding” [Daliri, Musco, Suresh, ISIT 2025].

Bsically the same idea appeared in:

• Anari, Gao, Rubinstein, STOC 2024
• Liu, Yin, STOC 2022
• Bavarian, Ghazi, Haramaty, Kamath, Rivest, Sudan, 2020.
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WEIGHTED MINHASH COUPLING

Fix public random variables u1,u2, . . . ∼ Unif[0,n].

Drafter:
• For k = 1, 2, . . . ,

• If k ∈ [j− 1, j− 1+ pj] for some j, return a = j.

FullModel:
• For k = 1, 2, . . . ,

• If k ∈ [j− 1, j− 1+ qj] for some j, return b = j.
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WEIGHTED MINHASH COUPLING

Claim: Pr[a = b] ≥
∑n

i=1 min(pi,qi)∑n
i=1 max(pi,qi)
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COMMUNICATION FREE COUPLING

Optimal Coupling:

Pr[a = b] = 1− DTV(P,Q)

. Communication-Free Coupling:

Pr[a = b] ≥
∑n

i=1min(pi,qi)∑n
i=1max(pi,qi)

=
1− DTV(P,Q)

1+ DTV(P,Q)
.

Takeaway: Pay very little for drafter-invariance!

Possible to show that this is optimal in some sense. No
communication-free protocol can achieve
Pr[a = b] > 1−DTV(P,Q)

1+DTV(P,Q) for all distributions simultaneously
[Bavarian, Ghazi, Haramaty, Kamath, Rivest, Sudan, 2020].
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GUMBEL SAMPLING

Fix public random variables u1,u2, . . . ∼ Unif[0, 1].

Drafter:
• Return a = argmini∈{1,...,n}

− ln(ui)
pi .

FullModel:
• Return b = argmini∈{1,...,n}

− ln(ui)
qi .

This is already how samples are typically obtained! In
particular, standard to use the “Gumbel Max Trick”:

b = argmax
i∈{1,...,n}

[− ln(ln(1/ui)) + ln(qi)] .
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GUMBEL SAMPLING

Theorem (pareto improvement)
For any two distributions P,Q,

Pr
(a,b)∼Gumbel

[a = b] ≥ Pr
(a,b)∼MinHash

[a = b],

and there exist distributions where inequality is strict.

Question one group is studying for the project: Is Gumbel
pareto optimal?
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