
CSCI-GA 3033-114/CS-GY 9223

Spring 2025

Homework 2

This homework is due Thurs. Feb. 27 at 11:59 P.M. You do not have to typeset your answers
if you don’t want to, but make sure they are legible.

Please do your homework together with one other person in the class. You and your partner should
hand in only one copy of your solutions, through Gradescope, with both of your names on it. Use
the group submission option when uploading.

POLICY ON CONSULTING REFERENCES: Please try to solve the problem yourselves
without using any external references (you will learn a lot more that way). If you do consult
external references, please write your solutions in your own words and cite any references you have
used.

1. Read-Once Formulas. A read-once Boolean formula is a Boolean formula using the op-
erators ∧ and ∨ such that each variable xi appears only once in the formula. For example,
f(x1, x2, x3, x4) = x1 ∨ ((x2 ∧ x3) ∨ x4) is a read-once formula. However, f(x1, x2, x3, x4) =
(x1 ∧ x2)∨ ((x2 ∧ x3)∨ x4) is not a read-once formula, because x2 appears twice. The SBFE
problem for read-once formulas was first studied in the 1970’s, and it is still not known
whether the problem is NP-hard or has a polynomial time algorithm.

Consider instead the SBFE problem for a simple subclass of read-once formulas, namely
read-once DNF formulas. A read-once DNF formula is a Boolean formula of the form
f(x1, . . . , xn) = T1 ∨ T2 ∨ . . . ∨ Tn where each Tj is the conjunction (∧) of a subset of
the variables xi, and each variable xi appears in at most one Tj . The Tj are called the terms
of the formula. For example, f(x1, x2, x3, x4, x5, x6) = (x1 ∧ x2 ∧ x6) ∨ x4 ∨ (x3 ∧ x5) is a
read-once DNF formula, and (x3 ∧ x5) is one of its terms.

Solve the SBFE problem for read-once DNF formulas in the unit-cost case, i.e., in the special
case where all ci = 1. You will get partial credit if you solve it with the additional assumption
that all the pi are equal to 1/2.

2. k-of-n functions.

(a) The optimality of the strategy presented in class for evaluating k-of-n functions relied on
the following lemma: Let f(x1, . . . , xn) be a k-of-n function. Let S1 be the evaluation
strategy that performs the tests in increasing order of ci/pi until the value of f can
be determined. Then S1 is an optimal strategy for verifying that f(x) = 1, i.e., its
expected cost is equal to minS E[cost(S, x)|f(x) = 1], where the minimization is over
all strategies S for evaluating k-of-n functions S.

Prove this lemma.

1

(b) The optimal strategy we presented in class for evaluating k-of-n functions was an adap-
tive strategy. Show that there is a non-adaptive strategy for evaluating k-of-n functions
whose expected cost is at most twice that of the optimal adaptive strategy.

(Recall that a non-adaptive strategy is specified by a permutation of the tests. The
strategy performs tests in the order specified by the permutation until there is enough
information to detemine the value of the function.)

3. Submodular Goal Functions. Let f(x1, . . . , xn) be a Boolean function. A submodular
goal function for f is a utility function u : {0, 1, ∗}n → Z≥0 such that u(∗, . . . , ∗) = 0, u
is monotone and submodular, and there exists a value Q such that for all b ∈ {0, 1, ∗}n,
u(b) = Q iff b is a 1-certificate or a 0-certificate for f . The value Q is called the “goal value”
of u. One approach to solving an SBFE problem is to reduce it to Stochastic Submodular
Cover through the construction of a submodular goal function u.

Consider the not-all-equal function f : {0, 1}n → {0, 1} such that f(x) = 1 if there exist
i, j ∈ {1, . . . , n} such that xi = 1 and xj = 0, and f(x) = 0 otherwise. Show that there exists
a submodular goal function u for the not-all-equal function whose goal value Q is O(n2).

4. Latency-based arguments. Another approach to proving approximation bounds for test-
ing strategies, not covered in the lectures, is to use latency-based arguments. These compare
the progress of the proposed testing strategy after it has performed some number of tests
with the progress of an optimal strategy after it has performed a related number of tests.

Consider an SBFE problem for a class of Boolean functions, in the unit-cost case. Since we
are in the unit-cost case, the goal is to minimize the expected number of tests.

Suppose that we have a proposed evaluation strategy S for solving the SBFE problem for
some class, and S∗ is an optimal evaluation strategy. A latency-based argument for proving
an approximation bound for S might be based on a lemma such as this one:

Lemma: For all j ∈ {0, . . . , ⌈log n⌉},

|Rα2j | ≤ β|Rα2j−1 |+ |R∗
2j |

where α and β are constants such that 0 < β < 1/2 and α > 1. Here R∗
t is the probability

that on a random x, S∗ has not finished testing within its first t tests. Similarly, Rt is the
probability that on a random x, S has not finished testing within its first t tests.

The lemma says roughly that between its first α2j−1 tests and the first α2j tests, either the
probability that S has not terminated goes down significantly, or the probability it hasn’t
terminated within α2j tests isn’t much more than the probability that S∗ hasn’t terminated
within its first 2j steps.

Prove that this lemma implies that E[cost(S, x)] = O(E[cost(S∗, x)]). That is, prove that,
assuming the lemma, S achieves a constant-factor approximation relative to the optimal
strategy.

2

