
CSCI-GA 3033-114/CS-GY 9223

Spring 2025

Homework 1

This homework is due Thurs. Feb. 13 at 11:59 P.M. You do not have to typeset your answers
if you don’t want to, but make sure they are legible.

Please do your homework together with one other person in the class. You and your partner should
hand in only one copy of your solutions, through Gradescope, with both of your names on it. Use
the group submission option when uploading.

POLICY ON CONSULTING REFERENCES: Please try to solve the problem yourselves
without using any external references (you will learn a lot more that way). If you do consult
external references, please write your solutions in your own words and cite any references you have
used.

1. Submodular Set Cover via LPs. Let I = {1, . . . , n} be a set of n items, and let u :
2I → Z≥0 be a corresponding monotone submodular utility function, where u(∅) = 0. Let
w1, . . . , wn be non-negative weights associated with items in I.

For S ⊆ I and i ∈ I, let the marginal value of item i with respect to set S be uS(i) =
u(S ∪ {i})− u(S). Let Q = u(I) be the total value of set I.

Consider the following IP, with variables x1, . . . , xn:

Minimize
∑
i∈I

wixi (1)∑
i∈I\S

uS(i) xi ≥ Q− u(S) ∀S ⊆ I (2)

xi ∈ {0, 1} ∀i ∈ I. (3)

(Note that the number of constraints in this IP is exponential in n.)

(a) Let I ′ ⊆ I and let x̂ ∈ {0, 1}n be the assignment to the variables xi such that x̂i = 1 if
i ∈ I ′ and x̂i = 0 otherwise.

Show that I ′ ⊆ I is an optimal solution to the submoular cover problem for utility
function u and item weights w1, . . . , wn iff x̂ is an optimal solution to the above IP.

(b) Give a counterexample to show that the statement in part (a) would not be true if we
only included the constraint for S = ∅ in the IP. Note that this constraint is equivalent
to

∑
i:xi=1 u({i}) ≥ Q.
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(c) By changing the integer constraints xi ∈ {0, 1} to non-negativity constaints xi ≥ 0, we
get the LP relaxation of the above IP. Call this relaxation LP1 and call its dual LP2.
The variables of LP2 are yS , for all S ⊆ ∅.
Write out the dual LP.

(d) A primal-dual algorithm for the submodular cover problem is as follows1:

• I ′ = ∅
• For all variables yS in LP2, set yS = 0

• While u(I ′) ̸= Q

– Increase variable yI′ until some constraint of LP2 becomes tight. Let i ∈ I be
the item associated with that constraint.

– I ′ = I ′ ∪ {i}
• return I ′

Prove that the above algorithm successfully terminates with a set I ′ such that u(I ′) = Q.

(e) The step of the algorithm in which yI′ is increased can be viewed as a greedy step in
which the “best” i is chosen. Rewrite this step as a minimization over all i ∈ I\S that
takes time polynomial in n (assuming that a call to the value oracle for u takes constant
time).

(f) Prove that the primal-dual algorithm above returns a cover I ′ such that∑
i∈I′ wi

OPT
≤ max

S⊆I:u(S) ̸=Q

∑
i∈I uS(i)

Q− u(S)
.

That is, show that the above algorithm achieves an approximation factor of

max
S⊆I:u(S) ̸=Q

∑
i∈I uS(i)

Q− u(S)
.

(g) Show that if u is a coverage function corresponding to a set system with universe U and

family of subsets F , then maxS⊆I

∑
S uS(i)

Q−S(i) is upper bounded by the value we’ve called
f , the maximum number of sets in F that contain a single element in U .

2. (A Medical Problem.) The input to this problem is a dataset derived from the medical
records of m patients. It consists of m vectors V = {v1, . . . , vm}, with each vi ∈ {1, . . . , d}n.
Each vector corresponds to the medical record of a single patient as follows. The record
has n attributes, such as height, weight, and cholesterol. The value of each attribute has
been discretized and converted into a value between 1 and d. In addition, each vector vi in
the dataset has a label yi ∈ {+,−}, indicating whether or not the patient has a particular
disease.

1Williamson and Shmoys define a primal-dual algorithm as follows (p. 24): “Primal-dual algorithms start with a
dual feasible solution, and use dual information to infer a primal, possibly infeasible solution. If the primal solution
is indeed infeasible, the dual solution is modified to increase the value of the dual objective function.”
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Let P be the set of vectors in the dataset that are labeled +, and let N be those labeled −.
Assume that if two vectors in the dataset are identical, then they have the same label.

Define a subset S of the n attributes to be a distinguishing set for the dataset if the following
holds: for all v, v′ ∈ V , if v and v′ have the same values on all attributes in S, then v and v′

also have the same label. Intuitively, this means that for any v ∈ V , knowing just the values
v has for the attributes in S (and not for any of the other attributes) is enough information
to determine whether v ∈ P or v ∈ N .

The problem is to find the smallest distinguishing set for such a dataset.

(a) Prove that this problem is NP-hard.

(b) Prove that this problem has a polynomial-time approximation algorithm with an ap-
proximation factor of O(logm).

3. (Randomness Again.) In Lecture #1 we saw a randomized rounding algorithm for set
cover with expected cost (1+ lnn)OPT . We now show how to do better when the sets have
size at most B ≤ n.

• Solve the LP relaxation and get variables xS ∈ [0, 1].

• Define pS := min(1, xS lnB). Pick each set S independently with probability pS .

• For each element e ∈ U uncovered by the random choices, pick the cheapest set con-
taining it.

Show that the expected cost of this algorithm is at most O(lnB) · OPT . For full points,
show that the expected cost is at most (1 + lnB) · LP (else you will get 80% of the points).

(The greedy algorithm for weighted set cover, presented in Lecture #2, can also be shown
to be an HB-approximation, where HB ≤ 1 + lnB is the Bth Harmonic number. You can
see a proof of the result in the Williamson-Shmoys book.)
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