
Recent Developments in Algorithms, Spring 2025
Homework 3

Q1: Online Vertex Cover

Consider the problem of finding a vertex cover in a node-weighted graph, where the edges
of the graph arrive online. Formally, you start with a vertex set V of n vertices, but no
edges (yet). Each vertex has a non-negative weight wv. At each timestep t = 1, 2, . . ., an
edge et = {ut, vt} arrives and has to be covered (if not yet covered already). Formally, if
Et = {e1, e2, . . . , et} are the edges seen by time t, andGt = (V,Et), then you want to maintain
a set Ct such that Ct is a vertex cover for Gt, and moreover, Ct−1 ⊆ Ct. (Assume C0 = ∅.)
You want to ensure that at any time t, the weight of your solution w(Ct) :=

∑
v∈Ct

wv is at
most a constant times OPTt, the cost of the optimal vertex cover for Gt.

When an edge et arrives that is not covered by Ct−1, here are four different things you
could do:

1. add both its endpoints to get Ct = Ct−1 ∪ et.

2. add its cheaper endpoint, and also its heavier endpoint in case it costs at most two
times the cheaper endpoint.

3. add ut with probability
wvt

wut+wvt
and vt with the remaining probability.

For the first two algorithms, give examples showing on which the competitive ratio of the
algorithm is unbounded, as t → ∞. For the last algorithm, show that E[w(Ct)] ≤ 2OPTt.

Q2: A Special Set Cover Problem

Suppose you have a rooted tree T = (V,E). Define the following set system (E,F):

� The elements of the set system are the edges E, and

� Each set Su,v in F is specified by some pair of non-adjacent vertices u, v ∈ E, and this
set contains all the edges on the unique path between u and v in the tree.

Some people like to think of the sets being given by another collection of non-tree edges
F ⊆

(
V
2

)
, with the sets being F = {Sf | f ∈ F}.

1. Suppose each set in F is a subset of some root-leaf path. (Call such sets “monotone”.)
Give an dynamic-programming based algorithm to find the min-cost solution.

2. Now suppose the sets are not all monotone. For each non-monotone set u, v, let x be
its least-common ancestor in the rooted tree. Replace the set Su,v with two monotone
sets Su,x and Sv,x. Show that an optimal solution on this new monotone instance is a
2-approximation to the set cover problem on the original non-monotone instance.

1

Q3: Shortest Paths Problem

This problem is on Aaron’s lecture from March 20. Say you have a graph G with integer
weights polynomial in n. The “Restricted Graph Theorem” from lecture notes states that
we can assume we are working with a restricted graph, which has three properties:

� all weights are ≥ −1 (and still integral)

� All weights are ≤ n (and still integral)

� Every cycle C has w(C) ≥ |C|.

In this HW problem we will show why we can assume the first two properties. The third
property is a big harder to justify, so we won’t go into it.

Note: You can attempt part 2 even if you weren’t successful with part 1. In fact part 2 is
probably the easier problem.

Part 1

Let TSSSP(W,m, n) be the worst-case time required to solve negative-weight shortest paths
in a graph with m edges, n vertices, and integral weights ≥ −W .

The Problem: The goal of this problem is to prove that

TSSSP(W,m, n) = O(log(W) · TSSSP(1,m, n)) + Õ(m log(W)). (1)

I will tell you the first step. What you should do is prove the following:

TSSSP(W,m, n) ≤ TSSSP(W/2,m, n) + TSSSP(2,m, n) + Õ(m). (2)

Combined with the fact shown in class that TSSSP(2,m, n) ∼ TSSSP(1,m, n), it’s easy to
see that Equation 2 implies Equation 1. So all you need to do is prove the recurrence in
Equation 2.

1. WRITING NOTE: for this problem the analysis is pretty self-evident once you have
the right algorithm. So feel free to keep the analysis short, but make sure to include
detailed pseudo-code for the algorithm!

2. Hint 1: Feel free to assume that W is a power of 2.

3. Hint 2: The simplest proof I can think of uses the fact we proved in class that
TSSSP(2,m, n) = O(TSSSP(1,m, n)).

2

4. Hint 3: You need to solve an instance where w(e) ≥ −W for all edges. First imagine
that you were extremely lucky and all your weights were integer multiples of W/2.
Show that in this lucky case, there is an extremely simple way to solve the problem
in time TSSSP(2,m, n) (you don’t even need price functions for this one). Now, if you
your weights are not integer multiples of W/2, how can you still use the above idea?
You will need to use price functions for this non-lucky case.

Part 2

Say you have an algorithm A that solves negative-weight SSSP in Õ(m) time when all weights
are integral and you are also guaranteed that

−1 ≤ w(e) ≤ n ∀ e ∈ E

Using A as a blackbox, show that you also solve the problem in Õ(m) time under the
weaker assumption that weights are integral and w(e) ≥ −1 for all e ∈ E (i.e. you no longer
have the assumption w(e) ≤ n).

WRITING NOTE: as for part 1, you should include detailed pseudo-code for the algo-
rithm.

3

