
CS-GY 6923: Lecture 9
Kernel Methods, Support Vector Machines

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

NON-LINEAR METHODS

• Many previous methods studied (regression, logistic
regression) are considered linear methods. They make
predictions based on ⟨x,β⟩ – i.e. based on weighted sums
of features.

• In the next part of the course we move on to non-linear
methods. Specifically, kernel methods and neural
networks.

• Both are very closely related to feature transformations,
which was a technique we already saw for using linear
methods to learn non-linear concepts.

ࠁ

€

- -

-

- -

RECALL: k-NEAREST NEIGHBOR METHOD

k-NN algorithm: a simple but powerful baseline for
classification.

Training data: (xࠀ, yࠀ), . . . , (xn, yn) where yࠀ, . . . , yn ∈ ,ࠀ} . . . , q}.

Classification algorithm:

Given new input xnew,

• Compute sim(xnew, xࠀ), . . . , sim(xnew, xn).ࠀ

• Let xjࠀ , . . . , xjk be the training data vectors with highest
similarity to xnew.

• Predict ynew as majority(yjࠀ , . . . , yjk).

,sim(xnewࠀ xi) is any chosen similarity function, like −ࠀ ∥xnew − xi∥ࠁ.

ࠂ

- - -

o
- -

-

- -
-

9

- -

k-NEAREST NEIGHBOR METHOD

• Smaller k, more complex classification function.
• Larger k, more robust to noisy labels.

Works remarkably well for many datasets.

ࠃ

:

MNIST IMAGE DATA

Especially good for large datasets with lots of repetition. Works
well on MNIST for example. %ࠄࠈ Accuracy out-of-the-box.

Let’s look into this example a bit more...

ࠄ

=

MNIST IMAGE DATA

Each pixel is number from ,߿] .[ࠀ ߿ is black, ࠀ is white.
Represent ×ࠇࠁ ࠇࠁ matrix of pixel values as a flattened vector.

ࠅ

- -

①
-

O

INNER PRODUCT SIMILARITY

Given data vectors x,w ∈ Rd, the inner product ⟨x,w⟩ is a
natural similarity measure.

⟨x,w⟩ =
d∑

i=ࠀ

xiwi = cos(θ)∥x∥ࠁ∥w∥ࠁ.

Also called “cosine similarity”.
ࠆ

-

- - - -

¢O
l .

180

INNER PRODUCT SIMILARITY

Connection to Euclidean (ℓࠁ) Distance:

∥x− w∥ࠁࠁ = ∥x∥ࠁࠁ + ∥w∥ࠁࠁ − ⟨x,w⟩ࠁ

If all data vectors has the same norm, the pair of vectors with
largest inner product is the pair with smallest Euclidean
distance.

ࠇ

(x-w)t(x-w).. ExtWI-21W

- L

INNER PRODUCT FOR MNIST

Inner product between MNIST digits:

⟨x,w⟩ =
∑ࠇࠁ

i=ࠀ

∑ࠇࠁ

j=ࠀ

matx[i, j] · matw[i, j].

Inner product similarity is higher when the images have large
pixel values (close to (ࠀ in the same locations. I.e. when they
have a lot of overlapping white/light gray pixels.

ࠈ

D ' Dco
niacin

? " " i t "
o /]

o o

§
O

E F F

H Boo)

INNER PRODUCT FOR MNIST

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.

߿ࠀ

K-NN ALGORITHM ON MNIST

Most similar images during k-nn search, k = :ࠈ

ࠀࠀ

I D I D

to 000

ANOTHER VIEW ON LINEAR CLASSIFICATION

One-vs.-all or Multiclass Cross-entropy Classification with
Logistic Regression:

• Learn q classifiers with parameters β(ࠀ),β(ࠁ), . . . ,β(q).
• Given xnew compute ⟨xnew,β(ࠀ)⟩, . . . , ⟨xnew,β(q)⟩
• Predict class ynew = argmaxi⟨xnew,β(i)⟩.

If each x is a vector with ×ࠇࠁ ࠇࠁ = ࠃࠇࠆ entries than each β(i)

also has ࠃࠇࠆ entries. Each parameter vector can be viewed as a
×ࠇࠁ ࠇࠁ image.

ࠁࠀ

0 , 9

✓
O O -

I - I E o

MATCHED FILTER

Visualizing β(ࠀ), . . . ,β(q):

Logistic regression classification rule: For an input ,
compute inner product similarity with all weight matrices and
choose most similar one.

In contrast to k-NN, only needs to compute similarity with q
items instead of n. Much faster classification. ࠂࠀ

O 9

O k
⑥

O

DIVING INTO SIMILARITY

Often the inner product does not make sense as a similarity
measure between data vectors. Here’s an example (recall that
smaller inner product means less similar):

But clearly the first image is more similar.

Here’s a more realistic scenario. ࠃࠀ

O O OO'
O

KERNEL FUNCTIONS: ALTERNATIVE MEASURES OF SIMILARITY

A kernel function k(x, y) is simply a similarity measure
between data points.

k(x, y) =

⎧
⎨

⎩
large if x and y are similar.

close to ߿ if x and y are different.

Example: The Radial Basis Function (RBF) kernel, aka the
Gaussian kernel:

k(x, y) = e−∥x−y∥ࠁࠁ/σࠁ

for some scaling factor σ.

ࠄࠀ

-

8

E -
← l f

1 0 0

KERNEL FUNCTIONS: A NEW MEASURE OF SIMILARITY

Lots of kernel functions functions involve transformations of
⟨x, y⟩ or ∥x− y∥ࠁ:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥ࠁࠁ/σࠁ

• Laplace Kernel: k(x, y) = e−∥x−y∥ࠁ/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ .q(ࠀ

But you can imagine much more complex similarity metrics.

We will see one on the next problem set tailored to digit/letter
recognition.

ࠅࠀ

I F - .

HOW TO USE A KERNEL FUNCTION?

For k-nearest neighbors, can easily replace inner product with
whatever similarity function you want.

For logistic regression, it is less clear how to do so.

ࠆࠀ

-

HOW TO USE A KERNEL FUNCTION?

Logistic Regression Loss:

L(β(ࠀ), . . . ,β(q)) = −
n∑

i=ࠀ

q∑

ℓ=ࠀ
[yi = ℓ] · log e⟨β(ℓ),xi⟩

∑q
j=ࠀ e⟨β

(j),xi⟩

Loss inherently involves inner product between each β(j) and
each data vector xi.

Solution: Only work with similarity metrics that can be
expressed as inner products.

ࠇࠀ

BB
pf l a t

k e .

KERNEL FUNCTIONS FROM FEATURE TRANSFORMATION

A positive semidefinite (PSD) kernel is any similarity function
with the following form:

k(x,w) = φ(x)Tφ(w)

where φ : Rd → Rm is a some feature transformation function.

ࠈࠀ

"|
µF¥

[¥klxi,x;)--Gi;
C
¥_ § Hemel Grey Matrix

o n , → ,

← " " " ' " ' "

-

Usutu

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Example: Degree ࠁ polynomial kernel, k(x,w) = (xTw+ .ࠁ(ࠀ

x =

⎡

⎢⎣
xࠀ
xࠁ
xࠂ

⎤

⎥⎦ φ(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√ࠀ
√ࠀxࠁ
√ࠁxࠁ
ࠂxࠁ
xࠀࠁ
xࠁࠁ
xࠂࠁ√
√ࠁxࠀxࠁ
√ࠂxࠀxࠁ
ࠂxࠁxࠁ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(xTw+ ࠁ(ࠀ = (xࠀwࠀ + xࠁwࠁ + xࠂwࠂ + ࠁ(ࠀ

= +ࠀ ࠀwࠀxࠁ + ࠁwࠁxࠁ + ࠂwࠂxࠁ + xࠀࠁwࠁ
ࠀ + xࠁࠁwࠁ

ࠁ + xࠂࠁwࠁ
ࠂ

+ ࠁwࠁxࠀwࠀxࠁ + ࠂwࠂxࠀwࠀxࠁ + ࠂwࠂxࠁwࠁxࠁ

= φ(x)Tφ(w). ߿ࠁ

- -

= 106506)

x'I I x 2 0 ÷;f
÷

, guy. I, I- ,w-
fi;)

-

- i i i .
I ¥=-=

l o l yo I

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Not all similarity metrics are positive semidefinite (PSD), but
all of the ones we saw earlier are:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥ࠁࠁ/σࠁ

• Laplace Kernel: k(x, y) = e−∥x−y∥ࠁ/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ .q(ࠀ

And there are many more...

ࠀࠁ

p g dd)
(o ld)
8

a §
Old)

dob

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Feature transformations⇐⇒ new similarity metrics.

To work with the similarity k(·, ·) in place of the inner product
⟨·, ·⟩, it suffices to replace every data point xࠀ, . . . , xn by
φ(xࠀ), . . . ,φ(xn).

ࠁࠁ

: - . ,

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

There are two major issues with this:

• While φ(x) is sometimes simple and explicit. More often, it
is not. We might be able to show a kernel is PSD without
easily being able to write down φ(x).

• Transform dimension m is often very large: e.g. m = O(dq)
for a degree q polynomial kernel. For many kernels (e.g.
the Gaussian kernel) m is actually infinite.

So doing the feature transformation explicitly would have very
high computational cost.

ࠂࠁ

|

REPARAMETERIZATION TRICK

For simplicity, let’s just consider the binary cross
entropy/logistic regression loss:

−
n∑

j=ࠀ

yj log(h(Xβ)j) + −ࠀ) yj) log(ࠀ− h(Xβ)j)

where h(z) = ࠀ
e−z+ࠀ .

ࠃࠁ

Ah,'¥%crab"

was
iioa.ie/E:oinkx;,m)

"

: .
fji;""'
"s.t.

berownally
I - g

REPARAMETERIZATION TRICK

Reminder from linear algebra: Without loss of generality, can
assume that β lies in the row span of X.

So for any β ∈ Rd, there exists a vector α ∈ Rn such that:

Xβ = XXTα.

ࠄࠁ

- ↳ a l lvectors z that
c a n b ewrittena s

i§GX i
f o rcoefaciest,¥ ¥ % (←=×¥)

a .x .taunt.-and"'""
"

a ,

a , ✓ +e

HB):XCute)=XvtXeS :r o wqupp.ua/e5. V " " B --Xvt o
= X v

REPARAMETERIZATION TRICK

Logistic Regression Equivalent Formulation: Given data matrix
X ∈ Rn×d and binary label vector y ∈ ,߿} n{ࠀ for class i, find
α ∈ Rn to minimize the loss:

−
n∑

j=ࠀ

yj log(h(XXTα)j) + −ࠀ) yj) log(ࠀ− h(XXTα)j)

Can still be minimized via gradient descent:

∇L(α) = XXT(h(XXTα)− y).

ࠅࠁ

UXB) hX(x't) X I → x x t o

=

"o'
-

Wha)-Doto)-y)

REPARAMETERIZATION TRICK

If we use a non-linear data transformation φ (corresponding to
a PSD kernel), then the loss is:

−
n∑

j=ࠀ

yj log(h(φ(X)φ(X)Tα)j) + −ࠀ) yj) log(ࠀ− h(φ(X)φ(X)Tα)j)

ࠆࠁ

t¥ t¥÷÷to±

§§µ¥

KERNEL MATRIX

K = φ(X)φ(X)T is called the kernel Gram matrix.

ࠇࠁ

- ' I I .
④ (Xi),dlx;D--K(x;x;)

KERNEL TRICK

We never need to actually compute φ(xࠀ), . . . ,φ(xn) explicitly!

• For training we just need the kernel matrix K, which
requires computing k(xi, xj) for all i, j.

We can always work with a finite sized n× n matrix.

ࠈࠁ

-

-

KERNEL TRICK

Take away:
• Logistic regression can be combined with any positive
semidefinite kernel matrix, and the model can be trained
in time independent of the transform dimension m.

Prediction can also be done efficiently. For a new input xnew,
we need to compute:

⟨φ(xnew),β⟩ = ⟨φ(xnew),φ(X)α⟩ =
n∑

i=ࠀ

αj⟨φ(xnew),φ(xj)⟩.

Each term in the sum ⟨φ(xnew),φ(xj)⟩ = k(xnew, xj) can be
computed without explicit feature transformation.ࠁ
Noteࠁ that this does require computing the kernel inner product with
potentially all examples in the training data. More on this shortly.

߿ࠂ

f /§§
EEOki)a . .

-

Hanni, It,¥¥¥q×"'

a ."exam. r u n a * * * o , . .

1¥,of""""±

BEYOND THE KERNEL TRICK

The kernel matrix K is still n× n though which is huge when
the size of the training set n is large. Has made the kernel trick
less appealing in some modern ML applications.

There is an inherent quadratic dependence on n in the
computational and space complexity of kernel methods.

• ,߿ࠀ ߿߿߿ data points→ runtime scales as ∼ ,߿߿ࠀ ,߿߿߿ ,߿߿߿ K
takes MB߿߿ࠇ of space.

• ,ࠀ ,߿߿߿ ߿߿߿ data points→ runtime scales as ∼ ,ࠁࠀ߿ࠀ K takes
TBࠇ of space. ࠀࠂ

n

"

r

=-

BEYOND THE KERNEL TRICK

Many algorithmic advances in recent years partially address
this computational challenge (random Fourier features
methods, Nystrom methods, etc.)

Often based on “reversing” the kernel trick to find a compact
feature set that well approximates the kernel.

ࠁࠂ

T

KERNEL REGRESSION

The kernel trick can also be applied outside of classification.
E.g. to regression:

min
β
∥Xβ − y∥ࠁࠁ + λ∥β∥ࠁࠁ → min

α
∥XXTα− y∥ࠁࠁ + λ∥XTα∥ࠁࠁ

Replace XXT by kernel matrix K during training.

Prediction:

ynew =
n∑

i=ࠀ

αi · k(xnew, xi).

Added benefit: Relatively numerically stable. E.g. is a much better
option for performing multivariate or even single variate polynomial
regression than direct feature expansion.

ࠂࠂ

"[
"" "

⇒ -

↳ n e w ,
B)

KERNEL REGRESSION

Kernel regression with non-linear kernels like e−∥x−y∥ࠁࠁ is a very
important statistical tool, especially when dealing with spatial
or temporal data.

Also known as Gaussian Process (GP) Regression or Kriging.
Most commonly, Gaussian kernel k(x, y) = e−∥x−y∥ࠁࠁ/σࠁ is used
in place of, e.g., polynomial kernel/polynomial regression.

ࠃࠂ

iii.in a

SUPPORT VECTOR MACHINES

ࠃࠂ

TODAY

Support Vector Machines (SVMs): Another algorithm for finding
linear classifiers which is (was?) as popular as logistic
regression.

• Can also be combined with kernels.
• Developed from a pretty different perspective.
• But final algorithm is not that different.

• Invented in ࠂࠅࠈࠀ by Alexey
Chervonenkis and Vladimir
Vapnik. Also founders of
VC-theory.

• First combined with
non-linear kernels in .ࠂࠈࠈࠀ

ࠄࠂ

SVM’S VS. LOGISTIC REGRESSION

SVMs are more commonly associated with non-linear kernels.
For example, sklearn’s SVM classifier (called SVC) has
support for non-linear kernels built in by default. Its logistic
regression classifier does not.

• Seeems to be partially for historical reasons.
• In the early s߿߿߿ࠁ SVMs where a “hot topic” in machine
learning and their popularity persists.

• It is not clear to me if they are better than logistic
regression, but honestly the jury is still out...

• There are some computational advantages of using SVMs,
and some disadvantages, which is part of the story.

ࠅࠂ

-

SVM’S VS. LOGISTIC REGRESSION

Next lab: Machina-a-machina comparison of SVMs vs. logistic
regression for a MNIST digit classification problem. Which

provides better accuracy? Which is faster to train?

ࠆࠂ

LINEARLY SEPARABLE DATA

We call a dataset with binary labels linearly separable if it can
be perfectly classified with a linear classifier:

This the realizable setting we discussed last lecture.

ࠇࠂ

§

LINEARLY SEPARABLE DATA

Formally, there exists a parameter β such that ⟨β, x⟩ > ߿ for all
x in class ࠀ and ⟨β, x⟩ < ߿ for all x in class .߿

Note that if we multiply β by any constant c, cβ gives the same
separating hyperplane because ⟨cβ, x⟩ = c⟨β, x⟩.

ࠈࠂ

¥
- O

' ¥O

O
O -

LINEARLY SEPARABLE DATA

A data set might be linearly separable when using a
non-kernel/feature transformation even if it is not separable
in the original space.

This data is separable when using a degree-ࠁ polynomial
kernel. If suffices for φ(x) to contain xࠀࠁ and xࠁࠁ.

߿ࠃ

0

MARGIN

When data is linearly separable, we would typically be
concerned about over-fitting.

Idea from Vapnik and Chervonenkis: Maybe there is a way to
find a classification rule that over-fits on the training data but
is still “good” for future data.

There are typically multiple valid separating hyperplanes.
Intuitively, which is best for classifying future data?

ࠀࠃ

<Box?>0

- -

'

" - I : °

O

MARGIN

The margin m of a separating hyperplane is the minimum ℓࠁ
(Euclidean) distance between a point in the dataset and the
hyperplane.

m = min
i

∆i where ∆i =
|⟨xi,β⟩|
∥β∥ࠁ

ࠁࠃ

-

× .

O

"¥'
o%¥

- x i
%''. Dis

→
- l - I

MARGIN

We have that xi = vi + ei where vi is parallel to β and ei is
perpendicular.

∆i = ∥vi∥ࠁ = ࠀ
∥vi∥ࠁ

· ⟨vi, vi⟩ = ࠀ
∥vi∥ࠁ

· ∥vi∥ࠁ
∥β∥ࠁ · |⟨vi,βi⟩| =

|⟨vi,β⟩|
∥β∥ࠁ .

Finally, we have that ⟨xi,β⟩ = ⟨vi,β⟩ because ⟨ei,β⟩ = .߿

ࠂࠃ

SUPPORT VECTOR

A support vector is any data point xi such that |⟨xi,β⟩|
∥β∥ࠁ = m,

where m = mini
|⟨xi,β⟩|
∥β∥ࠁ .

ࠃࠃ

-

x ; i s

supportue
ct
i f §; = M

•

HARD-MARGIN SVM

A hard-margin support vector machine (SVM) classifier finds
the maximum margin (MM) linear classifier.

I.e. the separating hyperplane which maximizes the margin m.
Like regularization, doing so can prevent overfitting even if we
can fit our data perfectly.

ࠄࠃ

MARGIN

Denote the maximum margin by m∗.

m∗ = max
β

[
min

i∈ࠀ,...,n

|⟨xi,β⟩|
∥β∥ࠁ

]

= max
β

[
min

i∈ࠀ,...,n

yi · ⟨xi,β⟩
∥β∥ࠁ

]

where yi = ,ࠀ− ࠀ depending on what class xi is in.ࠂ

Noteࠂ that this is a different convention than the ,߿ ࠀ class labels we
typically use.

ࠅࠃ

Yo, mys i "i""i¥?
=

÷

HARD-MARGIN SVM

Original problem: maxβ
[
mini∈ࠀ,...,n

yi·⟨xi,β⟩
∥β∥ࠁ

]
.

Equivalent formulation:

min
β
∥β∥ࠁࠁ subject to yi · ⟨xi,β⟩ ≥ ࠀ for all i.

ࠆࠃ

i . t o
mgxfniiny
i.4fs@LJ.
m:÷⇐.

" " " ' " ' "

f o ra l li÷÷÷÷÷÷÷:P.--in.
Tr"'%§jj, n , fo r a l l i s t .Y i : '
h i ,B) E - l

for a l l i s - t .y i= - I

HARD-MARGIN SVM

Equivalent formulation:

min
β
∥β∥ࠁ subject to yi · ⟨xi,β⟩ ≥ ࠀ for all i.

Under this formulation m = ࠀ
∥β∥ࠁ .

This is a constrained optimization problem. In particular, a
linearly constrained quadratic program, which is a type of
problem we have efficient optimization algorithms for.

Not as easy to solve as a standard unconstrained, convex
optimization problem like logistic regression!

ࠇࠃ

o n e

HARD-MARGIN SVM CLASSIFICATION

Classification rule is the same as usual: classify in class ࠀ if
⟨xi,β⟩ ≥ ,߿ class ࠀ− if ⟨xi,β⟩.

Kernel case: As before, we can parameterize as β = XTα. When
using a non-linear kernel k(x, y) = φ(x)Tφ(y), we have:

β = φ(X)Tα

and to classify a new point xnew we compute:

φ(xnew)Tβ = φ(xnew)Tφ(X)Tα = φ(xnew)T
n∑

i=ࠀ

αiφ(xi)

=
n∑

i=ࠀ

αik(xnew, xi).

Can show that αi = ߿ whenever xi is not a support vector.
Classification cost scales with # of support vectors, s, not n. ࠈࠃ

-

(-)

I
LOCKED,B)

- I
=

§,diOlxue¥0xi) @

HARD-MARGIN SVM CLASSIFICATION

min
β
∥β∥ࠁ subject to yi · ⟨xi,β⟩ ≥ ࠀ for all i.

Claim: Let xࠀ, . . . , xs be all vectors with yi · ⟨xi,β⟩ = .ࠀ
β =

∑s
i=ࠀ αixi.

Proof by contradiction: Suppose β =
∑s

i=ࠀ αixi + v, where v is
orthogonal to the support vectors. Can reduced ∥β∥ࠁ by
setting β ←

∑s
i=ࠀ αixi + −ࠀ) ϵ)v for some small ϵ. ߿ࠄ

- -
& - s o n

→

.si#xi

"

..:
.

" " ' " " "" " " " " "

⇐
¥%

" '" " a s : *,

d
yilxi.B.eu)
=yicxi,B)

I

HARD-MARGIN SVM CLASSIFICATION

Take-away:

• Training SVMs is typically harder than training using
logistic loss.

• Classification after the model is trained requires O(n)
kernel evaluations for general linear classifiers (e.g., found
via logistic regression), but just O(s) for an SVM with s
support vectors. Often, s≪ n.

• Advantages in-terms of storage space as well: only need
to keep support vectors around for classification.

ࠀࠄ

HARD-MARGIN SVM

Hard-margin SVMs have a few other critical issues in practice:

Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If K is full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel. ࠁࠄ

HARD-MARGIN SVM

Another critical issue in practice:

Hard-margin SVM classifiers are not robust.

ࠂࠄ

SOFT-MARGIN SVM

Solution: Allow the classifier to make some “mistakes”! A
mistake can either be a misclassification, or simply a point
allowed to be “inside” the margin.

Hard margin objective:

min
β
∥β∥ࠁࠁ subject to yi · ⟨xi,β⟩ ≥ ࠀ for all i.

Soft margin objective:

min
β
∥β∥ࠁࠁ + C

n∑

i=ࠀ

ϵi subject to yi · ⟨xi,β⟩ ≥ −ࠀ ϵi for all i.

where ϵi ≥ ߿ is a non-negative “slack variable”. This is the
magnitude of the “error” (distance past the margin) we allow
example xi to travel. ϵi ≥ ࠀ corresponds to a misclassification.

C ≥ ߿ is a non-negative tuning parameter. ࠃࠄ

SOFT-MARGIN SVM

Example of a non-separable problem:

ࠄࠄ

SOFT-MARGIN SVM

Recall that ∆i =
yi·⟨xi,β⟩
∥β∥ࠁ .

Soft margin objective:

min
β
∥β∥ࠁࠁ + C

n∑

i=ࠀ

ϵi subject to yi · ⟨xi,β⟩ ≥ −ࠀ ϵi for all i.

ࠅࠄ

SOFT-MARGIN SVM

Recall that ∆i =
yi·⟨xi,β⟩
∥β∥ࠁ .

Soft margin objective:

min
β
∥β∥ࠁࠁ + C

n∑

i=ࠀ

ϵi subject to yi · ⟨xi,β⟩
∥β∥ࠁ

≥ ࠀ
∥β∥ࠁ

− ϵi
∥β∥ࠁ

for all i.

ࠆࠄ

SOFT-MARGIN SVM

Any xi with a non-zero ϵi is a support vector. As before, only
support vectors are needed for classification in the kernel
setting.

ࠇࠄ

EFFECT OF C

Soft margin objective:

min
β
∥β∥ࠁࠁ + C

n∑

i=ࠀ

ϵi.

• Large C means penalties are punished more in objective
=⇒ smaller margin, less support vectors.

• Small C means penalties are punished less in objective
=⇒ larger margin, more support vectors.

When data is linearly separable, as C→∞ we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.

ࠈࠄ

EFFECT OF C

Example dataset:

߿ࠅ

EFFECT OF C

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.

ࠀࠅ

COMPARISON TO LOGISTIC REGRESSION

Some basic transformations of the soft-margin objective:

min
β
∥β∥ࠁࠁ + C

n∑

i=ࠀ

ϵi subject to yi · ⟨xi,β⟩ ≥ −ࠀ ϵi for all i.

min
β
∥β∥ࠁࠁ + C

n∑

i=ࠀ

max(߿, −ࠀ yi · ⟨xi,β⟩).

min
β

λ∥β∥ࠁࠁ +
n∑

i=ࠀ

max(߿, −ࠀ yi · ⟨xi,β⟩).

These are all equivalent. λ = C/ࠀ is just another scaling
parameter.

ࠁࠅ

HINGE LOSS

Hinge-loss: max(߿, −ࠀ yi · ⟨xi,β⟩). Recall that yi ∈ ,ࠀ−} .{ࠀ

Soft-margin SVM:

min
β

[n∑

i=ࠀ

max(߿, −ࠀ yi · ⟨xi,β⟩) + λ∥β∥ࠁࠁ

]
. (ࠀ)

ࠂࠅ

LOGISTIC LOSS

Recall the logistic loss for yi ∈ ,߿} :{ࠀ

L(β) = −
n∑

i=ࠀ

yi log(h(⟨xi,β⟩)) + −ࠀ) yi) log(ࠀ− h(⟨xi,β⟩))

= −
n∑

i=ࠀ

yi log
(

ࠀ
+ࠀ e−⟨xi,β⟩

)
+ −ࠀ) yi) log

(
e−⟨xi,β⟩

+ࠀ e−⟨xi,β⟩

)

= −
n∑

i=ࠀ

yi log
(

ࠀ
+ࠀ e−⟨xi,β⟩

)
+ −ࠀ) yi) log

(
ࠀ

+ࠀ e⟨xi,β⟩

)

ࠃࠅ

COMPARISON OF SVM TO LOGISTIC REGRESSION

Compare this to the logistic regression loss reformulated for
yi ∈ ,ࠀ−} :({ࠀ

n∑

i=ࠀ

− log

(
ࠀ

−ࠀ e−yi·⟨xi,β⟩

)

ࠄࠅ

COMPARISON TO LOGISTIC REGRESSION

So, in the end, the function minimized when finding β for the
standard soft-margin SVM is very similar to the objective
function minimized when finding β using logistic regression
with ℓࠁ regularization. Sort of...

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large
problems. Will explore more on next lab.

ࠅࠅ

