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data leakage

As we saw in the text generation lab, machine learning algorithms
are prone to leak information about their training data:

Here, our generative model revealed entire sentences from the
training input. This is a quality issue, but can also be a privacy
issue.
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data leakage

Many modern ML systems trained on user data.

• Smart Compose in Gmail (trained on user emails).
• Generative AI for medical record taking (trained on patient

health data).
• Github Copilot trained on public and private repositories.
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data leakage

Even if models do not directly generate private data, it can
sometimes be extracted from them.

Perplexity = inverse likelihood. So secret is not likely to be
generated, but we can find it if we look for sequences with higher
likelihood.
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the privacy challenge

How do we balance privacy concerns with the desire to train
models on as much data as possible?
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formalizing privacy

There have been many many attempts to formalize what it means
for a machine learning algorithm or system to be private.

Differential Privacy has become the gold standard definition.

Clear theoretical founding, widely used in implemented systems
(TensorFlow, US Census statistics, Apple User data, etc.)
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differential privacy

Definition based on notation of neighboring datasets.

Definition: A dataset X = [x1, . . . , xn] is neighbors of a dataset
X′ = [x′1, . . . , x′n] if:

xi = x′i for all but one value of i ∈ {1, . . . n}.

I.e., xj ̸= x′j for a single index j.

Alernative but closely related definition: X and X′ are
neighbors if X′ can be obtained by adding or removing a single
data point from X.
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differential privacy

Definition
An algorithm A satisfies ϵ-differential privacy if, for any two
neighboring datasets X, X′, and any possible output of the
algorithm z,

Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

In the context of machine learning, A could be the training
procedure and z could be, e.g., the model weights.

In the context of databases/statistical applications, A might
implement a simple statistic function like the mean:

1
n

n∑
i=1

xi.
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differential privacy

Definition
An algorithm A satisfies ϵ-differential privacy if, for any two
neighboring datasets X, X′, and any possible output of the
algorithm z, Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

Think of ϵ as a reasonably small constant. E.g. ϵ ∈ (0, 5]. For
small ϵ, eϵ ≈ (1 + ϵ).
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differential privacy

Definition
An algorithm A satisfies ϵ-differential privacy if, for any two
neighboring datasets X, X′, and any possible output of the
algorithm z, Pr[A(X) = z] ≤ eϵ Pr[A(X′) = z].

In words, differential privacy says that including an individuals data
in a dataset X can only increase or decrease the probability of
observing any particular output by a small factor.

Inherently a property of randomized algorithms. Obtaining
differentially private machine learning methods will require adding
randomness to the training process.
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differential privacy properties

Postprocessing property: If an algorithm A(X) is ϵ-DP, then
B(A(X)) is ϵ-DP for any (possibly non-private) algorithm B.

Composition property: If an algorithm A1 is ϵ1-DP and A2 is
ϵ2-DP, then B(A1(X),A2(X)) is (ϵ1 + ϵ2)-DP.
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differential privacy

There are many ways to add randomness. Perhaps the most
common is noise injection.

Simple example: Suppose X contains scalar values
x1, . . . , xn ∈ {0, 1}. Suppose we want to compute the average,
Q(X) = 1

n
∑n

i=1 xi.

Naively, adding or removing a point from the dataset changes the
average by ± 1

n with probability 1, so, naively, a mean computation
is not differentially private.

Differentially Private Estimate of Q:

• Generate an appropriate random number η.
• Return Q(X) + η.
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noise injection

Example = X = {0, 1, 1, 0, 0, 0},X′ = {0, 1, 1, 0, 1, 0}.

Trade-off between privacy and accuracy.
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what type of noise and how much?

Theorem (Laplace Mechanism)
For a function Q with sensitivity ∆Q,

A(X) = Q(X) + Lap(∆Q/ϵ)

is ϵ-differentially private.

Sensitiviy ∆Q = maxneighboring X,X′ |Q(X)− Q(X′)|.

What is ∆Q for Q(X) = 1
n
∑n

i=1 xi?

Lap(b) is a Laplacian random variable with parameter b (which
means variance 2b2). PDF is:

pb(η) =
1
2be−|η|/b
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laplace mechanism analysis

Theorem (Laplace Mechanism)
For a function Q with sensitivity ∆Q,
A(X) = Q(X) + Lap(∆Q/ϵ) is ϵ-differentially private.

Proof: For any possible output z,

• Pr[A(X) = z] = 1
2(∆Q/ϵ)

e−|Q(X)−z|/(∆Q/ϵ)

• Pr[A(X′) = z] = 1
2(∆Q/ϵ)

e−|Q(X′)−z|/(∆Q/ϵ)

Pr[A(X) = z]
Pr[A(X′) = z] = e−(|Q(X)−z|−|Q(X′)−z|)/(∆Q/ϵ)

≤ e
|Q(X)−Q(X′)|

∆Q/ϵ ≤ eϵ.
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what do we pay in terms of accuracy?

Lap(b) has standard deviation
√

2b. Like Gaussian distribution,
Laplace random variables usually fall within a few standard
deviations of the mean:
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what do we pay in terms of accuracy?

Standard deviation =
√

2 · ∆Q
ϵ .

For x1, . . . , xn ∈ [0, 1], Q(X) = 1
n
∑n

i=1 xi, we have that:

∆Q =
2
n .

Overall error from adding noise:

O
(

1
ϵn

)
Very reasonable if n is large!

E.g., if n = 10, 000 can get error roughly .001 on mean estimate
with privacy parameter ϵ = .1.
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what about more complex functions?

In machine learning applications, Q is an entire training procedure,
and the output is vector of parameters.

Q(X, y) → β ∈ Rd.

Challenges:

• Very hard to estimate the sensitivity to figure out how much
noise should be added.

• If some parameters are more sensitive to noise, we could
change the models output drastically.
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differentially private (stochastic) gradient descent)

Main idea: Typically Q(X, y) is computed by running gradient
descent on a loss function L(β). Instead of directly adding noise to
Q(X, y), add noise at each step of gradient descent.

Basic Gradient descent algorithm:

• Choose starting point β(0).
• For i = 0, . . . ,T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T).
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differentially private (stochastic) gradient descent)

Typical loss function in machine learning have finite sum structure.

L(β) =
n∑

j=1
ℓ(β, xj, yj)

By linearity:

∇L(β) =
n∑

j=1
∇ℓ(β, xj, yj)

Looks just like our mean estimation problem! Can bound the
contribution of each data example (xj, yj) to the gradient to get a
sensitivity, then add noise.
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differentially private (stochastic) gradient descent)

Due to a 2016 paper by Martín Abadi, Andy Chu, Ian Goodfellow,
H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang.

DP-SGD:

• Choose starting point β(0).
• For i = 0, . . . ,T:

• β(i+1) = β(i) − η(∇L(β(i)) + ri)

• Return β(T).

Above each ri is a random Gaussian vector.

Leading way to incorperate privacy into training machine
learning models. Implented natively, e.g., in TensorFlow.
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