
CS-GY 6923: Lecture 6
Gradient Descent + Stochastic Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

1



AUTOREGRESSIVE TEXT GENERATION LAB

Lots of great ideas. Two popular ones:

• Using a different “temperature” for sampling.
• Backing off to a simple model (e.g., short n-gram) some of
the time to add randomness.

2



LOGISTIC REGRESSION

Goal: Minimize the logistic loss:

L(β) = −
n∑
i=1

yi log(h(βTxi)) + (1− yi) log(1− h(βTxi))

I.e. find β∗ = argmin L(β). How should we do this?

3



LOGISTIC REGRESSION

Set all partial derivatives to 0! Recall that ∇L(β) is the length d
vector containing all partial derivatives evaluated at β:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd



4



LOGISTIC REGRESSION GRADIENT

L(β) = −
n∑
i=1

yi log(h(βTxi)) + (1− yi) log(1− h(βTxi))

Let X ∈ Rd×n be our data matrix with x1, . . . , xn ∈ Rd as rows.
Let y = [y1, . . . , yn]. A calculation gives (see notes on webpage):

∇L(β) = XT (h(Xβ)− y)

where h(Xβ) = 1
1+e−Xβ . Here all operations are entrywise. I.e in

Python you would compute:

5



LOGISTIC REGRESSION GRADIENT

To find β minimizing L(β) we typically start by finding a β

where:

∇L(β) = XT (h(Xβ)− y) = 0

• In contrast to what we saw when minimizing the squared
loss for linear regression, there’s no simple closed form
expression for such a β!

• This is the typical situation when minimizing loss in
machine learning: linear regression was a lucky exception.

• Main question: How do we minimize a loss function L(β)
when we can’t explicitly compute where it’s gradient is 0?

6



MINIMIZING LOSS FUNCTIONS

Much better idea. Use a guided search approach.

• Start with some β(0), and at each step try to change β

slightly to reduce L(β).
• Hopefully find an approximate minimizer for L(β) much
more quickly than brute-force search.

• Concrete goal: Find β with

L(β) < min
β

L(β) + ϵ

for some small error term ϵ.

7



GRADIENT DESCENT

Gradient descent: A greedy search algorithm for minimizing
functions of multiple variables (including loss functions) that
often works amazingly well. What does greedy mean here?.

The single most important computational tool in machine
learning. And it’s remarkable simple + easy to implement.

8



GRADIENT DESCENT VISUALIZATION

9



GRADIENT DESCENT VISUALIZATION

9



GRADIENT DESCENT VISUALIZATION

9



GRADIENT DESCENT VISUALIZATION

9



GRADIENT DESCENT VISUALIZATION

9



GRADIENT DESCENT VISUALIZATION

9



GRADIENT DESCENT VISUALIZATION

9



FIRST ORDER OPTIMIZATION

First order oracle model: Given a function L to minimize,
assume we can:

• Function oracle: Evaluate L(β) for any β.
• Gradient oracle: Evaluate ∇L(β) for any β.

These are very general assumptions. Gradient descent will not
use any other information about the loss function L when
trying to find a β which minimizes L.

10



GRADIENT DESCENT

Basic Gradient descent algorithm:

• Choose starting point β(0).
• For i = 0, . . . , T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T).

η > 0 is a step-size parameter. Also called the learning rate.

Why does this method work?

First observation: if we actually reach the minimizer β∗ then
we stop.

11



INTUITION

Consider a 1-dimensional loss function. I.e. where β is just a
single value. Our update step is β(i+1) = β(i) − ηL′(β(i))

12



GRADIENT DESCENT IN 1D

Mathematical way of thinking about it:

By definition, L′(β) = lim∆→0
L(β+∆)−L(β)

∆ . So for small values of
∆, we expect that:

L(β +∆)− L(β) ≈ ∆ · L′(β).

We want L(β +∆) to be smaller than L(β), so we want ∆ · L′(β)
to be negative.

This can be achieved by choosing ∆ = −L′(β), or really
∆ = −η · L′(β) for positive step size η.

β(i+1) = β(i) − ηL′(β(i))

13



DIRECTIONAL DERIVATIVES

For high dimensional functions (β ∈ Rd), our update involves a
vector v ∈ Rd. At each step:

β ← β + v.

Question: When v is small, what’s an approximation for
L(β + v)− L(β)?

L(β + v)− L(β) ≈

14



DIRECTIONAL DERIVATIVES

We have

L(β + v)− L(β) ≈ ∂L
∂β1

v1 +
∂L
∂β2

v2 + . . .+
∂L
∂βd

vd

= ⟨∇L(β), v⟩.

How should we choose v so that L(β + v) < L(β)?

0Formally, you might remember that we can define the directional
derivative of a multivariate function: DvL(β) = lim∆→0

L(β+∆v)−L(β)
∆

. We have
that DvL(β) = ⟨∇L(β), v⟩.

15



STEEPEST DESCENT

Claim (Gradient descent = Steepest descent1)
−∇L(β)
∥∇L(β)∥2 = argminv,∥v∥2=1⟨∇L(β), v⟩

Recall: For two vectors a,b,

⟨a,b⟩ = ∥a∥2∥b∥2 · cos(θ)

1We could have restricted v using a different norm. E.g. ∥v∥1 ≤ 1 or
∥v∥∞ = 1. These choices lead to variants of generalized steepest descent..

16



VISUALIZING IN 2D

17



STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)
−∇L(β)
∥∇L(β)∥2 = argminv,∥v∥2=1⟨∇L(β), v⟩

18



GRADIENT DESCENT

Basic Gradient descent (GD) algorithm:

• Choose starting point β(0).
• For i = 0, . . . , T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T).

• Theoretical questions: Does gradient descent always
converge to the minimum of the loss function L? Can you
prove how quickly?

• Practical questions: How to choose η? Any other
modifications needed for good practical performance?

19



BASIC CLAIM

• For sufficiently small η, every step of GD either
1. Decreases the function value.
2. Gets stuck because the gradient term equals 0

Claim
For sufficiently small η and a sufficiently large number of
iterations T, gradient descent will converge to a local
minimum or stationary point of the loss function β̃

∗. I.e. with

∇L(β̃∗
) = 0.

20



BASIC CLAIM

You can have stationary points that are not minima (local
maxima, saddle points). In practice, always converge to local
minimum.

Very unlikely to land precisely on another stationary point and
get stuck. Non-minimal stationary points are “unstable”.

21



CONVEX FUNCTION

For a broad class of functions, GD converges to global minima.

Definition (Convex)
A function L is convex iff for any β1,β2, λ ∈ [0, 1]:

(1− λ) · L (β1) + λ · L(β2) ≥ L ((1− λ) · β1 + λ · β2)

22



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex. 23



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.

24



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex.
25



CONVERGENCE OF GRADIENT DESCENT

What functions are convex?

• Least squares loss for linear regression.
• ℓ1 loss for linear regression.
• Either of these with and ℓ1 or ℓ2 regularization penalty.
• Logistic regression! Logistic regression with regularization.
• Many other models in machine leaning.

26



NON-CONVEX

What functions in machine learning are not convex? Loss
functions involving neural networks, matrix completion
problems, mixture models, many more.

Vary in how “bad” the non-convexity is. For example, some
matrix factorization problems are non-convex but still only
have global minima.

27



CONVEXITY WARM UP

Prove that L(β) = β2 is convex.

To show: For any β1, β2, λ ∈ [0, 1],
λL(β1) + (1− λ)L(β2) ≥ L(λ · β1 + (1− λ) · β2)

AM-GM Inequality:

28



CONVEXITY WARM UP

Prove that L(β) = β2 is convex.

To show: For any β1, β2, λ ∈ [0, 1],
λL(β1) + (1− λ)L(β2) ≥ L(λ · β1 + (1− λ) · β2)

AM-GM Inequality:

29



CONVEXITY WARM UP

Trick for differentiable single variable functions: L(β) is
convex if and only if L′′(β) ≥ 0 for all β.

Analog for higher dimensional functions is clunky. Need to
prove that the Hessian matrix, H ∈ Rd×d, is positive
semi-definite.

Hij =
∂2L

∂βi∂βj 30



CONVEXITY OF LEAST SQUARES REGRESSION LOSS

Prove that L(β) = ∥Xβ − y∥22 is convex. I.e. that:

∥X(λβ1 + (1− λ)β1)− y∥22 ≤ λ∥Xβ1 − y∥22 + (1− λ)∥Xβ2 − y∥22

Left hand side:

∥X(λβ1 + (1− λ)β1)− y∥22 = λ2βT
1X

TXβ1 + 2λ(1− λ)βT
1X

TXβ2 + (1− λ)2βT
2X

TXβ2

+ yTy− 2yT(λXβ1 + (1− λ)λXβ2)

Right hand side:

λ∥Xβ1 − y∥22 + (1− λ)∥Xβ2 − y∥22 = λβT
1X

TXβ1 + λyTy− 2yT(λXβ1) + (1− λ)βT
2X

TXβ2

+ (1− λ)yTy− 2yT((1− λ)Xβ2)

Need to show:

λ2βT
1X

TXβ1 + 2λ(1− λ)βT
1X

TXβ2 + (1− λ)2βT
2X

TXβ2 ≤ λβT
1X

TXβ1 + (1− λ)βT
2X

TXβ2

31



CONVEXITY OF LEAST SQUARES REGRESSION LOSS

Vector version of AM-GM:

∥a− b∥22 = aTa− 2aTb+ bTb ≥ 0
2aTb ≤ aTa+ bTb

λ2βT
1X

TXβ1 + 2λ(1− λ)βT
1X

TXβ2 + (1− λ)2βT
2X

TXβ2

≤ λ2βT
1X

TXβ1 + λ(1− λ)(βT
1X

TXβ1 + βT
2X

TXβ2) + (1− λ)2βT
2X

TXβ2

= λβT
1X

TXβ1 + (1− λ)βT
2X

TXβ2

Good exercise: Prove that L(β) = α∥β∥22 is convex.

32



RATE OF CONVERGENCE FOR CONVEX FUNCTIONS

Claim: For any convex function L(β), gradient descent with
sufficiently small step size η converges to the global minimum
β∗ of L.

• Choose starting point β(0).
• For i = 1, . . . , T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T).

33



RATE OF CONVERGENCE FOR CONVEX FUNCTIONS

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on L(β).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

34



CONVERGENCE ANALYSIS FOR CONVEX FUNCTIONS

Assume:

• L is convex.
• Lipschitz function: for all β, ∥∇L(β)∥2 ≤ G.
• Starting radius: ∥β∗ − β(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point β(0). E.g. β(0) = 0.
• η = R

G
√
T

• For i = 0, . . . , T:
• β(i+1) = β(i) − η∇L(β(i))

• Return β̂ = argminβ(i) L(β).

35



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
, then L(β̂) ≤ L(β∗) + ϵ.

Proof is made tricky by the fact that L(β(i)) does not improve
monotonically. We can “overshoot” the minimum. This is why
the step size needs to depend on 1/G. 36



GRADIENT DESCENT

Definition (Alternative Convexity Definition)
A function L is convex if and only if for any β,α:

L(α)− L(β) ≤ ∇L(β)T(α− β)

37



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

L(β(i))− L(β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η +

ηG2

2

“If you are far away, you make progress towards the optimum”.

Claim 1(a): For all i = 0, . . . , T,

∇L(β(i))T(β(i) − β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η +

ηG2

2

Claim 1 follows from Claim 1(a) by our new definition of convexity.

38



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Claim 1(a): For all i = 0, . . . , T, 2

∇L(β(i))T(β(i) − β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η +

ηG2

2

2Recall that ∥x− y∥22 = ∥x∥22 − 2xTy+ ∥y∥22.

39



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

L(β(i))− L(β∗) ≤ ∥β
(i) − β∗∥22 − ∥β(i+1) − β∗∥22

2η +
ηG2

2
Telescoping sum:

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β(1) − β∗∥22
2η +

ηG2

2

+
∥β(1) − β∗∥22 − ∥β(2) − β∗∥22

2η +
ηG2

2

+
∥β(2) − β∗∥22 − ∥β(3) − β∗∥22

2η +
ηG2

2
...

+
∥β(T−1) − β∗∥22 − ∥β(T) − β∗∥22

2η +
ηG2

2

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β(T) − β∗∥22
2η +

TηG2

2

1
T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ R2

2Tη +
ηG2

2

40



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Telescoping sum:

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β
(T) − β∗∥22

2η +
TηG2

2

1
T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ R2

2Tη +
ηG2

2

41



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
and η = R

G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Final step:

1
T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ϵ

[
1
T

T−1∑
i=0

L(β(i))

]
− L(β∗) ≤ ϵ

We always have that mini L(β(i)) ≤ 1
T
∑T−1

i=0 L(β
(i)), so this is

what we return:

L(β̂) = min
i∈1,...,T

L(β(i)) ≤ L(β∗) + ϵ.

42



SETTING LEARNING RATE/STEP SIZE

Gradient descent algorithm for minimizing L(β):

• Choose arbitrary starting point β(0).
• For i = 1, . . . , T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(T).

In practice we don’t set the step-size/learning rate parameter
η = R

G
√
T , since we typically don’t know these parameters. The

above analysis can also be loose for many functions.

η needs to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm.

43



LEARNING RATE

Precision in choosing the learning rate η is not super
important, but we do need to get it to the right order of
magnitude.

44



CONVERGENCE ANALYSIS FOR CONVEX FUNCTIONS

Assume:

• L is convex.
• Lipschitz function: for all β, ∥∇L(β)∥2 ≤ G.
• Starting radius: ∥β∗ − β(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point β(0). E.g. β(0) = 0.
• η = R

G
√
T

• For i = 0, . . . , T:
• β(i+1) = β(i) − η∇L(β(i))

• Return β̂ = argminβ(i) L(β).

This result tells us exactly how to set the learning rate η.
45



SETTING LEARNING RATE

But...

• We don’t usually know R or G in advance. We might not
even know T.

• Even if we did, setting η = R
G
√
T tends to be a very

conservative in practice. The choice 100% leads to
convergence, but usually to fairly slow convergence.

• What if L is not convex?

46



FIRST APPROACH: EXPONENTIAL GRID SEARCH

Just as in regularization, search over a grid of possible
parameters:

η = [2−5, 2−4, 2−3, . . . , 29, 210].

Can manually check if we are converging too slow or
undershooting by plotting the optimization curve.

47



LEARNING RATE

Plot’s of loss vs. number of iterations for three difference
choices of step size.

48



BACKTRACKING LINE SEARCH/ARMIJO RULE

Recall: If we set β(i+1) ← β(i) − η∇L(β(i)) then:

L(β(i+1)) ≈ L(β(i))− η
⟨
∇L(β(i)),∇L(β(i))

⟩
= L(β(i))− η∥∇L(β(i))∥22.

Approximation holds for small η. If it holds, maybe we could
get away with a larger η. If it doesn’t, we should probably

reduce η.

49



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

• Choose arbitrary starting point β.

• Choose starting step size η.

• Choose c < 1 (typically both c = 1/2)

• For i = 1, . . . , T:

• β(new) = β − η∇L(β)
• If L(β(new)) ≤ L(β)− c · η∇L(β)

• β ← β(new)

• η ← 2η
• Else

• η ← η/2

Always decreases objective value, works very well in practice.

50



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

Always decreases objective value, works very well in practice. We
will see this in a lab.

51



COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 ∇L(β) = 2XT (Xβ − y)

• Runtime of closed form solution β∗ = (XTX)−1XTy:
• Runtime of one GD step:

52



COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = −
n∑
i=1

yi log(h(βTxi)) + (1− yi) log(1− h(βTxi))

∇L(β) = XT (h(Xβ)− y)

• No closed form solution.
• Runtime of one GD step:

53



COMPLEXITY OF GRADIENT DESCENT

Frequently the complexity is O(nd) if you have n data-points
and d parameters in your model. This will also be the case for
neural networks.

Not bad, but the dependence on n can be a lot! n might be on
the order of thousands, or millions, or trillions.

54



TRAINING NEURAL NETWORKS

Stochastic Gradient Descent (SGD).

• Powerful randomized variant of gradient descent used to
train machine learning models when n is large and thus
computing a full gradient is expensive.

Applies to any loss with finite sum structure:

L(β) =
n∑
j=1

ℓ(β, xj, yj)

55



STOCHASTIC GRADIENT DESCENT

Let Lj(β) denote ℓ(β, xj, yj).

Claim: If j ∈ 1, . . . ,n is chosen uniformly at random. Then:

E
[
n · ∇Lj(β)

]
= ∇L(β).

∇Lj(β) is called a stochastic gradient.

56



STOCHASTIC GRADIENT DESCENT

SGD iteration:

• Initialize β(0).
• For i = 0, . . . , T− 1:

• Choose j uniformly at random from {1, 2, . . . ,n}.
• Compute stochastic gradient g = ∇Lj(β(i)).
• Update β(t+1) = β(t) − η · ng

Move in direction of steepest descent in expectation.

Cost of computing g is independent of n!

57



COMPLEXITY OF STOCHASTIC GRADIENT DESCENT

Example: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 =
n∑
j=1

(yj − βTxj)2

• Runtime of one SGD step:

58



STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

59



STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

60



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Typical implementation: Shuffled Gradient Descent.

Instead of choosing j independently at random for each
iteration, randomly permute (shuffle) data and set j = 1, . . . ,n.
After every n iterations, reshuffle data and repeat.

• Relatively similar convergence behavior to standard SGD.
• Important term: one epoch denotes one pass over all
training examples: j = 1, . . . , j = n.

• Convergence rates for training ML models are often
discussed in terms of epochs instead of iterations.

61



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch size s,

E

[
n
s

s∑
i=1
∇Lji(β)

]
= ∇L(β).

if j1, . . . , js are chosen independently and uniformly at random
from 1, . . . ,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?

62



MINI-BATCH GRADIENT DESCENT

• Overall faster convergence (fewer iterations needed).

63



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Mod. 2: Per-parameter adaptive learning rate.

Let g =

g1...
gp

 be a stochastic or batch stochastic gradient. Our

typical parameter update looks like:

β(t+1) = β(t) − ηg.

We’ve already seen a simple method for adaptively choosing
the learning rate/step size η.

64



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Mod. 2: Per-parameter adaptive learning rate.

In practice, ML lost functions can often be optimized much
faster by using “adaptive gradient methods” like Adagrad,
Adadelta, RMSProp, and ADAM. These methods make updates
of the form:

βt+1 = βt −

η1 · g1
...

ηd · gd


So we have a separate learning rate for each entry in the
gradient (e.g. parameter in the model). And each η1, . . . , ηp is
chosen adaptively.

65



MIDTERM

• 1.5 hours long, but should take 1 hour. Here in the
classroom.

• Will have a short lecture after exam/break.
• You can bring in a single, 2-sided cheat sheet with terms,
definitions, etc.

• Mix of short answer questions (true/false, matching, etc.)
and questions similar to the homework but easier.

• Covers everything through last class. Don’t need to know
gradient descent or optimization.

66


