
CS-GY :ࠂࠁ69 Lecture 5
Linear Classification, Logistic Regression,
Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

COURSE ADMIN

• We will release solutions to HWࠀ shortly and I will go over
solutions next week in office hours.

• Lab ࠂ due next Tuesday.
• Written Homework ࠁ due the day after that. No slip days
for this one.

• Midterm exam on Friday .ࠇࠀ/߿ࠀ We will do an optional
lecture on a miscellaneous topic after the midterm.

ࠁ

MOTIVATING PROBLEM

Breast Cancer Biopsy: Determine if a breast lump in a patient
is malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.
• Stain and examine cells under microscope.
• Based on certain characteristics (shape, size, cohesion)
determine if likely malignant or not).

ࠂ

MOTIVATING PROBLEM

Demo: demo_breast_cancer.ipynb

Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)

Features: ߿ࠀ numerical scores about cell characteristics (Clump
Thickness, Uniformity, Marginal Adhesion, etc.) ࠃ

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

MOTIVATING PROBLEM

Data: (xࠀ, yࠀ), . . . , (xn, yn).

xi = ,ࠀ] ,ࠄ ࠃ . . . , [ࠁ contains score values.

Label yi ∈ ,߿} {ࠀ is ߿ if benign cells, ࠀ if malignant cells.

Goal: Based on scores (which would be collected manually, or
even learned on their own using an ML algorithm) predict if a
sample of cells is malignant or benign.

Approach:

• Naive Bayes Classifier can be extended to x with numerical
values (instead of binary values as seen before). Will see
on Homework .ࠁ

What are other classification algorithms people have heard of?
ࠄ

C 0 1 0 0 1 1 co)

-

k-NEAREST NEIGHBOR METHOD

k-NN algorithm: a simple but powerful baseline for
classification.

Training data: (xࠀ, yࠀ), . . . , (xn, yn) where yࠀ, . . . , yn ∈ ,ࠀ} . . . , q}.

Classification algorithm:

Given new input xnew,

• Compute sim(xnew, xࠀ), . . . , sim(xnew, xn).ࠀ

• Let xjࠀ , . . . , xjk be the training data vectors with highest
similarity to xnew.

• Predict ynew as majority(yjࠀ , . . . , yjk). Break ties any way you
want.

,sim(xnewࠀ xi) is any chosen similarity function, like ⟨xnew, xi⟩ or −∥xnew − xi∥ࠁ.

ࠅ

O
' l . . . 1 0

i t

@
similarity

- -

- - -

k-NEAREST NEIGHBOR METHOD

Data NN-ࠄ classifier

• Smaller k, more complex classification function.
• Larger k, more robust to noisy labels/class overlap.

ࠆ

÷÷÷....

O¥8.
-

k-NEAREST NEIGHBOR METHOD

Data NN-ࠀ classifier

• Smaller k, more complex classification function.
• Larger k, more robust to noisy labels/class overlap.

ࠇ

:÷O:: O C

MNIST IMAGE DATA

Especially good for large datasets with lots of repetition. Works
well on MNIST for example:

≈ %ࠄࠈ Accuracy out-of-the-box.

Can be improved to %ࠄ.ࠈࠈ with a fancy similarity function!ࠁ

One issue is that prediction can be computationally intensive...

Weࠁ will revisit this when we talk about kernel methods. ࠈ

I l

LINEAR CLASSIFICATION

ࠈ

BEGIN BY PLOTTING DATA

We pick two variables, Marginal Adhesion and Size Uniformity
and plot a scatter plot. Points with label ࠀ (malignant) are
plotted in blue, those with label ࠁ (benign) are plotted in green.

Lots of overlapping points! Hard to get a sense of the data.
߿ࠀ

o)

PLOTTING WITH JITTER

Simple + Useful Trick: data jittering. Add tiny random noise
(using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for
training, testing, etc.

ࠀࠀ

D O

BRAINSTORMING

Any ideas for possible classification rules for this data?

ࠁࠀ

T l

LINEAR CLASSIFIER

Given vector of predictors xi ∈ Rd (here d = (ࠁ find a parameter
vector β ∈ Rd and threshold λ.

• Predict yi = ߿ if ⟨xi,β⟩ ≤ λ.
• Predict yi = ࠀ if ⟨xi,β⟩ > λ

Line has equation ⟨x,β⟩ = λ.
ࠂࠀ

-

•

-
Lexi,B)

- Lx ,B?--A
%.

= M ,X I ?NIA,•
-

•

x

/ a

"r
•

' •
-

LINEAR CLASSIFIER

As long as we append a ࠀ onto each data vector xi (i.e. a
column of ones onto the data matrix X) like we did for linear

regression, an equivalent function is:

• Predict yi = ߿ if ⟨xi,β⟩ ≤ .߿
• Predict yi = ࠀ if ⟨xi,β⟩ > ߿

Line has equation ⟨x,β⟩ = .߿
ࠃࠀ

I
•

•

−߿ ࠀ LOSS

Question: How do we find a good linear classifier
automatically?

Loss minimization approach (first attempt):

• Modelࠂ:

fβ(x) = [⟨x,β⟩ > [߿

• Loss function: −߿“ ࠀ Loss”

L(β) =
n∑

i=ࠀ

|fβ(xi)− yi|

ࠂ [event] is the indicator function: it evaluates to ࠀ if the argument inside is
true, ߿ if false.

ࠄࠀ

> 11- I l i o

I l - o l= ?

I O - o l =
O

/O-l) = 1-
. £-

- EI,Y i(fastxi)-y;) t h-si)(yi-fos
k id

−߿ ࠀ LOSS

Problem with −߿ ࠀ loss:

• The loss function L(β) is not differentiable because fβ(x)
is discontinuous.

• Impossible to take the gradient, very hard to minimize loss
to find optimal β.

• Non-convex function (will make more sense next lecture).
ࠅࠀ

i ¥
#

LINEAR CLASSIFIER VIA SQUARE LOSS

Loss minimization approach (second attempt):

• Model:

fβ(x) = [⟨x,β⟩ > [ࠁ/ࠀ

• Loss function: “Square Loss”

L(β) =
n∑

i=ࠀ

(⟨x,β⟩ − yi)ࠁ

Intuitively tries to make ⟨x,β⟩ close to ߿ for examples in class
,߿ close to ࠀ for examples in class .ࠀ

ࠆࠀ

Oo:O.

LINEAR CLASSIFIER VIA SQUARE LOSS

We can solve for β by just solving a least squares multiple
linear regression problem.

Do you see any issues here?

ࠇࠀ

(C x ,
B) - Y e .

t . j

\ O : "i '

LINEAR CLASSIFIER VIA SQUARE LOSS

Problem with square loss:

• Loss increases if ⟨x,β⟩ > ࠀ even if correct label is .ࠀ Or if
⟨x,β⟩ < ߿ even if correct label is .߿

• Intuitively we don’t want to “punish” these cases.

ࠈࠀ

Opl,,,,,§,,,,,,,,.
...

I o

LOGISTIC REGRESSION

Let h(z) be the logistic/sigmoid function: h(z) = ࠀ
e−z+ࠀ

As discussed in previous lecture, can think of this function as
mapping xTβ to a probability that the true label is .ࠀ If xTβ ≫ ߿
then the probability is close to ,ࠀ if xTβ ≪ ߿ then the
probability is close to .߿ ߿ࠁ

H t t p "
qr .L xB7

LOGISTIC REGRESSION

Loss minimization approach (this works!):

• Model: h(⟨β, x⟩) = ࠀ
e−⟨β,x⟩+ࠀ .

fβ(x) = [h(⟨β, x⟩) > [ࠁ/ࠀ
= [⟨x,β⟩ > [߿

• Loss function: “Logistic loss” aka “binary cross-entropy
loss”

L(β) = −
n∑

i=ࠀ

yi log(h(⟨β, x⟩)) + −ࠀ) yi) log(ࠀ− h(⟨β, x⟩))

ࠀࠁ

. . -
§

LOGISTIC LOSS

Logistic Loss:
L(β) = −

∑n
i=ࠀ yi log(h(⟨β, x⟩)) + −ࠀ) yi) log(ࠀ− h(⟨β, x⟩))

ࠁࠁ

O
,

t o

LOGISTIC LOSS

Logistic Loss:
L(β) = −

∑n
i=ࠀ yi log(h(⟨β, x⟩)) + −ࠀ) yi) log(ࠀ− h(⟨β, x⟩))

ࠂࠁ

LOGISTIC LOSS

• Convex function in β, can be minimized using gradient
descent.

• Works well in practice.
• Good Bayesian motivation (discussed last class).

Fit using logistic regression/log loss.
ࠃࠁ

=
µ

) w

NON-LINEAR TRANSFORMATIONS

How would we learn a classifier for this data using logisitic
regression?

This data is not linearly separable or even approximately
linearly separable.

ࠄࠁ

0

NON-LINEAR TRANSFORMATIONS

Transform each x = [xࠀ, xࠁ] to x = ,ࠀ] xࠀ, xࠁ, xࠀࠁ , xࠁࠁ, xࠀxࠁ]

• Predict class ࠀ if xࠀࠁ + xࠁࠁ ≥ λ.
• Predict class ߿ if xࠀࠁ + xࠁࠁ < λ.

This is a linear classifier on our transformed data set. Logisitic
regression might learn β = [−λ, ,߿ ,߿ ,ࠀ ,ࠀ .[߿ ࠅࠁ

'÷÷÷÷÷i÷÷"er¥×,-2¥'""'
"

(C-A,O ,O , 41,07, (1,x.,....-X.xD)= y . I + o . X ,t O - x ,+ l -X?+ l-Xi
t o - x .x ,

= y) + × ?+ X }

I

NON-LINEAR TRANSFORMATIONS

View as mapping data to a higher dimensional space, where it
is linearly separable.

Lots more on this in future lecture!

ࠆࠁ

X.' t x ? (Lam-sit

Return
a t
3:40pm

ERROR IN CLASSIFICATION

Once we have a classification algorithm, how do we judge its
performance?

• Simplest answer: Error rate = fraction of data examples
misclassified in test set.

• What are some issues with this approach?

Think back to motivating problem of breast cancer detection.

ࠇࠁ

ERROR IN CLASSIFICATION

• Precision: Fraction of
positively labeled
examples (label (ࠀ which
are correct.

• Recall: Fraction of true
positives that we labeled
correctly with label .ࠀ

Question: Which should we
optimize for medical diagnosis?
(Here “positive” label means
the patient has the disease.)

ࠈࠁ

I o

ERROR IN CLASSIFICATION

Possible logistic regression workflow:

• Learn β using logistic loss.
• Predict yi = ߿ if ⟨β, x⟩ < λ, yi = ࠀ if ⟨β, x⟩ ≥ λ where λ = ߿
to start.

• Increase λ to improve precision. Decrease λ to improve
recall.

߿ࠂ

|

CLASS IMBALANCE

One very common cause of poor precision or recall is class
imbalance. A common way of dealing with this is to subsample
down the larger class.

This is actually what was done with the breast cancer dataset.

ࠀࠂ

O '
i i .
÷i÷÷
÷.

o ro .

.

÷:
&

=

MULTI-CLASS

What about when y ∈ ,ࠀ} . . . , q} instead of y ∈ ,߿} .{ࠀ

Two common options for reducing multi-class problems to
binary problems:

• One-vs.-all (most common, also called one-vs.-rest)
• One-vs.-one (slower, but can be more effective)

ࠁࠂ

£ "

ONE VS. REST

• For q classes train q classifiers. Obtain parameters β(ࠀ), . . . ,β(q).

• Assign y to class i if ⟨β(i), x⟩ ≥ .߿ Could be ambiguous!

• Better: Assign y to class i with maximum value of ⟨β(i), x⟩.
ࠂࠂ

§,

i
→
last'E

' a i
X -

ONE VS. REST

• For q classes train q(q−ࠀ)
ࠁ classifiers.

• Assign y to class which i which wins in the most number of
head-to-head comparisons.

ࠃࠂ

%
: -

(E)= '¥ "

3 ¥= 3I
18¥.-75

0
I

×

ONE VS. ONE

Hard case for one-vs.-all.

• One-vs.-one would be a better choice here.

But one-vs.-one can be super expensive! E.g when q = ߿߿ࠀ or
q = .߿߿߿ࠀ

ࠄࠂ

it:p:

MULTICLASS LOGISTIC REGRESSION

More common modern alternative: If we have q classes, train
a single model with q parameter vectors β(ࠀ), . . . ,β(q), and
predict class i = argmaxi⟨β(i), x⟩.

Same idea as one-vs.-rest, but we treat [β(ࠀ), . . . ,β(q)] as a
single length qd parameter vector which we optimize to
minimize a single joint loss function. We do not train the
parameter vectors separately.

What’s a good loss function?

ࠅࠂ

- - =

qd
µ1,
÷,

MULTICLASS LOGISTIC REGRESSION

Softmax function:
⎡

⎢⎣
⟨β(ࠀ), x⟩

...
⟨β(q), x⟩

⎤

⎥⎦ softmax−−−−→

⎡

⎢⎢⎣

e⟨β(ࠀ),x⟩/
∑q

i=ࠀ e
⟨β(i),x⟩

...
e⟨β(q),x⟩/

∑q
i=ࠀ e

⟨β(i),x⟩

⎤

⎥⎥⎦

Softmax takes in a vector of numbers and converts it to a
vector of probabilities:

[
߿ࠀ− ࠃ ࠀ ߿ ࠄ−

]
→

[
߿߿. ࠂࠈ. ࠃ߿. ࠁ߿. ࠀ߿.

]

ࠆࠂ

-

467: ¥11
end /

as,x 7 E P A

MULTICLASS LOGISTIC REGRESSION

Multi-class cross-entropy:

L(β(ࠀ), . . . ,β(q)) = −
∑

i:yi=ࠀ

log
e⟨β

⟨xi,(ࠀ)
∑q

j=ࠀ e⟨β
(j),xi⟩

− . . .−
∑

i:yi=q

log
e⟨β

(q,xi⟩
∑q

j=ࠀ e⟨β
(j),xi⟩

= −
n∑

i=ࠀ

q∑

ℓ=ࠀ
[yi = ℓ] · log e⟨β(ℓ),xi⟩

∑q
j=ࠀ e⟨β

(j),xi⟩

Binary cross-entropy:

L(β) = −
n∑

i=ࠀ

yi log(h(⟨β, xi⟩)) + −ࠀ) yi) log(ࠀ− h(⟨β, xi⟩))

= −
∑

i:yi=ࠀ

log(h(⟨β, xi⟩))−
∑

i:yi=߿

log(ࠀ− h(⟨β, xi⟩))

Not exactly the same... but can show equivalent if you set
β(߿) = β and β(ࠀ) = −β.

ࠇࠂ

- € 5 " ¥¥ j÷ t o

.

I" '"
- - - -

MULTICLASS LOGISTIC REGRESSION

Multi-class cross-entropy:

L(β) = −
n∑

i=ࠀ

yi log(h(⟨β, xi⟩)) + −ࠀ) yi) log(ࠀ− h(⟨β, xi⟩))

= −
∑

i:yi=ࠀ

log(h(⟨β, xi⟩))−
∑

i:yi=߿

log(ࠀ− h(⟨β, xi⟩))

ࠈࠂ

÷....÷÷i÷÷÷÷I÷

i . :÷:i÷*."

ERROR IN (MULTICLASS) CLASSIFICATION

Confusion matrix for k classes:

• Entry i, j is the fraction of class i items classified as class j.
• Useful to see whole matrix to visualize where errors occur.

߿ࠃ

-
U x K

i :&""
I

OPTIMIZATION

߿ࠃ

LOGISTIC REGRESSION

Goal: Minimize the logistic loss:

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

I.e. find β∗ = argmin L(β). How should we do this?

ࠀࠃ

- - -

LOGISTIC REGRESSION GRADIENT

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

Let X ∈ Rd×n be our data matrix with xࠀ, . . . , xn ∈ Rd as rows.
Let y = [yࠀ, . . . , yn]. A calculation gives (see notes on webpage):

∇L(β) = XT (h(Xβ)− y)

where h(Xβ) = ࠀ
e−Xβ+ࠀ . Here all operations are entrywise. I.e in

Python you would compute:

ࠁࠃ

1¥,

" ' " '" " ' " ' " '" " ⇒

-

I

LOGISTIC REGRESSION GRADIENT

To find β minimizing L(β) we typically start by finding a β

where:

∇L(β) = XT (h(Xβ)− y) = ߿

• In contrast to what we saw when minimizing the squared
loss for linear regression, there’s no simple closed form
expression for such a β!

• This is the typical situation when minimizing loss in
machine learning: linear regression was a lucky exception.

• Main question: How do we minimize a loss function L(β)
when we can’t explicitly compute where it’s gradient is ?߿

ࠂࠃ

- -

t

MINIMIZING LOSS FUNCTIONS

Always an option: Brute-force search. Test our many possible
values for β and just see which gives the smallest value of
L(β).

• As we saw on Lab ,ࠀ this actually works okay for
low-dimensional problems (e.g. when β has ࠀ or ࠁ entries).

• Problem: Super computationally expensive in
high-dimension. For β ∈ Rd, run time grows as:

ࠃࠃ

• - -

=

Gridsize)
d zod

MINIMIZING LOSS FUNCTIONS

Much Better idea. Some sort of guided search for a good of β.

• Start with some β(߿), and at each step try to change β

slightly to reduce L(β).
• Hopefully find an approximate minimizer for L(β) much
more quickly than brute-force search.

• Concrete goal: Find β with

L(β) < min
β

L(β) + ϵ

for some small error term ϵ.

ࠄࠃ

-

§ ,
E E

GRADIENT DESCENT

Gradient descent: A greedy search algorithm for minimizing
functions of multiple variables (including loss functions) that
often works amazingly well.

The single most important computational tool in machine
learning. And it’s remarkable simple + easy to implement.

ࠅࠃ

OPTIMIZATION ALGORITHMS

Just one method in a huge class of algorithms for numerical
optimization. All of these methods are important in ML.

ࠆࠃ

0

FIRST ORDER OPTIMIZATION

First order oracle model: Given a function L to minimize,
assume we can:

• Function oracle: Evaluate L(β) for any β.
• Gradient oracle: Evaluate ∇L(β) for any β.

These are very general assumptions. Gradient descent will not
use any other information about the loss function L when
trying to find a β which minimizes L.

ࠇࠃ

GRADIENT DESCENT

Basic Gradient descent algorithm:

• Choose starting point β(߿).
• For i = ,߿ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(T).

η > ߿ is a step-size parameter. Also called the learning rate.

Why does this method work?

First observation: if we actually reach the minimizer β∗ then
we stop.

ࠈࠃ

INTUITION

Consider a dimensional-ࠀ loss function. I.e. where β is just a
single value. Our update step is β(i+ࠀ) = β(i) − ηL′(β(i))

߿ࠄ

GRADIENT DESCENT IN Dࠀ

Mathematical way of thinking about it:

By definition, L′(β) = lim∆→߿
L(β+∆)−L(β)

∆ . So for small values of
∆, we expect that:

L(β +∆)− L(β) ≈ ∆ · L′(β).

We want L(β +∆) to be smaller than L(β), so we want ∆ · L′(β)
to be negative.

This can be achieved by choosing ∆ = −L′(β), or really
∆ = −η · L′(β) for positive step size η.

β(i+ࠀ) = β(i) − ηL′(β(i))

ࠀࠄ

DIRECTIONAL DERIVATIVES

For high dimensional functions (β ∈ Rd), our update involves a
vector v ∈ Rd. At each step:

β ← β + v.

Question: When v is small, what’s an approximation for
L(β + v)− L(β)?

L(β + v)− L(β) ≈

ࠁࠄ

DIRECTIONAL DERIVATIVES

We have

L(β + v)− L(β) ≈ ∂L
∂βࠀ

vࠀ +
∂L
∂βࠁ

vࠁ + . . .+
∂L
∂βd

vd

= ⟨∇L(β), v⟩.

How should we choose v so that L(β + v) < L(β)?

,Formallyࠂ you might remember that we can define the directional
derivative of a multivariate function: DvL(β) = lim∆→߿

L(β+∆v)−L(β)
∆ .

ࠂࠄ

STEEPEST DESCENT

Claim (Gradient descent = Steepest descentࠃ)
−∇L(β)
∥∇L(β)∥ࠁ = argminv,∥v∥ࠀ=ࠁ⟨∇L(β), v⟩

Recall: For two vectors a,b,

⟨a,b⟩ = ∥a∥ࠁ∥b∥ࠁ · cos(θ)

Weࠃ could have restricted v using a different norm. E.g. ∥v∥ࠀ ≤ ࠀ or
∥v∥∞ = .ࠀ These choices lead to variants of generalized steepest descent..

ࠃࠄ

VISUALIZING IN Dࠁ

ࠄࠄ

STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)
−∇L(β)
∥∇L(β)∥ࠁ = argminv,∥v∥ࠀ=ࠁ⟨∇L(β), v⟩

ࠅࠄ

GRADIENT DESCENT

Basic Gradient descent (GD) algorithm:

• Choose starting point β(߿).
• For i = ,߿ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(T).

• Theoretical questions: Does gradient descent always
converge to the minimum of the loss function L? Can you
prove how quickly?

• Practical questions: How to choose η? Any other
modifications needed for good practical performance?

ࠆࠄ

