
CS-GY 6923: Lecture 4
Continue on Bayesian Perspective, Modeling
Language

NYU Tandon School of Engineering, Prof. Christopher Musco
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COURSE LOGISTICS

• First written problem set due in Tuesday.
• I will release solutions after deadline and go over them in
office hours.

• We will release a new lab today or tomorrow on language
generation.
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PROBABILISTIC MODELING

In a Bayesian or Probabilistic approach to machine learning we
always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

• The model guides how we make predictions.
• The model typically has unknown parameters θ⃗ and we try
to find the most reasonable parameters based on
observed data .
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SPAM PREDICTION
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EMAIL MODEL

Include each word in an email with some fixed probability.
That probability will differ depending on whether or not it is a
spam or regular email.

Not Spam

pwon,0 = .02
p$,0 = .05

pstudent,0 = .06

Spam

pwon,1 = .1
p$,1 = .2

pstudent,1 = .01

Lead to the Naive Bayes classifaction method.
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LANGUAGE MODELING
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GENERATIVE ML

Key idea behind generative ML: Build a very good probabilistic
model for your data. Use that model to generate realistic
looking new data. Not so different from Bayesian ML!
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GENERATIVE ML

Key idea behind generative ML: Build a very good probabilistic
model for your data. Use that model to generate realistic
looking new data.

Email example generated from bag-of-words model: Keeps
retaining in astro associated to no garden superconducting
whistleblower on effusion eigenvalue jobs worker for car
shortlist villa depictions fitness the easter veto devices
expressed secondary user metal this administrative the do of
to struct coffee online cde the open through requirement
stamps you job g thus drop stations.
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LANGUAGE MODELING

How do we go from this to something more like what modern
models can produce?
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LANGUAGE MODELING

How do we go from jumbled words to something more like
what modern models can produce?
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LANGUAGE MODELING

How do we go from jumbled words to something more like
what modern models can produce?
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AUTOGRESSIVE MODELS

Main issue: Our model lacks context!

The color of the dress is .
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AUTOGRESSIVE MODELS

Main issue: Our model lacks context!

The color of the dress is .
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AUTOGRESSIVE MODELS

Key idea: Distribution that a word is chosen from should
depend on previous words in the sentence/paragraph.

Consider generating a sentence with words x1, x2, . . . , xn.

• Initialize the first word x1 of the sentence (e.g., at random
or based on a prompt).

• Choose x2 based on x1.
• Choose x3 based on x1, x2, . . .

Concretely, set xi = w with probability:

Pr(xi = w | xi−1, xi−2, . . . , x1).
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AUTOGRESSIVE MODELS

Autoregressive model’s generate text in order.

• How most humans write sentences, emails, short text.
• How the modern large language models write text (e.g. the
GPT family of models.)

This is not the only approach to generative modeling, but it is
one that works fairly well in practice, especially for text.

Can also be used for images, but no longer state-of-the-art.
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LIMITED LOOKBACK

Key idea: Distribution that a word is chosen from should
depend on previous k words in the sentence/paragraph. k is a
parameter that controls model complexity.

Consider generating a sentence with words x1, x2, . . . , xn.

• Initialize the first k word x1, . . . , xk of the sentence (e.g. at
random).

• Choose xk+1 based on x1, . . . , xk.
• Choose xk+2 based on x2, . . . , xk+1.
• Choose xk+3 based on x3, . . . , xk+2.
• . . .

Set xi = w with probability:

P(xi = w | xi−1, xi−2, . . . , xi−k).

15



LIMITED LOOKBACK

Set xi = w with probability:

P(xi = w | xi−1, xi−2, . . . , xi−k).

This probability can be tractably estimate from our data!

It is exactly the same as the probability of observing the
k+ 1-gram [xi−1, xi−2, . . . , xi−k,w].

Training:

• For corpus of text, collect all k+ 1-grams and record their
frequency.

Prediction:

• At step i, sample from the subset of k+ 1 grams starting
with [xi−1, xi−2, . . . , xi−k], with probability proportional to
their frequency. 16



EXAMPLE

The color of the dress is .

• Reasonable completions for k = 2:

• Reasonable completions for k = 5:
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CLAUDE SHANNON

Model originally proposed in Claude Shannon’s seminal paper:

This paper also introduced:

• Idea of a communciation channel, channel capacity, noisy
channel coding theorem.

• Information entropy, concept of coding, Shannon-Fano coding.

• The term “bit”.
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LAB 3

• Train model on free books from Project Gutenberg.

• Evaluate effect of changing k. Tradeoff between better
performance and more “copying” from the course text.

Virtue itself of vice must pardon beg, Yea, curb and woo for
leave to do him good, She shall undo her credit with the judge,
or own great place, Could fetch your brother from the angry
law; do no stain to your own souls so blind That you will clear
yourself from all suspense.
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LAB 3

• Train model on free books from Project Gutenberg.

• Evaluate effect of changing k. Tradeoff between better
performance and more “copying” from the source text.

During this time, Madame Morrel had told her all,—‘Giovanni,’
said she, ‘you should have brought this child with you; we
would have replaced the parents it has lost, have called it
Benedetto, and then, in a loyal duel, and not in Arabia, and in
France.̇.
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QUICK NOTE ON TOKEN VS. WORDS

Modern language models don’t treat “words” as the atomic
unit for a variety of reasons.
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BAYESIAN REGRESSION
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BAYESIAN REGRESSION

Example: Fixed Design1 Linear Regression.

Probabilistic model: Fix x1, . . . , xn. Assume that for some βtrue,

yi = ⟨xi,βtrue⟩+ ηi

where each ηi is a Gaussian random variable drawn from
N(0, σ2):

Pr(ηi = z) ∼ e−
z2
2σ2

1In statistics, X is often called the design matrix.
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REFRESHER ON PROBABILITY DENSITY FUNCTIONS

η is a continuous random variable. So not quite correct to say
Pr(η = z) = 1

σ
√
2πe

− z2
2σ2 . For any particular z, Pr(η = z) = 0.

Formally, η has a probability density function,
pη(z) = 1

σ
√
2πe

− z2
2σ2 , and we can say that, for any a,b

Pr[a ≤ η ≤ b] =
∫ b

a
pη(z)dz.

“Probability that η = z is proportional to pη(z)”.
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PROBABILITY REVIEW

Probability principals still apply:

• PDF: pX(x)
• Joint PDF: pX,Y(x, y)
• Independence: If X, Y are independent:
pX,Y(x, y) = pX(x)pY(y).

• Conditional PDF: pX|Y(x | y) =
pX,Y(x,y)
p(y)

• Bayes Rule: pX|Y(x | y) =
pY|X(y|x)pX(x)

pY(y)

The notation can be confusing! Often subscripts are dropped
since clear from context.
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BAYESIAN REGRESSION

Example: Fixed Design Linear Regression.

Probabilistic model: Fix x1, . . . , xn. Assume that for some βtrue,

yi = ⟨xi,βtrue⟩+ ηi

where each ηi is a Gaussian random variable drawn from
N(0, σ2):
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BAYESIAN REGRESSION

How should be select β for our model?

First thought: choose β to maximize:

posterior = p(β | y) = p(y | β)p(β)
p(y) =

likelihood× prior
evidence .

But in this case, we don’t have a prior – no values of β are
inherently more likely than others.

Choose β to maximize just the likelihood:

p(y | β)p(β)
p(y) =

likelihood× prior
evidence .

This is called the maximum likelihood estimate.
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MAXIMUM LIKELIHOOD ESTIMATE

Data:

X =


— x1 —
— x2 —

...
— xn —

 y =


y1
y2
...
yn


Model: yi = ⟨xi,β⟩+ ηi where p(ηi) ∼ e−η2i /2σ

2 and η1, . . . , ηn are
independent. So, conditioned on β, y1, . . . , yn are independent.

p(y | β) =
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LOG LIKELIHOOD

Easier to work with the log likelihood:

argmax
β

p(y | β) = argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

= argmax
β

log

( n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

)

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2.
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MAXIMUM LIKELIHOOD ESTIMATOR

Conclusion: Choose β to minimize:

n∑
i=1

(yi − ⟨xi,β⟩)2 = ∥y− Xβ∥22.

Minimizing the ℓ2 loss is “optimal” when you assume your
data follows a linear model with i.i.d. Gaussian noise.
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BAYESIAN REGRESSION

If we model our noise η as Laplace noise, we would find that
minimizing ∥y− Xβ∥1 is optimal.

Pr(z) ∼

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

Bayesian justification for ℓ1 loss.
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MAXIMUM LIKELIHOOD ESTIMATE

Data:

X =


— x1 —
— x2 —

...
— xn —

 y =


y1
y2
...
yn


Model: yi = ⟨xi,β⟩+ ηi where p(ηi) ∼ e−|ηi|/b and η1, . . . , ηn are
independent. So, conditioned on β, y1, . . . , yn are independent.

p(y | β) =
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LOG LIKELIHOOD

argmax
β

p(y | β) =
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BAYESIAN REGULARIZATION

We can add another layer of probabilistic modeling by also
assuming β is random and comes from some distribution,
which encodes our prior belief on what the parameters are.

Return to Maximum a posteriori (MAP estimation):

p(β | y) = p(y | β)p(β)
p(y) .

Assume values in β = [β1, . . . , βd] come from some distribution.

• Common model: Each βi drawn from N(0, γ2), i.e. normally
distributed, independent.

• Encodes a belief that we are unlikely to see models with
very large coefficients.

33



BAYESIAN REGULARIZATION

Goal: choose β to maximize:

p(β | y) = p(y | β)p(β)
p(y) .

• We can still ignore the “evidence” term p(y) since it is a
constant that does not depend on β.

• p(β) = p(β1) · p(β2) · . . . · p(βd)
• If each βi drawn from N(0, γ2), p(β) =
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BAYESIAN REGULARIZATION

Easier to work with the log likelihood:

argmax
β

(y | β) · p(β)

= argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2 ·
n∏
i=1

e−β2
i /2γ

2

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2 +
d∑
i=1

−β2
i /2γ

2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2 +
σ2

γ2

d∑
i=1

β2
i

Choose β to minimize ∥y− Xβ∥22 + σ2

γ2 ∥β∥22.

Completely different justification for ridge regularization!
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BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min ∥y− Xβ∥22 + λ∥β∥1?
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BAYESIAN CLASSIFICATION

What if we want to apply a Bayesian modeling approach to
classification?. Just consider binary classification for now.

X =


— x1 —
— x2 —

...
— xn —

 y =


0
1
...
0


Model: yi =
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BAYESIAN CLASSIFICATION

Logistic Regression Model: Set yi = 1 with probability 1
1+e−⟨xi,β⟩ .

If ⟨xi,β⟩ is more positive, more likely yi is 1. If it is more
negative, more likely yi is 0.

Let h(z) denote the logistic function 1
1+e−z .
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BAYESIAN CLASSIFICATION, MAXIMUM LIKELIHOOD

argmaxβ p(y | β) =

If we didn’t make a mistake, we have the famous
log-loss/binary cross-entropy loss! 39


