CS-GY 6923: Lecture 3
Regularization + Bayesian Perspective

NYU Tandon School of Engineering, Prof. Christopher Musco



LAST CLASS + LAB

Model selection:

- Train models ;1),...,]‘2‘1) independently on training data

to find optimal parameters 67, ..., 65,

+ Check 0SS Liest (fg)) s ooy Ltest (T(H?) on test data.

7
- Select mode with lowest test lost.
Can we used for arbitrary sets of models. Often used when you
are not sure how “complex” your model should be for the data,

and want to find the sweet spot between a good fit, and not
overfitting.



ASS + LAB
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OVER-PARAMETERIZED MODELS

In the model selection examples we discussed last class, we
had full control over the complexity of the model: could range
from underfitting to overfitting.

In practice, we often don’t have this freedom. Even the most
basic model might lead to overfitting.




OVER-PARAMETERIZED MODELS
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Example: Linear regression model where d > n.
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HIGH DIMENSIONAL LINEAR MODELS

Claim: For almost all sets of n, length n vectors x(V, ..., x(M we
can write any vectory as a linear combination of these vectors.

4\”6

l.e., can find some coefficients so that
Bix(O) . 4 Bex( @) =XB =y.



ZERO TRAIN LOSS

- We will discuss some models later in the class where zero
training loss is not necessarily a bad sign: k-nearest
neighbors, some neural nets.

- Typically however if will be a sign of overfitting, as in the
polynomial regression example.
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FEATURE SELECTION

Select some subset of < n features to use in model:
—

L )

ipute some metric for each feature, and
select features with highest score.

- Example: compute loss or R? value when each feature in X
is used in single variate regression.

f )



FEATURE SELECTION
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FEATURE SELECTION

drl(r. rq
oo -t &G”
Faster approach: Greedily s&ect q features.

Stepwise Regression:
’ dalr dog '@/
rward:|Step 1: plck smgle feature that givdsdegifest loss.

Zo | L5
tep k: pick feature that when combined with previous

k — 1 chosen features gives lowest l0ss. A u Pbr>
Inate

{ Backward: Start with all of the features. Greedily eli
those which have least impact on model performance

Feature selection deserves more than two slides, but vve won't

go into too much more(;eta(g %> > \b 0
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ALTERNATIVE APPROACH

Regularization: Discourage overfitting by adding a
regularization penalty to the loss minimization problem.

&, v L(8) in[L(B) + 3 v ket
b min[L(B) +Reg(@)]. ) pertine o
Example: Least squares regression. L(3) = [|XB — y||3.

* Ridge regression (&): Reg(8) = X||8|13
- LASSO (least absolute shrinkage and selection operator)
(£1): Reg(B) :‘ﬁ\.H_/_jﬂw - ‘5‘ 141

- Elastic net: Reg(8) = M8l + X2[18/3

Note that arg ming [L(B)+Reg(B)] # arg ming [L(3)]

I



RIDGE REGULARIZATION: PERSPECTIVE 1

X550
z@ /Rldgeregre55|on ming ( @ y||2 @ ’

+ A\ — 0o, we expect 18113 — 0 and |XB = y[I5 —{|lv[I3-
els

By hoosing different values of A\ we have mod
rying levels of model fit.

B e = e
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RIDGE REGULARIZATION

Ridge regression: ming || X3 — y||2

-+ As A — oo, we expect [|B3 — 0 and [|IXB -y — [ly||3.
- Feature selection attempts to set many coordinates in 3

to 0. Regularization encourages coordinates to be small.
—

R

v
|~

N

(Can be viewed as a “soft” version of feature selection)
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POLYNOMIAL EXAMPLES

Fit degree 20 polynomial with varying leves of regularization.
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RIDGE REGULARIZATION

How do we minimize: Lg(B) = |IXB — |5 + Al|B5?
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RIDGE REGULARIZATION

How do we minimize: Lg(B) = |IXB — |5 + Al|B5?
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LASSO REGULARIZATION

Standardized Coefficients

Lasso regularization;ming X8 — y||3 + Al|8]|x.

- As A — oo, we expect [|B|l1 — 0 and [|X8 —y|I5 — |ly|l3
- Typically encourages subset of 3;'s to go to zero, in

contrast to ridge regularization.
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LASSO REGULARIZATION

Why Lasso encourages sparsity is a Mthat was only
understand relatively recently. Major topic in the field of

(compressed sensing)andéparse recovery)

Pros:

- Simpler, more interpretable model.
- More intuitive reduction in model order.

Cons:

- No closed form solution because || 3]+ is not
differentiable. e
- Can be solved with iterative methods, but generally not as

quickly as ridge regression.
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REGULARIZATION

. |
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Notes:
[ ) [
(Model selection/cross validation used to choose optimal
scaling A on \||B]|2 or \||B]|1.

( Often grid search for best parameters is performed in “log

space”. E.g. consider[[)q, o Aq] :ﬁ[f‘*ﬂ 2 W2
-fRegularization methods are not invariant to data scaling

Typically when using regularization we mean center and/

cale columns to have unit variance.
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THE BAYESIAN /PROBABILISTIC MODELING PERSPECTIVE



CLASSIFICATION SETUP

- Data Examples: x,...,x, € RY
- Target: yq,...,yn € {0,(/2, ...,q — 1} when there are g

classes.
- Binary Classification: g = 2, so each
——

- Multi-class Classification: g > 2.1

"Note that there is also multi-label classification where each data example
may belong to more than one class.

20



CLASSIFICATION EXAMPLES

- Medical diagnosis from MRI: 2 classes.

- MNIST digits: 10 classes.

- Full Optical Character Regonition: 100s of classes.
- ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.

21



CLASSIFICATION

Classification can (and often is) solved using the same
loss-minimization framework we saw for regression.

We won't see that today! We're going to use classification as a
window into another way of thinking about machine learning.

Will give new, interesting justifications for tools like
regularization. will also lead to natural approaches for
generative ML.

Rest of Today: ML from a Probabilistic Modeling/Bayesian
Perspective.

22



PROBABILISTIC MODELING

In a Bayesian or Probabilistic approach to machine learning we
always start by conjecturing a

probabilistic model

that plausibly could have generated our data.?

- The model guides how we make predictions.

- The model typically has unknown parameters 6 and we try
to find the most reasonable parameters based on
observed data (more on this later in lecture).

2“Data” here includes both the predictors xi, . .., x, and targets y1, ..., Vn.

23



PROBABILISTIC MODELING

24



PROBABILISTIC MODELING

Exercise: Come up with a probabilistic model for the following
data set (x1,y1), .-, (Xn, ¥n)-

- For n NYC apartments: each x; is the size of the apartment
in square feet. Each y; is the monthly rent in dollars.

What are the unknown parameters of your model. What would
be a guess for their values? How would you confirm or refine
this guess using data?

25



PROBABILISTIC MODELING

Dataset: (x1,1),. .., (Xn,¥n) k

Description: For n NYC apartments: each x; is the size of the
apartment in square feet. Each y; is the monthly rent in dollars.

Model:
X~ )\\((ooo/ 60 spfes |

‘%‘. 5 (lyl Xy o+ [bo ¥ {(](b/ G/b>

e ————
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PROBABILISTIC MODELING

Dataset: (x1,1), - .., (Xn, Vn)

Description: For n undergraduate students: each

xj € {1,2,3,4} indicating class year. Each y; € {0,1} with zero
indicating the student has not taken machine learning, one
indicating they have.

Model: @ x,{Q %
s /VU"“X(\/"/ /4/“0 ’ \ Ao 7

A% 6 Y?L/’(PCM))

/

\’)L(\)Z a 17(1/) ..V
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NAIVE BAYES CLASSIFIER

Goal:

- Build a probabilistic model for a binary classification
problem.

- _Estimate parameters of the model.\
~—

- From the model derive a classification rule for future
predictions (the Naive Bayes Classifier).

28



SPAM PREDICTION

feature ML
extraction bag-of-words prediction
@ mmmmmmp  [1]0[7[1[1]0[0[0[0[0[0[T[T[1]0] mmmmmmmp | O (safe)

@ mmmmmm) [1[0[0[0[1[0[1]0[0[1][0[0[0[0[0] ' —s)

@ mmmmmm) [1]0]0[0]0[1[1]1]0]0]0[0]0[0[0] memmmmmp |O (safe)

@ mmmmm) [7]0]0[0[0[1]0[0[7][0]7[0[0[0]0] mmmmmmp |O (safe)

@ s [1[0[0[O[T[O[T[O[T[O[O[T[T[0[0] —) 1 (spam)

Both target labels and data vectors are binary.
29



EMAIL MODEL

(loeeo | ®» s pgas oo ]

, 71 U 74 P4 .
Let's create a probabilistic model that generates emails.
Observation: Since bag-of-words features don't care about
word order, our model does not need to either.

- Common approach. Assign a probability p; € [0, 1] to word
I. Setx; =1 with probability p;, x; =_0 with probability

1-p.

Pthe =, % Pcalendar = = Ptoothbrush = . O {

30



EMAIL MODEL

Model training: Find parameters p1, ..., py that best fit our
training data.

o o)
Q_ toothbrush X @activer (@ & 4 i
N/
Mail ‘ Conversations ‘ Spaces ‘ ‘ From ~ ‘ | Anytime ~ ‘ | Has attachment ‘ ‘ To ~ ‘ | Exclude Promotions ’ >3
o~ ¢ i =~
People of ACM Featu. Inbox Kurt Mehlhorn, Director Emeritus, Max Planck Institute for Informatics - , a toot Feb 22
Aetna Inbox Aetna Dental members can save more - - Electric toothbrushes - Whitening kit 6/14/23
Aetna Inbox Wow, Christophe, have you seen your benefits lately? - - Electric toothbrushes... 10/8/22
O + Musco,Jenna Inbox FW: Cargo e-bikes -, a toothbrush in 15 minutes,” said Jolley. “We'r. B @ B O
Amazon.com Amazon Your Amazon.com order #114-7471064-3087... & Expected by: Tu 2n4/21
~ Everything else 1-5
NYU Ecosystem Hub Empower Change: Attend the Allies for Gender Equity in STEM Workshops - Oct 10th ... 9:19AM

In this case, set p; to empirical word frequency of word i.

N1
(o~ / oW 31



EMAIL MODEL

How can we make this model richer to generate both spam

and non-spam email?

- Different words tend to be more or less frequent in spam

or regular emails.

Not Spam\

Pwon = .0/
Ps = |
,\

Pstudent =

Spam

Pwon =, (
Ps=.L
Pstudent = , & |

32



PROBABILISTIC MODEL FOR EMAIL

Probabilistic model for (bag-of-words, label) pair (x, y):

(Q 8 QSZ,
*Sety=0 with probability_g_g, y = 1T with probability
G = Lﬁ
" - o is probability an email is not spam (e.g. 99%).
- ¢ is probability an email is spam (e.g. 1%).
- for each i, set x; = 1 with prob. p(o) X
- ) for each I, set x; = 1 with prob. p(”.
Unknown model parameters:
: C07C1y _35 e - o d’)fs\.
[p1 ,p2 .. pgo)Done for each of the d vocabulary words.
1 ,p2 .. pd), one for eaqch of the d vocabulary words.

N Ao St
How would you estimate these parameters?

33



PARAMETER ESTIMATION/MODEL TRAINING

Reasonable way to set parameters:

- Set ¢p and ¢ to the empirical fraction of not spam/spam
emails. T
i
appears in a non-spam email.

(For each word |, set pf” to the empirical probability word i
appears in a spam email.

-(For each word I, set p(o) to the empirical probability word i

34



DONE WITH MODELING
ON TO PREDICTION



PROBABILITY REVIEW

P(Anﬁ) N\ d

- Probability: p(A) - the probability event A happens.

. Jwy: p(A,B) - the probability that event A and
event B happen. ~

- Conditional Probability p_(é_’_B) - the probability A
happens given that B happens.

VLMo F(8) -7 (he)

35



PROBABILITY REVIEW
- P

s

Two random events are independent if:

ndependent L
Pr(A | B) = Pr(A), Yor equivalently, (" Pr(B | A) = Pr(B)
=z [ =

Equivalent characterization:

Pr(A.B) = P(4) - P(B).

PU™ - PLaB)  piope) v B)
o) e

36



PROBABILITY REVIEW

(P)L @Ju»k/ f\"«o)c L% (‘o\c, 1D ewee,

Note that when we write something like p(A | B), A and B are
random events not random variables.

J—————

We will sometimes (informally) write p(X | B), where X is a
random variable. In this case, p;/J=B) is understood to be a
probability density/mass function.

E.g. suppose X is a dice role that takes values 1,...,6. Then
p(X | B) is a function from {1,...,6} — [0, 1] whose i*" value
equals p(X=1|B). A= {X =1} is a proper random event.
ox:11%)
7 l o Vv
POx14) = 0 Iy 0 V3 0 Vs

, u &
Yoo 3 o



BAYES THEOREM/RULE

(p( L P(6lA) Pla)

4qc)
pA | Byp(A)

Proof:

ph)e) - RLA 2 p(@n) « P, %)

NN D

p(%) PLAIBD - P (k) P(®)4) .
(p(/lwa): PMA)) Bop> P -

38



CLASSIFICATION RULE

(Gb1°637

Given unlabeled input (lg, ), choose the label y € {0, 1}
which is most likely given the data. Recallw = [0,0,1,...,1,0].

Classification rule: maximum a posterior (MAP) estimate.

Lol w- (66160
Step 1. ComputV Pr(a OI )

-(p(y: 0 | w): prob. y = 0 given observed data vector w.
-(p(y =1|w): prob. y = 1 given observed data vector w.

Step 2. Output: 0 or 1 depending on which probability is larger.

p(y=0|w)and p(y =1]w) are called posterior probabilities.
B s 2

39



EVALUATING THE POSTERIOR

= V( (‘—3> Coo( 660l ]'a-,o)
How to compute the posterior? Bae)(rule!

p(w |y =20)p(y =0)
p/@’ W) p(w) 0

—

. likelihood x prior
@) g

- Prior: Probability in class O prior to seeing any data.

- Posterior: Probability in class 0 after seeing the data.

40



EVALUATING THE POSTERIOR

Goal is to determine which is larger:
_ qp =0)p(y=0 Ve

- We can ignore the evidence p(w) since it is the same for
both sides! -

- p(y = 0) and p(y = 1) already known (computed from
training data). These are our computed parameters ¢, C1.

cpwly=0)=?pw|y=1)=7 (% s%

41



EVALUATING THE POSTERIOR

Consider the example(w =[0,1,1,0,0 0,1,0])

Recall that, under our model, index i is 1 with probability p( ) if
we are not spam, and 1 with probability p( ) if we are spam

p(w =[0,1,1,0,0,0,1,0] |y = 0) =

(-9,9) 0,7, (1-089) _ (1-7m")

—

p(w = [0,1,1,0,0,0,1,0] |y =1) =
(') ) ()
’1” ) Pfr p«,

42



NAIVE BAYES

Final Naive Bayes Classifier

@ining/Modeling: Use existing data to compute:
- Prior class probabilities co = p(y = 0),¢c1 = p(y = 1)

- Forall i —
.pl(o):p(w,-zﬂyzo)and( Dy =pwj=0]|y=0)
- p = p(w; =1]y="1)and (1 p”) pwi=0]y=1)

- For new input w € {0, 1}
- Compute p(w | y=0) = HL p(w; |y =0) >
+ Compute p(w |y =1) = Hf;p(w,- ly="1)
- (Return

argmax[éWW—ODp -p1 =1)]

43



OTHER APPLICATIONS OF
THE BAYESIAN PERSPECTIVE



BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspe\ctive
on many machine learning techniques. @

Example:\Linear Regression

Probabilistic model: For some “true” set of parameters By e,

y= <Xaﬁtrue> +1n

—

where the n drawn from N(0, o?) is random Gaussian noise.

L L

0 . . B
The symbol ~ means “is proportional to”. i



GAUSSIAN DISTRIBUTION REFRESHER

Names for same thing: N al distribution, Gaussian

distribution, bell curve.

Parameterized by mean p and variance o?.
7— —

1

n is a continuous random variable so it has a probability
density function p(n) with [*_p(n)dn =1

45



GAUSSIAN DISTRIBUTION REFRESHER

v

A
&

The important thing to remember is that the the PDF falls off
exponentially as we move further from the mean.

L & «

The normalizing constant in front 1/2, etc. don’t matter so
much.

46



BAYESIAN REGRESSION

Example: Linear Regression.

Probabilistic model:

G
where the n drawn from N(0, #?) is random Gaussian noise.
The noise is independent for different inputs X, ..., Xp.

7 ®
® o0
/.' .950
6 e ®
o s
s ¢ ®
5 . G = L0
2 °
[ ...
4 .s"sese, e
°° °
3 ¥
° -
ooe °



BAYESIAN REGRESSION

How should we find the unknown parameters 3 for our

model?
Pyl &)

Also use a Bayesian approach!

First thought: chooso maximize:

posterior = Pr(8 | X.y) = Pr(X,F))/réxﬂ{)Pr(ﬂD: l|kel|hqod X pr|or'

But in this case, we don’t have a prior — no values of 3 are
inherently more likely than others.

Choose B to maximize just the likelihood:

Pr(X,y | BB Akelihood)x prier
PriGy) - evidepee

This is called the maximum likelihood estimate.

48



FIXED DESIGN LINEAR REGRESSION

Py o) - ’Pr(}lé’a)

Often we think of X as fixed and deterministic, and only y is
generated at random in the model. This is called the fixed
design setting. Can also consider a randomized design setting,
but it is slightly more complicated.

In the fixed design setting our task of maximizing Pr(X,y | B)
simplifies to maximizing

max Pr(y | 6)

49



MAXIMUM LIKELIHOOD ESTIMATE

Data:
X= ]
Model:i/i: (Xi, B3) +ﬁ where p(n; zj)ﬂd M- n
are independent. ’
a 1
) : - T Pem;= &, o
Pr(y | B) ~ ]|:JI trlgpio) - T (7 Ut )

A (kY /26
ST YT

.
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LOG LIKELIHOOD

Easier to work with the log likelihood:

n
argmaxPr(#,y | B) = arg max H e~ (i—(xi.B))?/20*
B

n
= arg max log (H e_(y"_<vaﬂ>)2/zaz>

B i1

=arg maxz log ( —(xi.B)) /207
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MAXIMUM LIKELIHOOD ESTIMATOR

Conclusion: Choose B to minimize:

(-t =1y )

This is a completely different justification for minimizing
squared loss!

Minimizing the ¢, loss is “optimal” when you assume your data
follows a linear model with i.i.d. Gaussian noise (with any fixed
variance).
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