CS-GY 6923: Lecture 2
Multiple Linear Regression + Feature
Transformations + Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco



COURSE ADMIN

- Lab 1 due Monday, by midnight.
- Lab 2 will be released today, due in 10 days.

- First written assignment will be released early next, due in
10 days.

10% bonus on the first written assignment if you typeset your
solutions in Latex or Markdown. More information on course
website.



REMINDER: SUPERVISED LEARNING

Training Dataset:

- Given input pairs (X1,¥1), - - ., (Xn, ¥n)-
- Each x; is an input data vector (the predictor).

- Each y; is an output variable (the target).
Objective:

- Have the computer automatically find some function f(x)
such that f(x;) is close to y; for the input data.

Standard approach: Convert the supervised learning problem
to a multi-variable optimization problem.




SUPERVISED LEARNING DEFINITIONS

What are the three components needed to setup a supervised
learning problem?

- Model fg(x): Class of equations or programs which map input x
to predicted output. We want fg(X;) = y; for training inputs.

* Model Parameters gz Vector of numbers. These are numerical
nobs which parameterize our class of models.

- Loss Function L(@): Measure of how well a model fits our data.
Typically some function of fg(x1) = V1, ..., fo(Xn) — Vn

Empirical Risk Minimization: Choose parameters 8 which minimize

the Loss Function: ':‘Z ([9 ()(;\) A i)l
&a‘( 0" = argemln L(6) " . L (9) .



SIMPLE LINEAR REGRESSION

Simple Linear Regression

- Model: ]Cgoﬂ1 (X) =Bo+pB-X

- Model Parameters: 3, 5

« Loss Function: L(Bo, 1) = 3.1, (Vi — f5,.8,(Xi))?

Goal: Choose 3y, 51 to minimize

L(Bo, B1) = Do lvi — Bo — Baxil*.

Simple closed form solution: 8 = oxy/a)%, Bo =V — BiX. How
did we solve for this solution?



MULTIPLE LINEAR REGRESSION

Multiple Linear Regression Model:

Pred

Data matrix:

&

Linear algebraic form:
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MULTIPLE LINEAR REGRESSION

Linear Least-Squares Regression.

- Model Parameters: l 2

5:[@7527---,&!]1“ D i
- Model: |

fa(x) = (x, 8) 2

- Loss Function:
n
LB) = lvi— X, B)
i=1

= lly = XBl)3



LOSS MINIMIZATION

Goal: minimize the loss function L(8) : RY — R.

Find possible optima by determining for which 8 = [51, . .., 84]
all partial derivatives equal 0. l.e,, when do we have:

oL

5 0
2L 0
0

vig) = || =
o 0
0By

The list of partial derivatives is called the gradient of L at 3,
denoted by VL(B).!

'Sanity check: For a model with d parameters, gradient always has length d.




GRADIENT

Claim: The gradient of the-multivartatelinear regression least
squares loss function{L(B3) = ||y — X813, j&: é"“') (U\ . l) 5zl
VL(B) = —2-X'(y — XB)

QL) —2X'Y +2X'X& - D

XX~ X"y (B (DTN y

Can check that this is equal to 0 only when 3 = (XTX)f1 XTy.
There are no other options, so this must be the minimum.
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SINGLE VARIABLE WARMUP

What is the derivative of: f(x) = x*? L\\ ()<5= 2
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Loss function: L(3) = |ly — X3|J3.

9Ly -

[ ax®' (D-Mﬂ
L x A (y-x5)

3R (Y | Nb)J

~ Xn)"
> 9L i}
XLA)

%
VB/WW

L /44,
ACHE : J
/2By

_Q%T(a—)ﬂb)

12



MULTIPLE LINEAR REGRESSION SOLUTION

Take away: simple form for the gradient means that multiple
linear regression models are easy and efficient to train.

* - “
B = argﬁmm lly — Xﬁ”% /

Exactly how efficient? d
[XxT) 15 e dxd Lx*%)_\ i O(é"D bt .

X" x O(é¢w> D(\‘CL;—’>

dxn v x4
~ O(nd)

- e

[
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MULTIPLE LINEAR REGRESSION SOLUTION

B* = argmin |ly — X85 = (XTX)_1 X'y
B

- B* can be computed directly in O(nd?) time foran n x d
data matrix X. =

- There are iterative approximation methods (fancy versions
of gradient descent) that run in roughly O(nd) time. We

will use one called LSQR for Lab 2, since d is large.

14



MULTIPLE LINEAR REGRESSION SOLUTION

Take away: simple form for the gradient means that multiple
linear regression models are easy and efficient to train.

B* = argmin |ly — X85 = (XTX)_1 X'y
B

- Often the “go to” first regression method. Throw your data
in @ matrix and see what happens.

+ Serve as the basis for much richer classes of models.

15



ENCODING DATA AS A NUMERICAL MATRIX

It is not always immediately clear how to do this! One of the
first issue we run into is categorical data:

X1 = [42,4,104, hybrid, ford]
X, = [18, 8,307, gas, bmw]
X, = [31,4,150, gas, honda]

16



ENCODING DATA AS A NUMERICAL MATRIX

Binary data is easy to deal with - pick one category to be 0,
one to be 1. The choice doesn't matter — it will not impact the
overall loss of the model

X| = [42,4,104,\hybrid} ford]
X, = [18,8, 307,(gas), bmw]
X, = [31, 4, 150,@as,’honda]

X1 = [42,4,104,1, ford]
x, = [18,8,307, 0, bmw]
Xy = [31,4,150, 0, honda]

17



DEALING WITH CATEGORICAL VARIABLES

What about a categorical predictor variable for car make with

more than 2 options: e.g. Ford, BMW, Honda. How would you
i ?

encode as a numerical column? ey

[ ford | [
for(L
(Ronday | >

bmw %
honda 4

| ford | [

18



ONE HOT ENCODING

Better approach: One Hot Encoding. Kk b1‘-\°r> Fea b
U /b Lo [ ford | 70 0] :
! ! Of ford 00 u” B & °°+cb°,k>
[

6 06 honda R 1 0 ErE:
( p bmw 0l 0 1

[O (D o ©

( honda 0/ 1 0

( 00 0/
{ | ford | 0 0] 0.

by

- Create a separate feature for every category, Wﬁlcﬁ ik
when the variable is in that category, zero othervwse’

- Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

O .
'—\Qf—“?'A,"

Avoids adding inadvertent linear relationships.
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TRANSFORMED LINEAR MODELS



EXAMPLE FROM LAST TIME

ﬂ}- X(rde )V
pg ~ By + B - horsepower, fit the

125 150 175 200 225 00050 00075 00100 00125 00150 00175 00200 00225
horsepower Unorsepower

How would you know to make such a transformation?

Better approach: Choose a more flexibl€ non-linear modei D

class. What is would be an example of a non-linear curve you

could fit?
20



TRANSFORMED LINEAR MODELS

Suppose we have singular variate data examples (x,y). We
could fit the non-linear polynomial model:

Y& Bot B+ BxC+ B oy,

Claim: This can be done using an algorithm for multivariate
regression! No need to compute another gradient or write
good to optimize fo, ..., 5. 21



TRANSFORMED LINEAR MODELS

1

o]

Transform into a multiple linear regression problem:
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TRANSFORMED LINEAR MODELS

More generally, each column j can be generated by a different
basis function ¢;(x). Could have:

© 9i(x)

© ¢j(x) = sin(x)

* ¢j(x) = cos(10x)
(%) =

When might you want to include sins and cosines?

23



TRANSFORMED LINEAR MODELS

When might you want to include sines and cosines?

Time series data:

US gas-fired power demand
(Bef/d)

10
Dec-13 Dec-15 Dec-17 Dec-19 Dec-21 Dec-23

Source: S&P Global Commodity Insights

24



MULTIVARIATE MODELS

Transformations can also be for multivariate data.

Example: Multivariate polynomial model.

- Given a dataset with target y and predictors x, z.

- For inputs (x1,21), ..., (Xn,2n) construct the data matrix:

’Y\ 2\
[
|

- Do :
1
Yo La 1 Xn X3 zp 22

2
T X X5 21z
2 2
1T X X5 2o 75

- Captures non-linear interaction between x and z.

25



MULTINOMIAL MODEL

We use multivariate polynomials a lot in my work to fit models
for physical phenomenon over low-dimensional surfaces:

driving frequency, w

112 14 16 18 2

spring constant,

126 28
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MODEL SELECTION

hern x 2

Feature transformation is an extremely powerful tool that can
improve models substantially. However, as will see in the
remainder of the lecture, it must be used with care.

Remainder of lecture: Through a simple example, learn about
the overfitting problem and how it can be addressed with
model selection tools like the test/train paradigm and
cross-validation

We will post a Python demo working through this example.

27



FITTING A POLYNOMIAL

Simple experiment:

- Randomly select data points xq,...,x, € [-1,1].
- Choose a degree 3 polynomial p(x).
- Create some fake data: y; = p(x;) + n where n is a random

—

number (e.g., random Gaussian).

i y

T Y4 T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 28



FITTING A POLYNOMIAL

Simple experiment:

- Use multiple linear regression to fit a line (degree 1
polynomial). This mode seems underfit.

3.0
w— True (dtrue=3)

2.5 | = Est(d=1) P
e Data °

2.0

o
o
L
U
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FITTING A POLYNOMIAL

Simple experiment:

- Use multiple linear regression to fit a degree 3 polynomial.

Almost perfectly captures the true function!

3.0
—— True (dtrue=3)

2.56 —— Est (d=3) L)
2.0 1

1153

1.0

0.5

0.0

-0.5

.0 T T T
-1.00 -0.75 -0.50 -0.25

0.00
X

0.25

0.50

0.75

1.00
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FITTING A POLYNOMIAL

What if we fit a higher degree polynomial?

- Fit degree 5 polynomial under squared loss.
- Fit degree 10 polynomial under squared loss.

= Est (d=5)
e Data

= Est (d=10)
25 e Data

31



FITTING A POLYNOMIAL

Even higher? 0

- Fit degree 40 polynomial under squared loss. This model
seems overfit.

L2 L)
m— Est (d=40)

— Dhta

-1.0 -0.5 0.0 0.5 1.0
X

The model “overreacts” to minor variations in the data, which

can lead to some bad behavior.
32



QUICK ASIDE ON NUMERICAL ISSUES

In the demo we have you use
numpy.polynomial.polynomial. However, as we
iscussed early, we can use multiple linear regression instead

by constructing the data matrix:

Then find polynomial coefficents as 8 = (X'X)~'Xy.

33



QUICK ASIDE ON NUMERICAL ISSUES

1 in function
beta_hat = poly.polyfit(xdat,ydat,d)

# manual fit using naive multivariate regre
X = np.zeros([len(xdat),d+1])
for i in range(d+1):
X[:,1i] = xdatski
my_beta = np.linalg.inv(np.transpose(X)@X)@np.transpose(X)@ydat

30 71 30 v e
— Manual £t — Manual fit
25 4 = Built-in Fit ° 4 25 4 = Built-in Fit
e Data L4
. *
20 o
15 L
S > 10
0s
00
-05
210 =
-100 -0.75 -050 -025 000 025 050 075 100 -100 -075 -050 -025 000 025 050 075 100
x x

Degree 3 Degree 22
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QUICK ASIDE ON NUMERICAL ISSUES

# built in function
beta_hat = poly.polyfit(xdat,ydat,d)

# manual fit using naive multivariate regression
X = np.zeros([len(xdat),d+1])
for i in range(d+1):
X[:,1i] = xdatski
my_beta = np.linalg.inv(np.transpose(X)@X)@np.transpose(X)@ydat

30 v— s 30
— Manual fit — Manual fit
251 — Built-in Fit 25 4, — Built-in Fit

> 10 > 10
0s 0s
00 00
-05 -05
_1?100 -075 -0S50 -025 000 025 050 075 100 _19100 -075 -050 -025 000 025 050 075 100
: :
Degree 23 Degree 30
SSIEE A0 AL

Has to due with numerical roundoff error. (Scipy still uses linear
regression, but with extra “tricks” to avoid numerical issue's)

35



QUICK ASIDE ON NUMERICAL ISSUES

- Your computer can easily deal with both very large and
very small numbers. Underflow and overflow are
extremely unlikely to be issues in floating point arithmetic.

- The issue is when you compute using numbers of very
differing magnitude.

print(.3%10%xx—34 + 10%x—36 — 10%x—36)

3e-35

print(.3%10%x-34 + 10 - 10)

0.0

36



QUICK ASIDE ON NUMERICAL ISSUES

X =1

XZ:.

Recall that we chose each x; € [-1,1] uniformly at random.

—_—

.
.
1

X1
X2
X3

Xn

2
X
1
X
2
X3

Xa

-
X

X3
3
&

1
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BACK TO THE PROBLEM AT HAND

3.0 T
w— True (dtrue=3) w— ESt (d=40)
— Est(d= — .
25 Est (d=1) . ') Data
e Data . 2
2.0
.
. ~ .
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.. )
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o0
.8 A g
05 S
-1
{
0.0 =
-2
-0.5
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o s 0o 0 1o o s PY) 05 To
x x
30
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25| — Est@=3) e,
2.0
15
> 10
05
0.0
-0.5
-1.0

-1.00 -075 -050 -025 000 025 050 075 100
x

Underfit, overfit, just right. 38



MODEL ORDER SELECTION

For high-dimensional data, we cannot produce such easy to
read plots. How can we automatically detect when we have
“underfit” or “overfit” to choose the right model?

39



MODEL COMPLEXITY VS. LOSS

Typically, the more complex our model, the better our loss:

—&— Train Loss

Squared Loss

15

2 4 6 8 10 12 14
Polynomial degree (model complexity

For transformed linear models, this is formally true: more
fwiwt/igns leads to lower loss.

40



MODEL SELECTION

Consider X e R™9 and X = [X@e R™ 9 with one additional
column appended on. Lz I )zg*_\a'“ ;, N\ x 6‘29\(:'

Claim: -
:y'.\q“)(@-)“.,
_min [[XB —y[|7 < min X8 —y]3.
ﬁERd“ ﬁERd 2
* wa IXb -9 NIy e |8
Bt oy DX gl 7| G

O

41



MODEL SELECTION

The more complex our model class the better our loss:

—8— Trai
16 ain Loss

12 1

Squared Loss

2 a 6 8 10 12 1
Polynomial degree (model complexity)
So training loss alone is not usually a good metric for model

selection.
42



MODEL SELECTION

Problem: Small loss does not imply(generalizatio
Generalization: How well do we do on new dates,

10.0
7.5 1
5.0 1
7539
> 0.0 1
=2.5 1 “
=9 — True
@ Training
=7.5 1 o Test
= Model (d=15)
-10.0

-1.0 -0.5 0.0 0.5 1.0
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MODEL SELECTION

Solution: Directly test model on “new data”.

05
—e~— Train Loss
L L

Resample Loss
04 —_—

03

02

01

) \’

2 4 6 8 10 12 14
Polynomial degree (model complexity)

Loss

- Train loss decreases as model complexity grows.
- Test loss “turns around” once our model gets too complex.
Minimized around degree 3 — 4. 4t



TRAIN-TEST PARADIGM

More reasonable approach: Evaluate model on fresh test data
which was not used during training.

Test/train split:

- Given data set (X,y), split into two setnd

(Xtest, Veest)-

. TModelsm. ..,f\9 of varying complexity by finding
parameters which minimize the loss on (Xiain, Ytrain)-

- Evaluate loss of each trained model on (Xiest, Yiest)-

- Pick model with lowest test loss. -

Sometimes you will see the term validation set instead of test set.
Sometimes there will be both: use validation set for choosing the
model, and test set for getting a final performance measure.

45



THE FUNDAMENTAL CURVE OF ML

The above trend is fairly representative of what we tend to see
across the board:

m— training error
—trUe error 7
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GENERALIZATION ERROR

If the test loss remains low, we say that the model generalizes.
Test lost is often called generalization error.

47



TRAIN-TEST PARADIGM

Typical train-test split: 90-70% / 10-30%. Trade-off between
between optimization of model parameters and better
estimate of model performance.

48



K-FOLD CROSS VALIDATION

Fobd1 | [ rez | [ remt3z | [ rea | [ rems |
2

D! Ncaigine Training | | Training | | Training

Test Training Training Training

s
Training Traini’n;‘ - Training Training

Training Train in4 Training Training
Training Train: ixﬁ Training Training Test >

- Randomly divide data in K parts.
- Typical choice: K=5 or K=10.
—_— T
- Use K — 1 parts for training, 1 for test.
- For each model, compute test loss Lt for each “fold”,
- Choose model with best average loss.
- Retrain best model on entire dataset.

Complete
Data

Prediction Statistics

Is there any disadvantage to choosing K larger?
49



TRAIN-TEST INTUITION

Is “test error” the end goal though? Don’t we care about
“future” error?

Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?

50



STATISTICAL LEARNING MODEL

Statistical Learning Model:
ttisticat Led

-[Assume each data example is randomly drawn from some
distribution (x, y)

E.g. Xq,...,Xq are Gaussian random variables with parameters

This is not really a simplifying assumption! The distribution

could be arbitrarily complicated.
51



RISK

Statistical Learning Model:

- Assume each data example is randomly drawn from some
distribution (x,y) ~ D
- Define the Risk of a model/parameters:

—_—

R(1,0) = Exy)~p [L (X, ), )]

here L is our loss function (e.g. L(z,y) = |z —y| or
L(z,y) = (z=y)").

——

Ultimate Goal: Find model f € {f(),..., fl9} and parameter
vector/a to minimize the__R_(f,/O)_._

52



- (Population) Risk:

Ii(fa/’g) = (E(x,y)~D [L (f(X, 0)7 y)]

- Empirical Risk: Draw (xq,y1), ..., (Xn,Yn) ~ D

————

Relf,9) = %Z L(f(x: 6). %)

i=1

E[&E@/@S z [f(: ’“‘3 : —\\j\ i \ELLC?(X:,@)W))
30(50) - R158).

-1
N o -



EMPIRICAL RISK

For any fixed model f and parameters 6,

E [Re(f, 0)]

Only true if f and @ are chosen without looking at the data
used to compute the empirical risk.
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MODEL SELECTION

- Train g models (71, 6%),...,(f9, 6%).

g
- For each model, compute empirical risk Re(f), 87)\using
test data.
———

- Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, Re(f1, %) is an unbiased estimate of the true risk
R(f1),07) for every i. Can use it to distinguish between models.

55



MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,

books) as numerical data. The ultimate example of 1-hot
encoding.

This|is|alsentence.

Glero e e T T T T T A [T T T T T T T T T T T T T T T T I T T (AT T T T T T TT]

a aardvark &3 Z00 zyzzyva

bag-of-words
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MODEL SELECTION EXAMPLE

- BoF
bag-of-words models and n-grams wowds

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot

encoding. -
Thié[i3lasentence)
EEAEEEEEEEEENEEEIEEE NN NN R
“a sentence” “isa” “this is”

bi-grams
bi-grams _

57



MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

Thislis alsentence)

\II\III\IIII1III\I\III\IIIlIII\II\I\IIllllll\IIII\

“is a sentence”

tri-grams

58



MODEL SELECTION EXAMPLE

Models of increasing order:

: Modelfgw): spam filter that looks at single words.
- Model fﬁfz): spam filter that looks at bi-grams.
- Model f(f,?: spam filter that looks at tri-grams.

“interest” “low interest” “low interest loan”
Increased length of n-gram means more expressive power.

Will be very relevant in our lab on generative language
models!

59



MODEL SELECTION EXAMPLE

Electrocorticography ECoG (next lab):

- Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

Sensory area Motor area
Surgical opening

Electrocorticography

+ Predict hand motion based on ECoG measurements.
- Model order: predict movement at time t using brain

signals at time t,t —1,...,t — g for varying values of q.
60



ELECTROCORTICOGRAPHY

Our lab uses data collected from monkeys. Precursor to
technologies like Braingate, Neuralink, etc.

Paralellized or impaired person could control computer curser,
robotic arm, etc. simply by thinking about it.

Small implant reads brainwaves and recognizes their intent.

61



AUTOREGRESSIVE MODEL

Predicting time t based on a linear function of the signals at
timet,t —1,...,t—qis not the same as fitting a line to the
time series. It's much more expressive.

700

600

ésno

5400

173

!GSDD

Q. 200

100

s
O O = o489 MM == 1 ww ~ o o o
T 25 b B 58 8 5 3 3 3
T 202 & o9 g e g §
E £ £ 5 £ £ £ £ 5 £ £ &
b S - - U - T | = G D & S

(mﬁﬁ)

62



MODEL SELECTION LAB TIP

Electrocorticography ECoG lab:

Sensory area Motor area
Surgical opening

Electrocorticography

First lab where computation actually matters (solving
regression problems with ~ 40k examples, ~ 1500 features)

Makes sense to test and debug code using a subset of the data.

63



ADAPTIVE DATA ANALYSIS

Slight caveat: The train-test paradigm is typically not how
machine learning or scientific discovery works in practice!

Typical workflow:

Train a class of models,

Final model implicitly depends on test set because
performance on the test set guided how we changed our
model.
64



ADAPTIVE DATA ANALYSIS

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

11 Active Competitions

$1,000,000
1595 teams
Google QUEST Q&A Labeling $25,000
\\\\\\\\\\\\\\\ ted understanding of complex question answer content 1,559 teams
.
#  Real or Not? NLP with Disaster Tweets $10000
Predct ich Teesar about rs disaster ad whichons re 2657 teams
1] .
v
£ .“ Bengali.Al Handwritten Grapheme Classification $10,000
% Gassty tn componentsof randwriten Sl 1194 teams
o i .

Kaggle (various competitions)

I M A G E [ E T 14,197,122 images, 21841 synsets indexed
N L

Explore Download Challenges Publications Updates About

Not logged in. Login | Signup

Imagenet (image classification and categorization)
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ADAPTIVE DATA ANALYSIS

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research. Related to
the problem of “p-value hacking” in science.

The reusable holdout: Preserving validity in adaptive

data analysis

Cynthia Dwork'”, Vitaly Feldman?”, Moritz Hardt®", Toniann Pitassi*”, Omer Reingold®", Aaron Roth®"

+ See all authors and affiliations

Science 07 Aug 2015
Vol. 349, Issue 6248, pp. 636-638
DOI: 10.1126/science.aaa9375 r

Do ImageNet Classifiers Generalize to ImageNet?
stk

— -_
Benjamin Recht* Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley UC Berkeley UC Berkeley
Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been
the focus of intense research for almost a decade, raising the danger of overfitting to excessi
re-used test sets. By closely following the original d: reation processes, we test to what
extent current classification models generalize to new data. We evaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% — 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results 66
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.
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We now have neural network models that can solve these
classification problems with > 95% accuracy. 67



ADAPTIVE DATA ANALYSIS

Do ImageNet Classifiers Generalized to ImageNet?
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Interestingly, when comparing popular vision models on

“fresh” data, while performance dropped across the board, the

relative rank of model performance did not change

significantly.
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