
CS-GY 6923: Lecture 2
Multiple Linear Regression + Feature
Transformations + Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco

1

COURSE ADMIN

• Lab 1 due Monday, by midnight.
• Lab 2 will be released today, due in 10 days.
• First written assignment will be released early next, due in
10 days.

10% bonus on the first written assignment if you typeset your
solutions in Latex or Markdown. More information on course
website.

2

REMINDER: SUPERVISED LEARNING

Training Dataset:

• Given input pairs (x1, y1), . . . , (xn, yn).
• Each xi is an input data vector (the predictor).
• Each yi is an output variable (the target).

Objective:

• Have the computer automatically find some function f(x)
such that f(xi) is close to yi for the input data.

Standard approach: Convert the supervised learning problem
to a multi-variable optimization problem.

3

SUPERVISED LEARNING DEFINITIONS

What are the three components needed to setup a supervised
learning problem?

• Model fθ(x): Class of equations or programs which map input x
to predicted output. We want fθ(xi) ≈ yi for training inputs.

• Model Parameters θ: Vector of numbers. These are numerical
nobs which parameterize our class of models.

• Loss Function L(θ): Measure of how well a model fits our data.
Typically some function of fθ(x1)− y1, . . . , fθ(xn)− yn

Empirical Risk Minimization: Choose parameters θ∗ which minimize
the Loss Function:

θ∗ = argmin
θ

L(θ)

4

SIMPLE LINEAR REGRESSION

Simple Linear Regression

• Model: fβ0,β1(x) = β0 + β1 · x

• Model Parameters: β0, β1

• Loss Function: L(β0, β1) =
∑n

i=1(yi − fβ0,β1(xi))2

Goal: Choose β0, β1 to minimize
L(β0, β1) =

∑n
i=1 |yi − β0 − β1xi|2.

Simple closed form solution: β1 = σxy/σ
2
x , β0 = ȳ− β1x̄. How

did we solve for this solution? 5

MULTIPLE LINEAR REGRESSION

Multiple Linear Regression Model:

Predict yi ≈ β1xi1 + β2xi2 + . . .+ βdxid

Data matrix:

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

 =


1 x12 . . . x1d
1 x22 . . . x2d
1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd


Linear algebraic form:

yi ∼ ⟨x,β⟩
y ∼ Xβ

6

MULTIPLE LINEAR REGRESSION

Linear Least-Squares Regression.

• Model Parameters:

β = [β1, β2, . . . , βd]

• Model:

fβ(x) = ⟨x,β⟩

• Loss Function:

L(β) =
n∑
i=1

|yi − ⟨xi,β⟩|2

= ∥y− Xβ∥22

7

LOSS MINIMIZATION

Goal: minimize the loss function L(β) : Rd → R.

Find possible optima by determining for which β = [β1, . . . , βd]

all partial derivatives equal 0. I.e., when do we have:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
. . .

0


The list of partial derivatives is called the gradient of L at β,
denoted by ∇L(β).1
1Sanity check: For a model with d parameters, gradient always has length d.

8

GRADIENT

Claim: The gradient of the multivariate linear regression least
squares loss function, L(β) = ∥y− Xβ∥22, is:

∇L(β) = −2 · XT(y− Xβ)

Can check that this is equal to 0 only when β =
(
XTX

)−1 XTy.
There are no other options, so this must be the minimum.

9

SINGLE VARIABLE WARMUP

What is the derivative of: f(x) = x2?

10

GRADIENT

Loss function: L(β) = ∥y− Xβ∥22.

11

GRADIENT

Loss function: L(β) = ∥y− Xβ∥22.

12

MULTIPLE LINEAR REGRESSION SOLUTION

Take away: simple form for the gradient means that multiple
linear regression models are easy and efficient to train.

β∗ = argmin
β

∥y− Xβ∥22 =
(
XTX

)−1 XTy

Exactly how efficient?

13

MULTIPLE LINEAR REGRESSION SOLUTION

β∗ = argmin
β

∥y− Xβ∥22 =
(
XTX

)−1 XTy

• β∗ can be computed directly in O(nd2) time for an n× d
data matrix X.

• There are iterative approximation methods (fancy versions
of gradient descent) that run in roughly O(nd) time. We
will use one called LSQR for Lab 2, since d is large.

14

MULTIPLE LINEAR REGRESSION SOLUTION

Take away: simple form for the gradient means that multiple
linear regression models are easy and efficient to train.

β∗ = argmin
β

∥y− Xβ∥22 =
(
XTX

)−1 XTy

• Often the “go to” first regression method. Throw your data
in a matrix and see what happens.

• Serve as the basis for much richer classes of models.

15

ENCODING DATA AS A NUMERICAL MATRIX

It is not always immediately clear how to do this! One of the
first issue we run into is categorical data:

x1 = [42, 4, 104,hybrid,ford]
x2 = [18, 8, 307,gas,bmw]
x2 = [31, 4, 150,gas,honda]
...

16

ENCODING DATA AS A NUMERICAL MATRIX

Binary data is easy to deal with – pick one category to be 0,
one to be 1. The choice doesn’t matter – it will not impact the
overall loss of the model

x1 = [42, 4, 104,hybrid,ford]
x2 = [18, 8, 307,gas,bmw]
x2 = [31, 4, 150,gas,honda]
...

x1 = [42, 4, 104,1,ford]
x2 = [18, 8, 307,0,bmw]
x2 = [31, 4, 150,0,honda]
...

17

DEALING WITH CATEGORICAL VARIABLES

What about a categorical predictor variable for car make with
more than 2 options: e.g. Ford, BMW, Honda. How would you
encode as a numerical column?

ford
ford
honda
bmw

honda
ford


→





18

ONE HOT ENCODING

Better approach: One Hot Encoding.

ford
ford
honda
bmw
honda
ford


→



1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0


• Create a separate feature for every category, which is 1
when the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
19

TRANSFORMED LINEAR MODELS

19

EXAMPLE FROM LAST TIME

Instead of fitting the model mpg ≈ β0 + β1 · horsepower, fit the
model mpg ≈ β0 + β1 · 1/horsepower.

How would you know to make such a transformation?

Better approach: Choose a more flexible non-linear model
class. What is would be an example of a non-linear curve you
could fit?

20

TRANSFORMED LINEAR MODELS

Suppose we have singular variate data examples (x, y). We
could fit the non-linear polynomial model:

y ≈ β0 + β1x+ β2x2 + β3x3.

Claim: This can be done using an algorithm for multivariate
regression! No need to compute another gradient or write
good to optimize β0, . . . , β3. 21

TRANSFORMED LINEAR MODELS

Transform into a multiple linear regression problem:

X =


1 x1 x21 x31
1 x2 x22 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


What is the output of the model Xβ with parameters
β = [β0, . . . , β3]?

22

TRANSFORMED LINEAR MODELS

More generally, each column j can be generated by a different
basis function ϕj(x). Could have:

• ϕj(x) = xq

• ϕj(x) = sin(x)
• ϕj(x) = cos(10x)
• ϕj(x) = 1/x

When might you want to include sins and cosines?

23

TRANSFORMED LINEAR MODELS

When might you want to include sines and cosines?

Time series data:

24

MULTIVARIATE MODELS

Transformations can also be for multivariate data.

Example: Multivariate polynomial model.

• Given a dataset with target y and predictors x, z.
• For inputs (x1, z1), . . . , (xn, zn) construct the data matrix:

1 x1 x21 z1 z21 x1z1
1 x2 x22 z2 z22 x2z2
...

...
...

1 xn x2n zn z2n xnzn


• Captures non-linear interaction between x and z.

25

MULTINOMIAL MODEL

We use multivariate polynomials a lot in my work to fit models
for physical phenomenon over low-dimensional surfaces:

26

MODEL SELECTION

Feature transformation is an extremely powerful tool that can
improve models substantially. However, as will see in the
remainder of the lecture, it must be used with care.

Remainder of lecture: Through a simple example, learn about
the overfitting problem and how it can be addressed with
model selection tools like the test/train paradigm and
cross-validation

We will post a Python demo working through this example.

27

FITTING A POLYNOMIAL

Simple experiment:

• Randomly select data points x1, . . . , xn ∈ [−1, 1].
• Choose a degree 3 polynomial p(x).
• Create some fake data: yi = p(xi) + η where η is a random
number (e.g., random Gaussian).

28

FITTING A POLYNOMIAL

Simple experiment:

• Use multiple linear regression to fit a line (degree 1
polynomial). This mode seems underfit.

29

FITTING A POLYNOMIAL

Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.
Almost perfectly captures the true function!

30

FITTING A POLYNOMIAL

What if we fit a higher degree polynomial?

• Fit degree 5 polynomial under squared loss.
• Fit degree 10 polynomial under squared loss.

31

FITTING A POLYNOMIAL

Even higher?

• Fit degree 40 polynomial under squared loss. This model
seems overfit.

The model “overreacts” to minor variations in the data, which
can lead to some bad behavior..

32

QUICK ASIDE ON NUMERICAL ISSUES

In the demo we have you use
numpy.polynomial.polynomial. However, as we
discussed early, we can use multiple linear regression instead
by constructing the data matrix:

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


Then find polynomial coefficents as β = (XTX)−1XTy.

33

QUICK ASIDE ON NUMERICAL ISSUES

Degree 3 Degree 22

34

QUICK ASIDE ON NUMERICAL ISSUES

Degree 23 Degree 30

Has to due with numerical roundoff error. Scipy still uses linear
regression, but with extra “tricks” to avoid numerical issues. 35

QUICK ASIDE ON NUMERICAL ISSUES

• Your computer can easily deal with both very large and
very small numbers. Underflow and overflow are
extremely unlikely to be issues in floating point arithmetic.

• The issue is when you compute using numbers of very
differing magnitude.

36

QUICK ASIDE ON NUMERICAL ISSUES

Recall that we chose each xi ∈ [−1, 1] uniformly at random.

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n



37

BACK TO THE PROBLEM AT HAND

Underfit, overfit, just right. 38

MODEL ORDER SELECTION

For high-dimensional data, we cannot produce such easy to
read plots. How can we automatically detect when we have

“underfit” or “overfit” to choose the right model?

39

MODEL COMPLEXITY VS. LOSS

Typically, the more complex our model, the better our loss:

For transformed linear models, this is formally true: more
feature transformations leads to lower loss. 40

MODEL SELECTION

Consider X ∈ Rn×d and X̄ = [X, z] ∈ Rn×d+1 with one additional
column appended on.

Claim:

min
β̄∈Rd+1

∥X̄β̄ − y∥22 ≤ min
β∈Rd

∥Xβ − y∥22.

41

MODEL SELECTION

The more complex our model class the better our loss:

So training loss alone is not usually a good metric for model
selection.

42

MODEL SELECTION

Problem: Small loss does not imply generalization.
Generalization: How well do we do on new data.

43

MODEL SELECTION

Solution: Directly test model on “new data”.

• Train loss decreases as model complexity grows.
• Test loss “turns around” once our model gets too complex.
Minimized around degree 3− 4. 44

TRAIN-TEST PARADIGM

More reasonable approach: Evaluate model on fresh test data
which was not used during training.

Test/train split:

• Given data set (X, y), split into two sets (Xtrain, ytrain) and
(Xtest, ytest).

• Train q models f(1), . . . , f(q) of varying complexity by finding
parameters which minimize the loss on (Xtrain, ytrain).

• Evaluate loss of each trained model on (Xtest, ytest).
• Pick model with lowest test loss.

Sometimes you will see the term validation set instead of test set.
Sometimes there will be both: use validation set for choosing the

model, and test set for getting a final performance measure.

45

THE FUNDAMENTAL CURVE OF ML

The above trend is fairly representative of what we tend to see
across the board:

46

GENERALIZATION ERROR

If the test loss remains low, we say that the model generalizes.
Test lost is often called generalization error.

47

TRAIN-TEST PARADIGM

Typical train-test split: 90-70% / 10-30%. Trade-off between
between optimization of model parameters and better
estimate of model performance.

48

K-FOLD CROSS VALIDATION

• Randomly divide data in K parts.
• Typical choice: K = 5 or K = 10.

• Use K− 1 parts for training, 1 for test.
• For each model, compute test loss Lts for each “fold”.
• Choose model with best average loss.
• Retrain best model on entire dataset.

Is there any disadvantage to choosing K larger?
49

TRAIN-TEST INTUITION

Is “test error” the end goal though? Don’t we care about
“future” error?

Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?

50

STATISTICAL LEARNING MODEL

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

E.g. x1, . . . , xd are Gaussian random variables with parameters
µ1, σ1, . . . , µd, σd.

This is not really a simplifying assumption! The distribution
could be arbitrarily complicated.

51

RISK

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Define the Risk of a model/parameters:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

here L is our loss function (e.g. L(z, y) = |z− y| or
L(z, y) = (z− y)2).

Ultimate Goal: Find model f ∈ {f(1), . . . , f(q)} and parameter
vector θ to minimize the R(f,θ).

52

RISK

• (Population) Risk:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

• Empirical Risk: Draw (x1, y1), . . . , (xn, yn) ∼ D

RE(f,θ) =
1
n

n∑
i=1

L (f(x,θ), y)

53

EMPIRICAL RISK

For any fixed model f and parameters θ,

E [RE(f,θ)] = R(f,θ).

Only true if f and θ are chosen without looking at the data
used to compute the empirical risk.

54

MODEL SELECTION

• Train q models (f(1),θ∗
1), . . . , (f(q),θ∗

q).
• For each model, compute empirical risk RE(f(i),θ∗

i) using
test data.

• Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, RE(f(i),θ∗

i) is an unbiased estimate of the true risk
R(f(i),θ∗

i) for every i. Can use it to distinguish between models.

55

MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bag-of-words

56

MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bi-grams

57

MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

tri-grams

58

MODEL SELECTION EXAMPLE

Models of increasing order:

• Model f(1)θ1
: spam filter that looks at single words.

• Model f(2)θ2
: spam filter that looks at bi-grams.

• Model f(3)θ3
: spam filter that looks at tri-grams.

• . . .

“interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.

Will be very relevant in our lab on generative language
models!

59

MODEL SELECTION EXAMPLE

Electrocorticography ECoG (next lab):

• Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

• Predict hand motion based on ECoG measurements.
• Model order: predict movement at time t using brain
signals at time t, t− 1, . . . , t− q for varying values of q.

60

ELECTROCORTICOGRAPHY

Our lab uses data collected from monkeys. Precursor to
technologies like Braingate, Neuralink, etc.

Paralellized or impaired person could control computer curser,
robotic arm, etc. simply by thinking about it.

Small implant reads brainwaves and recognizes their intent.

61

AUTOREGRESSIVE MODEL

Predicting time t based on a linear function of the signals at
time t, t− 1, . . . , t− q is not the same as fitting a line to the
time series. It’s much more expressive.

62

MODEL SELECTION LAB TIP

Electrocorticography ECoG lab:

First lab where computation actually matters (solving
regression problems with ∼ 40k examples, ∼ 1500 features)

Makes sense to test and debug code using a subset of the data.

63

ADAPTIVE DATA ANALYSIS

Slight caveat: The train-test paradigm is typically not how
machine learning or scientific discovery works in practice!

Typical workflow:

• Train a class of models.
• Test.
• Adjust class of models.
• Test.
• Adjust class of models.
• Cont...

Final model implicitly depends on test set because
performance on the test set guided how we changed our
model.

64

ADAPTIVE DATA ANALYSIS

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

Kaggle (various competitions)

Imagenet (image classification and categorization) 65

ADAPTIVE DATA ANALYSIS

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research. Related to

the problem of “p-value hacking” in science.

66

IMAGENET DATASET

Collected by Fei-Fei Li’s group at Stanford in 2006ish and
labeled using Amazon Mechanical Turk.

We now have neural network models that can solve these
classification problems with > 95% accuracy. 67

ADAPTIVE DATA ANALYSIS

Do ImageNet Classifiers Generalized to ImageNet?

Interestingly, when comparing popular vision models on
“fresh” data, while performance dropped across the board, the
relative rank of model performance did not change
significantly.

68

