
CS-GY :ࠂࠁ69 Lecture ࠃࠀ
Finish Semantic Embeddings, Modern Image
Generation, Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

ࠁ

-

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

For words, the mapping is typically just a lookup table.

ࠂ

HOW TO GET EMBEDDINGS?

For documents or words, earliest approaches were based on
latent semantic analysis (PCA on term document matrix).

ࠃ

G 1111¥

WORD EMBEDDINGS

More modern word embedding recipe:

.ࠀ Choose similarity metric k(wordi,wordj) which can be
computed for any pair of words.

.ࠁ Construct similarity matrix M → Rn×n with
Mi,j = k(wordi,wordj).

.ࠂ Find low rank approximation M ≈ YTY where Y → Rk×n.
.ࠃ Columns of Y are word embedding vectors.

We expect that 〈yi, yj〉 will be larger for more similar words.

ࠄ

"Fei!"¥y3"

t o

µ : OSU's
U t v event

1 7i s symmetric.

MODERN WORD EMBEDDINGS

Common choice for similarity metric is to use co-occurence
frequency in windows.

Usually followed by some tranformation or normalization. E.g.,
k(wordi,wordj) =

p(i,j)
p(i)p(j) . ࠅ

O

G

" I I

MODERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg .(ࠃࠀ߿ࠁ

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

Common to use pre-trained word vectors:

• Compilation of many sources:
https://github.com/3Top/word2vec-api

ࠆ

÷

https://github.com/3Top/word2vec-api

CAVEAT ABOUT FACTORIZATION

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefiniteࠀ then the optimal low-rank
approximation does not have this form.

,.I.eࠀ k(wordi,wordj) is not a positive semidefinite kernel.

ࠇ

CAVEAT ABOUT FACTORIZATION

• For each word i we get a left and right embedding vector
wi and yi. It’s reasonable to just use one or the other.

• If 〈yi, yj〉 is large and positive, we expect that yi and yj have
similar similarity scores with other words, so they typically
are still related words.

• Another option is to use as your features for a word the
concatenation [wi, yi]

ࠈ

to ÷..''..

-

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

߿ࠀ

()

NODE EMBEDDINGS

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

ࠀࠀ

* § o

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. .(ࠇࠀ߿ࠁ

ࠁࠀ

- -

BIMODAL EMBEDDINGS

We can also create embeddings that represent different types
of data. OpenAI’s clip architecture:

Goal: Train embedding architectures so that 〈Ti, Ij〉 are similar
if image and sentence are similar. ࠂࠀ

EE
ooo

CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity
matrix.

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.

ࠃࠀ

-

@¥E

CLIP FOR ZERO-SHOT LEARNING

ࠀࠁ߿ࠁ result: %ࠅࠆ accuracy on ImageNet image classification
challenge with no labeled training data. ࠄࠀ

-

5 1 I

①
O O O O

IMAGE SYNTHESIS (TEASER)

ࠄࠀ

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

ࠅࠀ

O
' .io:

d(22, random

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option :ࠀ Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option :ࠁ Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

ࠆࠀ

-

- - ,

AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

Main issue: most random inputs words will “miss” and produce
garbage results.

ࠇࠀ

-

AUTOENCODERS FOR DATA GENERATION

Variational auto-encoders attempt to resolve this issue.

ࠈࠀ

- E t

VARIATIONAL AUTOENCODERS

Developed from a different perspective than regular
autoencoders. Make the data generation goal more explicit.

• Train a neural network Gθ that takes in a length k code
word, z, and outputs an image.

• Assume z ∼ N ,߿) I). I.e., a random Gaussian vector.
• Goal is to maximize probability of producing a “natural
image”.

First attempt: Given training data xࠀ, . . . , xn,

max
θ

)
[Gθ(z) = xi for some i] · p(z)dz

= max
θ

Ez [Gθ(z) = xi for some i]

Issues: Super brittle, impossible to train.

߿ࠁ

- = D : "
= .

- -

- =

VARIATIONAL AUTOENCODERS

Bayesian approach: assume each xi is of the form
Gθ(z) + σN ,߿) I) for randomly chosen z. Choose parameters, θ,
to maximize the likelihood of the data:

max
θ

n∏

i=ࠀ

p(xi) = max
θ

n∏

i=ࠀ

)
p(xi | z) · p(z)dz

= max
θ

n∑

i=ࠀ

log

)
p(xi | z) · p(z)dz

= min
θ

n∑

i=ࠀ

− log

)
e−‖xi−Gθ(z)‖ࠁ/ࠁࠁσࠁ · p(z)dz

ࠀࠁ

z r N o ,I)

- . - 0
=

-

-

- =
• NO,I): Xi-Goh)

VARIATIONAL AUTOENCODERS

max
θ

n∏

i=ࠀ

p(xi) = max
θ

n∏

i=ࠀ

)
p(xi | z) · p(z)dz

= max
θ

n∑

i=ࠀ

log

)
p(xi | z) · p(z)dz

How to deal with the integral? Very common approach in
generative modeling (beyond VAEs): Monte Carlo
approximation. Draw samples zࠀ, . . . , zm and observe that:

≈ max
θ

n∑

i=ࠀ

log

(
ࠀ
m

m∑

i=ࠀ

p(xi | zi)
)
.

ࠁࠁ

[§"¥
¥..pe#

,

#¥x¥
- -

VARIATIONAL AUTOENCODERS

This approach does not work out of the box. The issue is that
the integral will be very poorly approximated by sampling:

)
p(xi | z) · p(z)dz '≈

m∑

i=ࠀ

p(xi | zi).

Second key idea: Importance sampling. For any distribution
q(z),

p(xi) =
)

p(xi | z) · p(z)dz =
)

q(z)p(xi | z)
q(z) · p(z)dz

Draw zࠀ, . . . , zm from q(z) and estimate:

p(xi) ≈
ࠀ
m

m∑

i=ࠀ

p(xi | z)
q(z) · p(z).

ࠂࠁ

Golz)

L i l
- ÷ i t

-

- - I - I
-

EeqlP¥¥¥
- j j

J
j

VARIATIONAL AUTOENCODERS

We can choose a different distribution for each xi. I.e., choose
qࠀ, . . . , qn. Ideally, want qi to be higher for z that are more
likely to generate xi. Ideal choice is qi(z) = p(z | xi).

ࠀ
m

m∑

i=ࠀ

p(xi | z)
qi(z)

· p(z) = ࠀ
m

m∑

i=ࠀ

p(xi | z) · p(z)
p(z | xi)

=

ࠃࠁ

Goin'. Ideal
drone f o r q ; (r)

i s Ptsd) .
C- -)

" '""÷Ei÷÷?÷÷;"±±
z i n g pcxis.ph/iit-PfIIg?,

VARIATIONAL AUTOENCODERS

Typical VAE approach: Assume qi is parameterized as a
multivariate Gaussian distribution with mean µi → Rk and
variances Σ = [σࠁ

ࠀ , . . . ,σ
ࠁ
k]. Train a model (e.g., neural network)

that maps xi to µi,Σi.

Simulateously minimize distance between qi and p(z | xi)
(typically using KL divergence) and maximize

∑n
i=ࠀ p(xi), where

p(xi) is approximated via importance sampling.

Lots of details here! Link to some good notes by Brian Kang.

ࠄࠁ

i

- - -

=

https://bjlkeng.io/posts/variational-autoencoders/

VARIATIONAL AUTOENCODERS

VAEs are not really autoencoders. Not designed to map an
input x to an approximation x̃. But, their final architecture
ends up resembling that of an autoencoder:

ࠅࠁ

¥8.00

GENERATIVE ADVERSARIAL NETWORKS

VAE’s give very good results, but tend to produce images with
immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

ࠆࠁ

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

min
θ

L(θ) + P(θ)

ࠇࠁ

0 0

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Let xࠀ, . . . , xn be real images and let zࠀ, . . . , zm be random code
vectors. The goal of the discriminator is to output a number between
,߿] [ࠀ which is close to ߿ if the image is fake, close to ࠀ if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑

i=ࠀ

− log (Dθ(xi)) +
m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi)) ࠈࠁ

Go.(2)→ iff

D D D D

= ,
, ,

D - D D

Do(Ciao))→ score

•

- -

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Goal of the generator Gθ′ is the opposite. We want to maximize:

max
θ′

m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of
the adversary.

߿ࠂ

•

-in ,
I

GENERATIVE ADVERSARIAL NETWORKS (GANS)

θ∗,θ′∗ solve min
θ

max
θ′

n∑

i=ࠀ

− log (Dθ(xi)) +
m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to
solve in practice.

• Repeatedly play: Fix one of θ or θ′, train the other to
convergence, repeat.

• Simultaneous gradient descent: Run a single gradient
descent step for each of θ,θ′ and update D and G
accordingly. Difficult to balance learning rates.

ࠀࠂ

- - ()

=

-

GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.

ࠁࠂ

DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

ࠂࠂ

80008

DIFFUSION

We will post a demo for generating MNIST digits via diffusion.

ࠃࠂ

WHAT ELSE?

Tons of other work going on in image generation. One key
topic is “class conditioned” generation:

ࠄࠂ

-

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Can also condition on another image...

ࠅࠂ

To o

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

”A chair that looks like an avocado”
ࠆࠂ

e

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

”A diagram that explains variational autoencoders” ࠇࠂ

Break
until
3:51.

REINFORCEMENT LEARNING (TEASER)

ࠇࠂ

REINFORCEMENT LEARNING

Rest of lecture: Give flavor of the area and insight into one
algorithm (Q-learning) which has been successful in recent
years.

Basic setup:

• Agent interacts with environment over time ,ࠀ . . . , t.
• Takes repeated sequence of actions, aࠀ, . . . , at which
effect the environment.

• State of the environment over time denoted sࠀ, . . . , st.
• Earn rewards rࠀ, . . . , rt depending on actions taken and
states reached.

• Goal is to maximize reward over time.

ࠈࠂ

REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

• Agent: Cart/software
controlling cart.

• State: Position of the car,
pendulum head, etc.

• Actions: Move cart left or
move right.

• Reward: ࠀ for every time
step that |θ| < ◦߿ࠈ

(pendulum is upright). ߿
when |θ| = ◦߿ࠈ ߿ࠃ

. t t .
- -

i - o

REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:

• Semi-autonomous vehicles (airplanes, helicopters, drones, etc.)

• Industrial processes (e.g. controlling large chemical reactions)

• Robotics

control theory : reinforcement learning :: stats : machine learning

ࠀࠃ

- - - -

REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

• State: Position of all pieces
on board.

• Actions: Place new piece.

• Reward: ࠀ if in winning
position at time t. ߿
otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

ࠁࠃ

f I

REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

• State: Raw pixels on the
screen (sometimes there is
also hidden state which
can’t be observed by the
player).

• Actions: Actuate controller
(up,down,left,right,click).

• Reward: ࠀ if point scored at
time t.

ࠂࠃ

°,

MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

• S : Set of all possible states. # of states is |S|.

• A : Set of all possible actions. # of actions is |A|.

• R : Set of possible rewards. Could have R = R.

• Reward function
R(s,a) : S ×A→ probability distribution over R. rt ∼ R(st,at).

• State transition function
P(s,a) : S×A→ probability distribution over S . st+ࠀ ∼ P(st,at).

Why is this called a Markov decision process? What does the term
Markov refer to?

ࠃࠃ

-
- -

-

•
0

. . O - s .

- - O . .
-

1 ¥ 1 7 → 1 1 ¥

MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy Π : S → A from states to actions which maximize
expected cumulative reward.

• Start is state s߿.

• For t = ߿ . . . , T
• rt ∼ R(st,Π(st)).
• st+ࠀ ∼ P(st,Π(st)).

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

reward(Π) = E
T∑

t=߿
rt

[s߿,a߿, r߿], [sࠀ,aࠀ, rࠀ], . . . , [st,at, rt] is called a trajectory of the MDP
under policy Π.ࠁ
Itࠁ turns out that it is always optimal to use a fixed policy. There is no
benefit to changing Π over time. We will discuss this shortly. ࠄࠃ

I
=

o o o }

FLEXIBILITY OF MDPS

• Can be used to model time-varying environments. Just
add time t to the state vector.

• Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

• Can be used to model two-player games. Model adversary
as part of the transition function.

ࠅࠃ

1

SIMPLE EXAMPLE: GRIDWORLD

• rt = ࠀ߿.− if not at an end position. ࠀ± if at end position.
• P(st,a) : %߿ࠆ of the time move in the direction indicated
by a. %߿ࠂ of the time move in a random direction.

What is the optimal policy Π? ࠆࠃ

i i i . ⇒O;
.p ⇐
to

→
← i ←

a

SIMPLE EXAMPLE: GRIDWORLD

• rt = ࠄ.− if not at an end position. ࠀ± if at end position.
• P(st,a) : %߿ࠆ of the time move in the direction indicated
by a. %߿ࠂ of the time move in a random direction.

What is the optimal policy Π? ࠇࠃ

-F:

DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor γ and seek instead to take actions
which minimize:

E
T∑

t=߿
γtrt

where rt ∼ R(st,Π(st)) and st+ࠀ ∼ P(st,Π(st)) as before.

γ → :ࠀ No discount. Standard MDP expected reward.

γ → :߿ Care about short term reward more.

ࠈࠃ

VALUE FUNCTION

From now on assume T =∞. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy Π.

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Let Π∗
s = argmax VΠ(s). If we are in state s, at any point, we

should always take action Π∗
s(s).

߿ࠄ

VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

Proof: Suppose we has already taken j− ࠀ steps and seen
trajectory [s߿,a߿, r߿], . . . , [sj,aj, rj]. Then our expected reward is:

r߿ + γrࠀ + . . .+ γj−ࠀrj−ࠀ + EΠ

∑

t≥j

γtrj

= r߿ + γrࠀ + . . .+ γj−ࠀrj−ࠀ + γj · EΠ

∑

t≥߿
γtrt+j

= r߿ + γrࠀ + . . .+ γjrj + γj · VΠ(sj)

ࠀࠄ

VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

Consequence: there is a single optimal policy Π∗ which
simultaneously maximizes VΠ(s) for all s. I.e.
Π∗
ࠀ = Π∗

ࠁ = . . . = Π∗
|S| = Π∗. We do not need to change the

policy over time to maximize expected reward.

Goal in RL is to find this optimal policy Π∗.

ࠁࠄ

TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R. Sometimes called the “planning” problem.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

ࠂࠄ

(I

VALUE ITERATION

Let V∗(s) = VΠ∗
(s). This function is equal to the expected

future reward if we play optimally starting in state s.

ࠃࠄ

VALUE ITERATION

In the full information setting, if we knew V∗ we can easily find
the optimal policy Π:

Π∗(s) = argmax
a

∑

s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

ࠄࠄ

VALUE ITERATION

V∗(s) satisfies what is called a Bellman equation:

V∗(s) = max
a

∑

s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

Run a fixed point iteration to find V∗:

• Start with initial guess V߿.
• For i = ,ࠀ . . . , z :

• For s → S :

• Vi(s) = maxa
∑

s′,r ·Pr(s
′, r | s, a)[r+ γVi−ࠀ(s′)]

Can be shown to converge in roughly z = ࠀ
γ−ࠀ iterations. What

is the computational cost of each iteration?

ࠅࠄ

TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

• Model-based RL methods essentially try to learn P and R
very accurately and then find Π∗ via a method like value
iteration. Require a lot of samples of the MDP.

• Model-free RL methods try to learn Π∗ without necessarily
obtaining an accurate model of the world – i.e. without
explicitly learning P and R.

ࠆࠄ

Q FUNCTION

Another important function:

• Q-function: QΠ(s,a) = EΠ,s߿=s,a߿=a
∑

t≥߿ γ
trt. Measures

the expected return if we start in state s, play action a,
and then follow policy Π.

Q∗(s,a) = max
Π

QΠ(s,a) = QΠ∗
(s,a).

ࠇࠄ

Q FUNCTION

Q∗(s,a) = max
Π

EΠ,s߿=s,a߿=a
∑

t≥߿
γtrt.

If we knew the function Q∗, we would immediately know an
optimal policy. Whenever we’re in state s, we should always
play action a∗ = argmaxa Q∗(s,a).

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. ࠈࠄ

BELLMAN EQUATION

Q∗ also satisfies a Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

߿ࠅ

Q LEARNING

Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

Again use fixed point iteration to find Q∗. Let Qi−ࠀ be our
current guess for Q∗ and suppose we are at some state s,a.

Qi(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Qi−ࠀ(s′,a′)

In reality, drop expectations and use a learning rate α

Qi(s,a) = −ࠀ) α)Qi(s,a) + α

(
R(s,a) + γmax

a′
Qi−ࠀ(s′,a′)

{

ࠀࠅ

Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy Π and run:

• Initialize Q߿ (e.g. all zeros)
• Start at s, play action a = Π(s), observe reward R(s,a).
• For i = ,ࠀ . . . , z

• Qi(s,a) = −ࠀ) α)Qi(s,a) + α
(
R(s,a) + γmaxa′ Qi−ࠀ(s′,a′)

)

• s← P(s,a)
• a← Π(s)

(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy Π that is not necessarily related to its current
guess for an optimal policy, which in this case would be
Π(s) = maxa Qi(s,a) at time i. ࠁࠅ

EXPLORATION VS. EXPLOITATION

For small enough α, Q-learning converges to Q∗ as long as we follow
a policy Π that visits every start (s,a) with non-zero probability.

Mild condition, but exact choice of Π matters for convergence rate.

• Random: At state s, choose a random action a.

• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

Random can be wasteful. Spend time improving parts of Q that
aren’t relevant to optimal play. Greedy can cause you to zero in on a
locally optimal policy without learning new strategies. ࠂࠅ

EXPLORATION VS. EXPLOITATION

Possible choices for Π:

• Random: At state s, choose a random action a.
• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

• ε-Greedy: At state s, choose argmaxa Qi(s,a) with
probability −ࠀ ε and a random action with probability ε.

Exploration-exploitation tradeoff. Increasing ε = more
exploration. ࠃࠅ

CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q∗ is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:

• Tic-tac-toe: (ࠂ×ࠂ)ࠂ ≈ ,߿ࠁ ߿߿߿
• Chess: ≈ ࠂࠃ߿ࠀ < ࠃࠅࠇࠁ (due to Claude Shannon).
• Go: (ࠈࠀ×ࠈࠀ)ࠂ ≈ .ࠀࠆࠀ߿ࠀ
• Atari: (߿ࠅࠀ×߿ࠀࠁ)ࠇࠁࠀ ≈ .߿߿߿,ࠀࠆ߿ࠀ

Number of atoms in the universe: ≈ .ࠁࠇ߿ࠀ

ࠄࠅ

MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Suppose our state can be represented by a vector in
Rd and our action a by an integer in ,ࠀ . . . , |A|. We could use a
linear function where θ is a small matrix:

ࠅࠅ

MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Could also use a (deep) neural network.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature .ࠄࠀ߿ࠁ ࠆࠅ

MACHINE LEARNING APPROACH

If Q(s,a, θ) is a good approximation to Q∗(s,a) then we have
an approximately optimal policy: Π̃∗(s) = argmaxa Q(s,a, θ).

• Start in state s߿.
• For t = ,ࠀ ,ࠁ . . .

• a∗ = argmaxa Q(s,a, θ)
• st ∼ P(st−ࠀ,a∗)

How do we find an optimal θ? If we knew Q∗(s,a) could use
supervised learning, but the true Q function is infeasible to

compute.

ࠇࠅ

Q-LEARNING W/ FUNCTION APPROXIMATION

Find θ which satisfies the Bellman equation:

Q∗(s,a) = Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q∗(s′,a′)

]

Q(s,a, θ) ≈ Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Should be true for all a, s. Should also be true for a, s ∼ D for
any distribution D:

Es,a∼DQ(s,a, θ) ≈ Es,a∼DEs′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Loss function:

L(θ) = Es,a∼D (y− Q(s,a, θ))ࠁ

where y = Es′∼P(s,a) [R(s,a) + γmaxa′ Q(s′,a′, θ)].

ࠈࠅ

Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:

∇L(θ) = Es,a∼D ,Q(s,a∇ࠁ−] θ) · [y− Q(s,a, θ)]]

In practice use stochastic gradient:

∇L(θ, s,a) = ࠁ− ·∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]

• Initialize θ߿

• For i = ,߿ ,ࠀ ,ࠁ . . .

• Run policy Π to obtain s,a and s′ ∼ P(s,a)
• Set θi+ࠀ = θi − η ·∇L(θi, s,a)

η is a learning rate parameter.

߿ࠆ

Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of Π matters a lot. Random play can be
wastefully, putting effort into approximating Q∗ well in parts of
the state-action space that don’t actually matter for optimal
play. ε-greedy approach is much more common:

• Initialize s߿.
• For t = ,߿ ,ࠀ ,ࠁ . . . ,

• ai =
{
argmaxa Q(st,a, θcurr) with probabilty −ࠀ) ε)

random action with probabilty ε

ࠀࠆ

REFERENCES

Lots of other details we don’t have time for! References:

• Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

• Stanford lecture video:
https://www.youtube.com/watch?v=lvoHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
cs231n_2017_lecture14.pdf

Important concept we did not cover: experience replay.

ࠁࠆ

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

ATARI DEMO

https://www.youtube.com/watch?v=V1eYniJ0Rnk

ࠂࠆ

https://www.youtube.com/watch?v=V1eYniJ0Rnk

