CS-GY 6923: Lecture 14
Finish Semantic Embeddings, Modern Image

Generation, Reinforcement Learning

_— e — @@ @

NYU Tandon School of Engineering, Prof. Christopher Musco

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

"

“Kitten” “Dog”

1T
1/ 07BN

For words, the mapping is typically just a lookup table.

(8, RN

HOW TO GET EMBEDDINGS?

term-document matrix

%, %,
% By,

%, %

doc_1| o

0

1

doc_2

1

0

0

0

0
1
0
1

doc_n

0

0

ololo|r|m

ololeo|o|m

PCA

single docuement

BOW features

P

X

LSA features

I v (1)
_ word vectors

document vectors

For documents or words, earliest approaches were based on
latent semantic analysis (PCA on term document matrix).

WORD EMBEDDINGS

% W

More modern word embedding recipe: % ,

1. Choose similarity metric k(word;, word;) vvh|ch can be
computed for any pair of words.

2. Construct similarity matrix M € R"*" with
M;; = k(word;, word}).
—_— —

3. Find low rank approximation M z@vhere V7 & TR,

4. Columns of Y are word embedding vectors.

We expect that (y;, y;) will be larger for more similar words.

Hoogut UV om £
Mo e e - .

MODERN WORD EMBEDDINGS

Common choice for similarity metric is to use co-occurence
frequency in windows.

dog park crowded the

0 (2) 0 3
@ 0 1 2

The girl walks to her|dog to the park.

It can take a long time to parkyour car in NYC.
|The|dog park is|always\crowded on Saturdays.

Sop

The girl walks to her dog to the park.
It can take a long time to park your car in NYC.
The dog|park is always crowded|on Saturdays.

The girl walks to

It can take a long time to park your car in NYC.

The dog park is|always crowded on Saturdays.

papmosd Jed

9yl
w
N
o
o

k(word;, word;) i

= e

Usually followed by some tranformation or normalization. E.g.,
gép(il)
)P()

MODERN WORD EMBEDDINGS

Current state of the art models: GLoVE, word2vec.

- word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

information”:{log p‘(),-()ig()}-).

- For word2veE, similarit§ metric is the “point-wise mutual
I

Common to use pre-trained word vectors:

- Compilation of many sources:
https://github.com/3Top/word2vec-api

https://github.com/3Top/word2vec-api

CAVEAT ABOUT FACTORIZATION

Nef%s . %, <
’ Y
& \

% /"ej”%ﬂ

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite’ then the optimal low-rank
approximation does not have this form.

"l.e., k(word;, word;) is not a positive semidefinite kernel.

CAVEAT ABOUT FACTORIZATION

o AR
% %, o,/&e I\ %9 o

b vo |

—

%

M

%, %,
S

EN

134
NIRRT

- For each word | we get a left and right embedding vector
w; and y;. It's reasonable to just use one or the other.

- If {y;,y)) is large and positive, we expect thaty; and y; have
similar similarity scores with other words, so they typically
are still related words.

- Another option is to use as your features for a word the
concatenation [wj, yj]

—

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

item1 item2

itemn

L way

similarity matrix

M

zway

way

For example, the items could be(nodes in a social netvvork)
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

14

NODE EMBEDDINGS

a

ER I & \ - 'rﬂﬂ
g A T kg

a ~ e

P 2 [}]

at (] 9 Ad A e}

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

6,8,6,4,3,1,5,3,4
7,86,8,78,6,8,6

4,6,8,6,4,3,1,2,5

I

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

node1 node2 .. node 8
1,3,4,4,52,1,2,5 Bl 0|2 !
6,8,6,43,1,5,3, & I .
7,8,6,8,7,8,6,8,6 o
4,6,8,6,4,3,1,2,5 g

® 1 0 0

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).

12

BIMODAL EMBEDDINGS

Best dim sum ever. \\\

y new puppy!
N
Text

: Encoder l i i
NYC in the rain. — } @ T | T

LTy

Image L LT, | 3T, | LT
Encoder 3 301 3712 33

@‘ ll'le LTy | Ty
@ L || LT LT, | LTy

LT

3Ty

INTs

ﬁﬁ %/ . A

i
InTn ‘

Goal: Train embedding architectures so that (T;,1;) are similar

if image and sentence are similar.

13

CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity
matrix.

My new pu@

Best dim sum ever. 0

(0)4
(D

NYC in the rain. 0
=

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.

14

CLIP FOR ZERO-SHOT LEARNING

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford "' Jong Wook Kim *! Chris Hallacy ' Aditya Ramesh' Gabriel Goh' Sandhini Agarwal‘
Girish Sastry! Amanda Askell' Pamela Mishkin' Jack Clark' Gretchen Krueger' Ilya

N A

A photo of
a

> . Encoder
—

oJ©

—> I LTy | Ty | 0Ty

A photo of
a .

2021 result: 76% accuracy on ImageNet image classification
challenge with no labeled training data. 113

®

I'Ty

Image
Encoder

IMAGE SYNTHESIS (TEASER)

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images J

f(x) = d(e(x)) projects an image x closer to the space of

natural images. A (ﬂ’}/) {g—\é"“

16

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

- Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

- Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

PREYOEN)

How do we randomly select an image from S§?

17

AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

n, =z)
N, == (2,)
y

N == 7)
£

\

Main issue: most random inputs words will “miss” and produce
garbage results.

18

AUTOENCODERS FOR DATA GENERATION

Space of “natural”
images 7

Va@qﬁ&-e_@d_ers attempt to resolve this issue.

19

VARIATIONAL AUTOENCODERS

Developed from a different perspective than regular

autoencoders. Make the data generation goal more explicit. W

(2
[
(2}
o

* Train a neural network Gy that takes in a length k code
word, z, and outputs an image.

- Assume z ~ N(0,1). l.e, a random Gaussian vector.

- Goal is to maximize probability of producing a “natural

image”. Go (¢>

First attempt: Given training data xq,..., X,

——

= maxE,;1[Gy(z) = x; for some |
0 «~

Issues: Super brittle, impossible to train.

mgax/ 1[Gy(z) = x; for some i] - p(z)dz

20

VARIATIONAL AUTOENCODERS

A N()

Bayesian approach: assume each x; is of the form
@(_) *{or randomly chosen z. Choose parameters, 6,

to maximizethe likelihood of the data:

maaxHeQ(l) = meaxH/gp(xi | Z)’ p(z)dz
N =

= meax; log / p(%; | 2) - p(2)dz

/—____

n
= min Z — |og\/e_”Xi_GQ(Z)“%/Z"'2 p(z)dz
i=1
O/\/) - % GB

21

VARIATIONAL AUTOENCODERS

How to deal with the integral? Very common approach in
generative modeling (beyond VAEs):(Monte Carlo
approximation.) Draw samples z,...,2zy and observe that:

L -

VARIATIONAL AUTOENCODERS

This approach does not work out of the box. The issue is that
the integral will be very poorly approximated by sampling:

¢
/p Xi | z) - p(z)dz aé/Zp Xi | Z;). Ce (2)
J1
~) j{

Second key idea: Importance sampling. For any distribution

/px,|z dz_/ {X’|Z

p(\c 12) .
Draw z,...,zy, from g(z) and estimate: (/
N 2 °v) =

_—

b, %12"7:;9(
I m‘l:1 q

23

VARIATIONAL AUTOENCODERS

Mo e OD“ (v)

‘A\) s
13 QL’)‘;‘,\,—-
We can choose a different distribution for each x;. l.e., choose

(qq, .. .,qn.)deally, want g; to be higher for z that are more
likely to generate x;. Ideal choice is gj(z) = p(z | x;).

.o 1«‘)

/7'? J D
1 = p(X; 1 «=(p(Xi | 2) - p(z
P(’(‘)% Zp(xf(zﬁ,p(@:m. p(xi|2)-p(z)

(ov 30

24

VARIATIONAL AUTOENCODERS

Typical VAE approach: Assume g; is parameterized as a
multivariate Gaussian distribution with mean p; € R* and
variances X, = [012, .. ,a,%]. Train a model (e.g., neural network)
that maps X; to p;, }E_,

Simulateously minimize distance between g; and p(z X;)
(typically using KL divergence) and maximize Y"1, p(x;), where
p(x;) is approximated via importance sampling.

Lots of details here! Link to some good notes by Brian Kang.

25

https://bjlkeng.io/posts/variational-autoencoders/

VARIATIONAL AUTOENCODERS

VAEs are not really autoencoders. Not designed to map an
input x to an approximation X. But, their final architecture

“encode”

‘decode”)|
26

GENERATIVE ADVERSARIAL NETWORKS

VAE's give very good results, but tend to produce images with
immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

n, == z
\X
nzﬂ‘ Z, K y

n; == 2z)
£

27

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

inL(0)

28

GENERATIVE ADVERSARIAL NETWORKS (GANS)

D(x) 09‘ (¢> — e

plwlp)

real-world

image generator

-) Jwor) [/) l’> lj \3
Dg((W’)’) —_ code vector
JR——

Let X4,...,X, be real images and letgb cesZm be random code

vectors. The goalmscriminator is to output a number between
[0,1] which is close to 0 if the image is fake, close to 1 if it's real.

Train weights of discriminator Dg to minimize:

mlnz Iog +Z log (1 — Do (Ger(2))) 29

i=1 —

GENERATIVE ADVERSARIAL NETWORKS (GANS)

real-world

image generator

code vector
Goal of the generator Gg; is the opposite. We want to maximize:
m
mfynz —log (1 — Dg(Ger(z})))
Y = —
This is called an “adversarial loss function”. D is playing the role of

the adversary. 20

GENERATIVE ADVERSARIAL NETWORKS (GANS)

0* 0’* SO[VG(mIn maxz log (De(x +Z log (1— De(Ger(z)))

=1

This is called a minimax optimization problem. Really tricky to
solve in practice.

- Repeatedly play: Fix one of @ or @', train the other to
convergence, repeat.

- Simultaneous gradient descent: Run a single gradient
descent step for each of 8,8 and update D and G
accordingly. Difficult to balance learning rates.

ilbaaiclALUL-REE

31

GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.

32

DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

Forward Diffusion Process >

Denoising UNet

Reverse Diffusion Process ‘

33

DIFFUSION

We will post a demo for generating MNIST digits via diffusion.

ool Jege] Jeja]
HEEREREEERE

G i
Fa" 2 ¥

34

0.
L
(%]
-
L
-
<
I
=

Tons of other work going on in image generation. One key

”

topic is “class conditioned” generation:

u

Uy yy

”

™

") NN My
MMM
MmmMmMmMmMmmeanm
m WM M mmm e,
MMM MmMm MM ™
MMMHOHMMM®M ™
ODOMMOMMOOO

NOOOOOO®O N

OO OO @O

NN NN
NANNNNNNNNN
NN NNNNNN
NN
g
(2 %0 W3 W05 W Wo W W]
X X XaXaXa¥aXa Xa kKol
(2. %2 X2 Xa Xa Xa Xa Xa Xa Kol
(22 12 Xa Xa Xa Xa Xa Ko |
D NAAAAA

~

~

499991

44

™N ™~

~
o~
~

~

~

35

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Can also condition on another image...

36

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

"A chair that looks like an avocado”
37

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence... %{&\«
VARIATIONAL AUTOENCOROER \e)q’f* \
ENCORDER ENCORDER + LATENT SPACE 6 7, ’

®1®

m:% - ~<—:<><:—> J /

% 0, f". 20, Q

PP § 0L
VAGl'ATIONAL\ NT SPACE
AUTOENCORDER

—~ LATENT SPACE

¢
P /OL
SS FOI

LANDRDYACE DECODER

[M = RECONSPECTION LOSS + R RECORFECTDNS M
FROM LALTENT VECTORS — KL DIVERENS

"A diagram that explains variational autoencoders” =

REINFORCEMENT LEARNING (TEASER)

REINFORCEMENT LEARNING

Rest of lecture: Give flavor of the area and insight into one
algorithm (Q-learning) which has been successful in recent
years.

Basic setup:

- Agent interacts with environment over time 1,...,t.

- Takes repeated sequence of actions, a, ..., a; which
effect the environment.

- State of the environment over time denoted s4,. .., 5.

- Earn rewards ry, ..., r: depending on actions taken and
states reached.

- Goal is to maximize reward over time.

39

REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

- Agent: Cart/software
controlling cart.

- State: Position of the car,
pendulum head, etc.

- Actions: Move cart left or

move right.

. Reward:j/for every time

step that 0] < 90°
L
(pendulum is upright), 0

when |6 = 90° 40

REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:
- Semi-autonomous vehicles (airplanes, helicopters, drones, etc.)
- Industrial processes (e.g. controlling large chemical reactions)

- Robotics

control theory : reinforcement learning :: stats : machine learning
—_—

41

REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

. ALP-NAGP EE SEDOL
ol
E5paundm
’.,}_...‘ W V&
State: Position of all pieces - Reward: 1if in winning
on board. position at time t. 0
otherwise.

(Actions: Place new piece.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

42

REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

- State: Raw pixels on the - Actions: Actuate controller
screen (sometimes there is (up,down,left,right,click).
also hidden state which
can't be observed by the Reward: 1 if point scored at
player). time t.

43

MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

c S : Set of all possible states. # of states is |S|.
A Set of all possible actions. # of actions is |A|.
R Set of possible rewards. Could have R :.

- Reward function
R(s,a) : § x A — probability distribution over@ re ~ R(Se, p).
& 5 ST

- State transition function

P(s,a) : S x A — probability distribution overﬁ.@w P(it’ ay).

Why is this called a Markov decision process? What does the term
Markov refer to?

[f(/_——l‘a =N £4)

4

MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy [1: S — A from states to actions which maximize
expected cumulative reward.

- Start is state sq.
s Fort=0...,T
e R(st, MN(st))-
* Sty1 ~ P(st, M(st)).
e

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

:
reward(NM) =E> r,
t=0

[S0, ao,@, [51, 01@, ooy St at,@ is called a trajectory of the MDP
under policy M.2

2|t turns out that it is always optimal to use a fixed policy. There is no

benefit to changing M over time. We will discuss this shortly. 45

FLEXIBILITY OF MDPS

-f Can be used to model time-varying environments. Just

(add time t to the state vector.

-/ Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

- Can be used to model two-player games. Model adversary
as part of the transition function.

> yye

I A 4

46

SIMPLE EXAMPLE: GRIDWORLD

[
actions: lT (lj T

-’f not at an end position. 1 if at end position.
- P(5:;a) : 70% of the time move in the direction indicated

by a. 30% of the time move in a random direction.

What is the optimal policy M? .

SIMPLE EXAMPLE: GRIDWORLD

- re = —.5 if not at an end position. £1if at end position.
- P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M? i

DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor v and seek instead to take actions
which minimize:

.
EZ’tht
t=0

where ry ~ R(s¢, M(st)) and sty ~ P(st, M(s¢)) as before.
~ — 1: No discount. Standard MDP expected reward.

~ — 0: Care about short term reward more.

49

VALUE FUNCTION

From now on assume T = oco. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy .

Vi (S) = En,so=s Z ’Ytrt
t>0

Let M = argmax V'(s). If we are in state s, at any point, we
should always take action M%(s).

50

VALUE FUNCTION

Value function:

Vi (5) = Ensy=s Z 7t"t
t>0

Claim: Let M} = arg max V''(s). If we are in state s, at any point,
we should always take action M%(s).

Proof: Suppose we has already taken j — 1 steps and seen

trajectory [So, o, ro], - - ., [S}, aj, rj]. Then our expected reward is:
ro +yr —|—...+fyj_wrj,1 +En Z’ytf}'
t>j
:fo+’yf1+...+7j71fj_1 —l—’}/j'EnZ’ytl’tH

t>0
=10+ + ... A+ V(s)

51

VALUE FUNCTION

Value function:
Vi (S) = IEI'I,so:s Z ’Ytrt
>0

Claim: Let M} = arg max V''(s). If we are in state s, at any point,
we should always take action M%(s).

Consequence: there is a single optimal policy M* which
simultaneously maximizes V1(s) for all s. l.e.

My =N;=...=TM =MN" Wedo not need to change the
policy over time to maximize expected reward.

Goal in RL is to find this optimal policy M*.

52

TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R. Sometimes called the “planning” problem.

Reinforcement Learning setting? We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

53

VALUE ITERATION

Let V*(s) = V" (s). This function is equal to the expected
future reward if we play optimally starting in state s.

.=+1 I:\=_1

end
-1

start

54

VALUE ITERATION

In the full information setting, if we knew V* we can easily find

the optimal policy M:

start

end
-1

M*(s) =argmax » _-Pr(s',r|s,a)[r+~V*(s)]

a
s'r

55

VALUE ITERATION

V*(s) satisfies what is called a Bellman equation:

V¥(s) =max) -Pr(s',r|s,a)lr +7V(s)]

s'r

Run a fixed point iteration to find V*:

- Start with initial guess V°.
- Fori=1,...,z:
- ForseS:
- V() =maxa > - Pr(s’,r|s,a)[r + WS

Can be shown to converge in roughly z = ﬁ iterations. What
is the computational cost of each iteration?

56

TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

- Model-based RL methods essentially try to learn P and R
very accurately and then find M* via a method like value
iteration. Require a lot of samples of the MDP.

- Model-free RL methods try to learn IM* without necessarily
obtaining an accurate model of the world - i.e. without
explicitly learning P and R.

57

Q FUNCTION

Another important function:

- Q-function: Q"(s, a)

_ t
= Ensy=s,.a0=a 2_¢>0 V' It- Measures

the expected return if we start in state s, play action a,

and then follow policy .

Q*(s,a) = max Q"(s,a) =

end
+1

sta

actions

actions:

states

Q" (s, a).

Q'(s,a)

58

Q FUNCTION

Q*(S, a) = ml'aIX ErLSo:S,Uo:a Z’ytrt.
t>0

If we knew the function Q*, we would immediately know an
optimal policy. Whenever we're in state s, we should always
play action a* = arg max, Q*(s, a).

Q'(s,a

states (s,2)

17 u

= r

= J

© l
-+ e

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. 59

BELLMAN EQUATION

Q* also satisfies a Bellman equation:

Q*(s,a) = E[R(s, a)] + YEs/p(s,a) max Q*(s’,d").

60

Q LEARNING

Bellman equation:
Q*(s,a) = E[R(s, a)] + YEs.p(s,a) max Q*(s',ad).

Again use fixed point iteration to find Q*. Let Q"~" be our
current guess for Q* and suppose we are at some state s, a.

Q'(s,a) = E[R(s,a)] + YEs/p(s.a) max Q(s,d)
In reality, drop expectations and use a learning rate «

Q'(s,a) = (1—)Q'(s,a) + a <R(s, a) + 7y max Qs a’))

61

Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy M and run:

- Initialize Q° (e.g. all zeros)

- Start at s, play action a = I1(s), observe reward R(s, a).
- Fori=1,...,z
- Q(s,a) = (1— a)Qi(s,a) + a (R(s,a) + v maxy Q'(s', a"))
© S« P(s,a)
- a+M(s)
(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy I that is not necessarily related to its current
guess for an optimal policy, which in this case would be

MN(s) = maxq Q'(s,a) at time |. 62

EXPLORATION VS. EXPLOITATION

For small enough «, Q-learning converges to Q* as long as we follow
a policy M that visits every start (s, a) with non-zero probability.

Mild condition, but exact choice of I matters for convergence rate.

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

end
+1

end
-1

start

Random can be wasteful. Spend time improving parts of Q that
aren't relevant to optimal play. Greedy can cause you to zero in on a

. . ‘ . . 63
locally optimal policy without learning new strategies.

EXPLORATION VS. EXPLOITATION

Possible choices for I:

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

- e-Greedy: At state s, choose arg max, Q'(s, a) with
probability 1 — e and a random action with probability e.

end
+1

%
| end
| -1

start

Exploration-exploitation tradeoff. Increasing e = more

exploration. o

CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q* is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S] is gigantic...

Back of the envelope calculations:

- Tic-tac-toe: 3G3>*3) =~ 20,000
- Chess: ~ 10" < 28%* (due to Claude Shannon).
. Go: 3(19%19) ~ 10"71

- Atari: 128(210x160) ~ 1(71,000,

Number of atoms in the universe: ~ 1082.

65

MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a, #) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Suppose our state can be represented by a vector in
R? and our action a by an integer in 1,...,|.A|. We could use a
linear function where 6 is a small matrix:

d

Iaql{ ; s =H

Q(s,a,0) = z[a]

66

MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a, #) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Could also use a (deep) neural network.

Convglution Convolution Fully connected Fully cgnnected

o] E /= :
. . []
o] ®l/m
y :
Poecz-o:ie §*
of] Ei\w
. [y O]
o] m] \e
.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature 2015.

67

MACHINE LEARNING APPROACH

If Q(s, a,0) is a good approximation to Q*(s, a) then we have
an approximately optimal policy: [1%(s) = arg max, Q(s, a,).

- Start in state so.
cFort=12,...
- a* = argmax, Q(s, a,0)
+ St~ P(st_1,0%)

How do we find an optimal 6? If we knew Q*(s, a) could use
supervised learning, but the true Q function is infeasible to
compute.

68

Q-LEARNING W/ FUNCTION APPROXIMATION

Find 6 which satisfies the Bellman equation:
Q*(s,a) = Eg/op(sa) {R(s, a)+v max Q*(s', a’)}
Q(s,a,0) = Esps,a) [R(s, a)+-vy max Q(s, a, 0)] .

Should be true for all a,s. Should also be true for a,s ~ D for
any distribution D:

Es,a~pQ(S, 0, 0) = Es g pEs/p(s q) [R(S, a)+-~ max Q(s, a, 0)] .
Loss function:
L(0) = Esap (v — Q(S, q, 0))°
where y = Eg/p(s,q) [R(S, a) + v maxy Q(s', d’, 0)].

69

Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:
VL(Q) = ES,O’VD [_2VO(57 a, 9) : [y - Q(Sa a, 9)]]

In practice use stochastic gradient:

VL(8,s,a) = -2-VQ(s,a,0) - |R(s,a) +ymaxQ(s’,a’,8) — Q(s,a,0)
a/

- Initialize 6y
- Fori=0,1,2,...
- Run policy M to obtain s,a and s’ ~ P(s,a)
- Set 9,‘_;,_1 =0; — - VL(Q,',S, G)
n is a learning rate parameter.

70

Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of N matters a lot. Random play can be
wastefully, putting effort into approximating Q* well in parts of
the state-action space that don't actually matter for optimal
play. e-greedy approach is much more common:

- Initialize so.
- Fort=0,1,2,...,
Ca {arg max, Q(St, A, 0curr) With probabilty (1 — €)
random action with probabilty e

71

REFERENCES

Lots of other details we don’t have time for! References:

- Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

- Stanford lecture video:
https://www.youtube.com/watch?v=1voHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
€s231n_2017_lecturels.pdf

Important concept we did not cover: experience replay.

72

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

ATARI DEMO

https://www.youtube.com/watch?v=VleYniJORnk

73

https://www.youtube.com/watch?v=V1eYniJ0Rnk

