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SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).




SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).
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For words, the mapping is typically just a lookup table.
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HOW TO GET EMBEDDINGS?
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For documents or words, earliest approaches were based on
latent semantic analysis (PCA on term document matrix).



WORD EMBEDDINGS

% W

More modern word embedding recipe: % ,

1. Choose similarity metric k(word;, word;) vvh|ch can be
computed for any pair of words.

2. Construct similarity matrix M € R"*" with
M;; = k(word;, word}).
—_— —

3. Find low rank approximation M z@vhere V7 & TR,

4. Columns of Y are word embedding vectors.

We expect that (y;, y;) will be larger for more similar words.
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MODERN WORD EMBEDDINGS

Common choice for similarity metric is to use co-occurence
frequency in windows.
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The girl walks to her|dog to the park.

It can take a long time to parkyour car in NYC.
|The|dog park is|always\crowded on Saturdays.
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The girl walks to her dog to the park.
It can take a long time to park your car in NYC.
The dog|park is always crowded|on Saturdays.

The girl walks to

It can take a long time to park your car in NYC.

The dog park is|always crowded on Saturdays.

papmosd Jed

9yl
w
N
o
o

k(word;, word;) i

= e

Usually followed by some tranformation or normalization. E.g.,
gép(il)
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MODERN WORD EMBEDDINGS

Current state of the art models: GLoVE, word2vec.

- word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

information”:{log p‘(),-()ig()}-).

- For word2veE, similarit§ metric is the “point-wise mutual
I

Common to use pre-trained word vectors:

- Compilation of many sources:
https://github.com/3Top/word2vec-api


https://github.com/3Top/word2vec-api

CAVEAT ABOUT FACTORIZATION
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SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite’ then the optimal low-rank
approximation does not have this form.

"l.e., k(word;, word;) is not a positive semidefinite kernel.



CAVEAT ABOUT FACTORIZATION
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- For each word | we get a left and right embedding vector
w; and y;. It's reasonable to just use one or the other.

- If {y;,y)) is large and positive, we expect thaty; and y; have
similar similarity scores with other words, so they typically
are still related words.

- Another option is to use as your features for a word the
concatenation [wj, yj]

—



SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

item1 item2

itemn

L way

similarity matrix

M

zway

way

For example, the items could be(nodes in a social netvvork)
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.
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NODE EMBEDDINGS
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Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

6,8,6,4,3,1,5,3,4
7,86,8,78,6,8,6

4,6,8,6,4,3,1,2,5
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NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

node1 node2 .. node 8
1,3,4,4,52,1,2,5 Bl 0|2 !
6,8,6,43,1,5,3, & I .
7,8,6,8,7,8,6,8,6 o
4,6,8,6,4,3,1,2,5 g
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Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).
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BIMODAL EMBEDDINGS
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Goal: Train embedding architectures so that (T;,1;) are similar

if image and sentence are similar.
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CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity
matrix.

My new pu@

Best dim sum ever. 0

(0)4
(D

NYC in the rain. 0
=

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.
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CLIP FOR ZERO-SHOT LEARNING

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford "' Jong Wook Kim *! Chris Hallacy ' Aditya Ramesh' Gabriel Goh' Sandhini Agarwal‘
Girish Sastry! Amanda Askell' Pamela Mishkin' Jack Clark' Gretchen Krueger' Ilya
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2021 result: 76% accuracy on ImageNet image classification
challenge with no labeled training data. 113
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IMAGE SYNTHESIS (TEASER)



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images J

f(x) = d(e(x)) projects an image x closer to the space of

natural images. A (ﬂ’}/) {g—\é"“
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AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

- Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

- Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

PREYOEN )

How do we randomly select an image from S§?

17



AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

n, =z )
N, == (2, )
y

N == 7 )
£

\

Main issue: most random inputs words will “miss” and produce
garbage results.
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AUTOENCODERS FOR DATA GENERATION

Space of “natural”
images 7

Va@qﬁ&-e_@d_ers attempt to resolve this issue.

19



VARIATIONAL AUTOENCODERS

Developed from a different perspective than regular

autoencoders. Make the data generation goal more explicit. W

(2
[
(2}
o

* Train a neural network Gy that takes in a length k code
word, z, and outputs an image.

- Assume z ~ N(0,1). l.e, a random Gaussian vector.

- Goal is to maximize probability of producing a “natural

image”. Go (¢>

First attempt: Given training data xq,..., X,

——

= maxE,;1[Gy(z) = x; for some |
0 «~

Issues: Super brittle, impossible to train.

mgax/ 1[Gy(z) = x; for some i] - p(z)dz
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VARIATIONAL AUTOENCODERS

A N( )

Bayesian approach: assume each x; is of the form
@(_) *{or randomly chosen z. Choose parameters, 6,

to maximizethe likelihood of the data:

maaxHeQ(l) = meaxH/gp(xi | Z)’ p(z)dz
N =

= meax; log / p(%; | 2) - p(2)dz

/—\____

n
= min Z — |og\/e_”Xi_GQ(Z)“%/Z"'2 p(z)dz
i=1
O/\/) - % GB
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VARIATIONAL AUTOENCODERS

How to deal with the integral? Very common approach in
generative modeling (beyond VAEs):(Monte Carlo
approximation.) Draw samples z,...,2zy and observe that:

L -



VARIATIONAL AUTOENCODERS

This approach does not work out of the box. The issue is that
the integral will be very poorly approximated by sampling:

¢
/p Xi | z) - p(z)dz aé/Zp Xi | Z;). Ce (2)
J1
~ ) j{

Second key idea: Importance sampling. For any distribution

/px,|z dz_/ {X’|Z

p(\c 12) .
Draw z,...,zy, from g(z) and estimate: ( /
N 2 °v ) =

_—

b, %12"7:;9(
I m‘l:1 q
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VARIATIONAL AUTOENCODERS

Mo e OD“ (v)

‘A\) s
13 QL’)‘;‘,\,—-
We can choose a different distribution for each x;. l.e., choose

(qq, .. .,qn.)deally, want g; to be higher for z that are more
likely to generate x;. Ideal choice is gj(z) = p(z | x;).

.o 1«‘)

/7'? J D
1 = p(X; 1 «=(p(Xi | 2) - p(z
P(’(‘)% Zp(xf(zﬁ,p(@:m. p(xi|2)-p(z)

(ov 30
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VARIATIONAL AUTOENCODERS

Typical VAE approach: Assume g; is parameterized as a
multivariate Gaussian distribution with mean p; € R* and
variances X, = [012, .. ,a,%]. Train a model (e.g., neural network)
that maps X; to p;, }E_,

Simulateously minimize distance between g; and p(z X;)
(typically using KL divergence) and maximize Y"1, p(x;), where
p(x;) is approximated via importance sampling.

Lots of details here! Link to some good notes by Brian Kang.

25


https://bjlkeng.io/posts/variational-autoencoders/

VARIATIONAL AUTOENCODERS

VAEs are not really autoencoders. Not designed to map an
input x to an approximation X. But, their final architecture

“encode”

‘decode” )|
26



GENERATIVE ADVERSARIAL NETWORKS

VAE's give very good results, but tend to produce images with
immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

n, == z
\X
nzﬂ‘ Z, K y

n; == 2z )
£
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

inL(0)

28



GENERATIVE ADVERSARIAL NETWORKS (GANS)

D(x) 09‘ (¢> — e

plwlp)

real-world

image generator

- ) Jwor) [/) l’> lj \3
Dg(( W’)’) —_ code vector
JR——

Let X4,...,X, be real images and letgb cesZm be random code

vectors. The goalmscriminator is to output a number between
[0,1] which is close to 0 if the image is fake, close to 1 if it's real.

Train weights of discriminator Dg to minimize:

mlnz Iog +Z log (1 — Do (Ger(2))) 29
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

real-world

image generator

code vector
Goal of the generator Gg; is the opposite. We want to maximize:
m
mfynz —log (1 — Dg(Ger(z})) )
Y = —
This is called an “adversarial loss function”. D is playing the role of

the adversary. 20



GENERATIVE ADVERSARIAL NETWORKS (GANS)

0* 0’* SO[VG(mIn maxz log (De(x +Z log (1— De(Ger(z )))

=1

This is called a minimax optimization problem. Really tricky to
solve in practice.

- Repeatedly play: Fix one of @ or @', train the other to
convergence, repeat.

- Simultaneous gradient descent: Run a single gradient
descent step for each of 8,8 and update D and G
accordingly. Difficult to balance learning rates.

ilbaaiclALUL-REE
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.

32



DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

Forward Diffusion Process >

Denoising UNet

Reverse Diffusion Process ‘

33



DIFFUSION

We will post a demo for generating MNIST digits via diffusion.

ool Jege] Jeja]
HEEREREEERE

G i
Fa" 2 ¥
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Tons of other work going on in image generation. One key

”

topic is “class conditioned” generation:
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SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Can also condition on another image...

36



SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

"A chair that looks like an avocado”
37



SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence... %{&\«
VARIATIONAL AUTOENCOROER \e)q’f* \
ENCORDER ENCORDER + LATENT SPACE 6 7, ’

®1®
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[M = RECONSPECTION LOSS + R RECORFECTDNS M
FROM LALTENT VECTORS — KL DIVERENS

"A diagram that explains variational autoencoders” =



REINFORCEMENT LEARNING (TEASER)



REINFORCEMENT LEARNING

Rest of lecture: Give flavor of the area and insight into one
algorithm (Q-learning) which has been successful in recent
years.

Basic setup:

- Agent interacts with environment over time 1,...,t.

- Takes repeated sequence of actions, a, ..., a; which
effect the environment.

- State of the environment over time denoted s4,. .., 5.

- Earn rewards ry, ..., r: depending on actions taken and
states reached.

- Goal is to maximize reward over time.

39



REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

- Agent: Cart/software
controlling cart.

- State: Position of the car,
pendulum head, etc.

- Actions: Move cart left or

move right.

. Reward:j/for every time

step that 0] < 90°
L
(pendulum is upright), 0

when |6 = 90° 40



REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:
- Semi-autonomous vehicles (airplanes, helicopters, drones, etc.)
- Industrial processes (e.g. controlling large chemical reactions)

- Robotics

control theory : reinforcement learning :: stats : machine learning
—_—

41



REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

. ALP-NAGP EE SEDOL
ol
E5paundm
’.,}_...‘ W V&
State: Position of all pieces - Reward: 1if in winning
on board. position at time t. 0
otherwise.

( Actions: Place new piece.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

42



REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

- State: Raw pixels on the - Actions: Actuate controller
screen (sometimes there is (up,down,left,right,click).
also hidden state which
can't be observed by the Reward: 1 if point scored at
player). time t.

43



MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

c S : Set of all possible states. # of states is |S|.
A Set of all possible actions. # of actions is |A|.
R Set of possible rewards. Could have R :.

- Reward function
R(s,a) : § x A — probability distribution over@ re ~ R(Se, p).
& 5 ST

- State transition function

P(s,a) : S x A — probability distribution overﬁ.@w P(it’ ay).

Why is this called a Markov decision process? What does the term
Markov refer to?

[f(/_——l‘a =N £4)
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MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy [1: S — A from states to actions which maximize
expected cumulative reward.

- Start is state sq.
s Fort=0...,T
e R(st, MN(st))-
* Sty1 ~ P(st, M(st)).
e

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

:
reward(NM) =E> r,
t=0

[S0, ao,@, [51, 01@, ooy St at,@ is called a trajectory of the MDP
under policy M.2

2|t turns out that it is always optimal to use a fixed policy. There is no

benefit to changing M over time. We will discuss this shortly. 45



FLEXIBILITY OF MDPS

-f Can be used to model time-varying environments. Just

(add time t to the state vector.

-/ Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

- Can be used to model two-player games. Model adversary
as part of the transition function.

> yye

I A 4
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SIMPLE EXAMPLE: GRIDWORLD

[
actions: lT (lj T

-’f not at an end position. 1 if at end position.
- P(5:;a) : 70% of the time move in the direction indicated

by a. 30% of the time move in a random direction.

What is the optimal policy M? .



SIMPLE EXAMPLE: GRIDWORLD

- re = —.5 if not at an end position. £1if at end position.
- P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M? i



DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor v and seek instead to take actions
which minimize:

.
EZ’tht
t=0

where ry ~ R(s¢, M(st)) and sty ~ P(st, M(s¢)) as before.
~ — 1: No discount. Standard MDP expected reward.

~ — 0: Care about short term reward more.

49



VALUE FUNCTION

From now on assume T = oco. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy .

Vi (S) = En,so=s Z ’Ytrt
t>0

Let M = argmax V'(s). If we are in state s, at any point, we
should always take action M%(s).

50



VALUE FUNCTION

Value function:

Vi (5) = Ensy=s Z 7t"t
t>0

Claim: Let M} = arg max V''(s). If we are in state s, at any point,
we should always take action M%(s).

Proof: Suppose we has already taken j — 1 steps and seen

trajectory [So, o, ro], - - ., [S}, aj, rj]. Then our expected reward is:
ro +yr —|—...+fyj_wrj,1 +En Z’ytf}'
t>j
:fo+’yf1+...+7j71fj_1 —l—’}/j'EnZ’ytl’tH

t>0
=10+ + ... A+ V(s)

51



VALUE FUNCTION

Value function:
Vi (S) = IEI'I,so:s Z ’Ytrt
>0

Claim: Let M} = arg max V''(s). If we are in state s, at any point,
we should always take action M%(s).

Consequence: there is a single optimal policy M* which
simultaneously maximizes V1(s) for all s. l.e.

My =N;=...=TM =MN" Wedo not need to change the
policy over time to maximize expected reward.

Goal in RL is to find this optimal policy M*.

52



TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R. Sometimes called the “planning” problem.

Reinforcement Learning setting? We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

53



VALUE ITERATION

Let V*(s) = V" (s). This function is equal to the expected
future reward if we play optimally starting in state s.

.=+1 I:\=_1

end
-1

start

54



VALUE ITERATION

In the full information setting, if we knew V* we can easily find

the optimal policy M:

start

end
-1

M*(s) =argmax » _-Pr(s',r|s,a)[r+~V*(s)]

a
s'r

55



VALUE ITERATION

V*(s) satisfies what is called a Bellman equation:

V¥(s) =max ) -Pr(s',r|s,a)lr +7V(s)]

s'r

Run a fixed point iteration to find V*:

- Start with initial guess V°.
- Fori=1,...,z:
- ForseS:
- V() =maxa > - Pr(s’,r|s,a)[r + WS

Can be shown to converge in roughly z = ﬁ iterations. What
is the computational cost of each iteration?

56



TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

- Model-based RL methods essentially try to learn P and R
very accurately and then find M* via a method like value
iteration. Require a lot of samples of the MDP.

- Model-free RL methods try to learn IM* without necessarily
obtaining an accurate model of the world - i.e. without
explicitly learning P and R.

57



Q FUNCTION

Another important function:

- Q-function: Q"(s, a)

_ t
= Ensy=s,.a0=a 2_¢>0 V' It- Measures

the expected return if we start in state s, play action a,

and then follow policy .

Q*(s,a) = max Q"(s,a) =

end
+1

sta

actions

actions:

states

Q" (s, a).

Q'(s,a)

58



Q FUNCTION

Q*(S, a) = ml'aIX ErLSo:S,Uo:a Z’ytrt.
t>0

If we knew the function Q*, we would immediately know an
optimal policy. Whenever we're in state s, we should always
play action a* = arg max, Q*(s, a).

Q'(s,a

states (s,2)

17 u

= r

= J

© l
-+ e

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. 59



BELLMAN EQUATION

Q* also satisfies a Bellman equation:

Q*(s,a) = E[R(s, a)] + YEs/p(s,a) max Q*(s’,d").

60



Q LEARNING

Bellman equation:
Q*(s,a) = E[R(s, a)] + YEs.p(s,a) max Q*(s',ad).

Again use fixed point iteration to find Q*. Let Q"~" be our
current guess for Q* and suppose we are at some state s, a.

Q'(s,a) = E[R(s,a)] + YEs/p(s.a) max Q(s,d)
In reality, drop expectations and use a learning rate «

Q'(s,a) = (1— )Q'(s,a) + a <R(s, a) + 7y max Qs a’))

61



Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy M and run:

- Initialize Q° (e.g. all zeros)

- Start at s, play action a = I1(s), observe reward R(s, a).
- Fori=1,...,z
- Q(s,a) = (1— a)Qi(s,a) + a (R(s,a) + v maxy Q'(s', a"))
© S« P(s,a)
- a+M(s)
(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy I that is not necessarily related to its current
guess for an optimal policy, which in this case would be

MN(s) = maxq Q'(s,a) at time |. 62



EXPLORATION VS. EXPLOITATION

For small enough «, Q-learning converges to Q* as long as we follow
a policy M that visits every start (s, a) with non-zero probability.

Mild condition, but exact choice of I matters for convergence rate.

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

end
+1

end
-1

start

Random can be wasteful. Spend time improving parts of Q that
aren't relevant to optimal play. Greedy can cause you to zero in on a

. . ‘ . . 63
locally optimal policy without learning new strategies.



EXPLORATION VS. EXPLOITATION

Possible choices for I:

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

- e-Greedy: At state s, choose arg max, Q'(s, a) with
probability 1 — e and a random action with probability e.

end
+1

%
| end
| -1

start

Exploration-exploitation tradeoff. Increasing e = more

exploration. o



CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q* is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S] is gigantic...

Back of the envelope calculations:

- Tic-tac-toe: 3G3>*3) =~ 20,000
- Chess: ~ 10" < 28%* (due to Claude Shannon).
. Go: 3(19%19) ~ 10"71

- Atari: 128(210x160) ~ 1(71,000,

Number of atoms in the universe: ~ 1082.

65



MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a, #) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Suppose our state can be represented by a vector in
R? and our action a by an integer in 1,...,|.A|. We could use a
linear function where 6 is a small matrix:

d

Iaql{ ; s =H

Q(s,a,0) = z[a]
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MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a, #) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Could also use a (deep) neural network.

Convglution Convolution Fully connected Fully cgnnected

o] E /= :
. . [ ]
o] ®l/m
y :
Poecz-o:ie §*
of] Ei\w
. [y O]
o] m] \e
.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature 2015.
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MACHINE LEARNING APPROACH

If Q(s, a,0) is a good approximation to Q*(s, a) then we have
an approximately optimal policy: [1%(s) = arg max, Q(s, a, ).

- Start in state so.
cFort=12,...
- a* = argmax, Q(s, a,0)
+ St~ P(st_1,0%)

How do we find an optimal 6? If we knew Q*(s, a) could use
supervised learning, but the true Q function is infeasible to
compute.
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Q-LEARNING W/ FUNCTION APPROXIMATION

Find 6 which satisfies the Bellman equation:
Q*(s,a) = Eg/op(sa) {R(s, a)+v max Q*(s', a’)}
Q(s,a,0) = Esps,a) [R(s, a)+-vy max Q(s, a, 0)] .

Should be true for all a,s. Should also be true for a,s ~ D for
any distribution D:

Es,a~pQ(S, 0, 0) = Es g pEs/p(s q) [R(S, a)+-~ max Q(s, a, 0)] .
Loss function:
L(0) = Esap (v — Q(S, q, 0))°
where y = Eg/p(s,q) [R(S, a) + v maxy Q(s', d’, 0)].
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Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:
VL(Q) = ES,O’VD [_2VO(57 a, 9) : [y - Q(Sa a, 9)]]

In practice use stochastic gradient:

VL(8,s,a) = -2-VQ(s,a,0) - |R(s,a) +ymaxQ(s’,a’,8) — Q(s,a,0)
a/

- Initialize 6y
- Fori=0,1,2,...
- Run policy M to obtain s,a and s’ ~ P(s,a)
- Set 9,‘_;,_1 =0; — - VL(Q,',S, G)
n is a learning rate parameter.
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Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of N matters a lot. Random play can be
wastefully, putting effort into approximating Q* well in parts of
the state-action space that don't actually matter for optimal
play. e-greedy approach is much more common:

- Initialize so.
- Fort=0,1,2,...,
Ca {arg max, Q(St, A, 0curr)  With probabilty (1 — €)
random action with probabilty e
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REFERENCES

Lots of other details we don’t have time for! References:

- Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

- Stanford lecture video:
https://www.youtube.com/watch?v=1voHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
€s231n_2017_lecturels.pdf

Important concept we did not cover: experience replay.
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ATARI DEMO

https://www.youtube.com/watch?v=VleYniJORnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

