
CS-GY :ࠂࠁ69 Lecture ࠃࠀ
Finish Semantic Embeddings, Modern Image
Generation, Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco
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SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).
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SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

For words, the mapping is typically just a lookup table.
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HOW TO GET EMBEDDINGS?

For documents or words, earliest approaches were based on
latent semantic analysis (PCA on term document matrix).
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WORD EMBEDDINGS

More modern word embedding recipe:

.ࠀ Choose similarity metric k(wordi,wordj) which can be
computed for any pair of words.

.ࠁ Construct similarity matrix M → Rn×n with
Mi,j = k(wordi,wordj).

.ࠂ Find low rank approximation M ≈ YTY where Y → Rk×n.
.ࠃ Columns of Y are word embedding vectors.

We expect that 〈yi, yj〉 will be larger for more similar words.

ࠄ
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MODERN WORD EMBEDDINGS

Common choice for similarity metric is to use co-occurence
frequency in windows.

Usually followed by some tranformation or normalization. E.g.,
k(wordi,wordj) =

p(i,j)
p(i)p(j) . ࠅ
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MODERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg .(ࠃࠀ߿ࠁ

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

Common to use pre-trained word vectors:

• Compilation of many sources:
https://github.com/3Top/word2vec-api

ࠆ
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CAVEAT ABOUT FACTORIZATION

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefiniteࠀ then the optimal low-rank
approximation does not have this form.

,.I.eࠀ k(wordi,wordj) is not a positive semidefinite kernel.
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CAVEAT ABOUT FACTORIZATION

• For each word i we get a left and right embedding vector
wi and yi. It’s reasonable to just use one or the other.

• If 〈yi, yj〉 is large and positive, we expect that yi and yj have
similar similarity scores with other words, so they typically
are still related words.

• Another option is to use as your features for a word the
concatenation [wi, yi]
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SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.
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NODE EMBEDDINGS

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.
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NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. .(ࠇࠀ߿ࠁ
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BIMODAL EMBEDDINGS

We can also create embeddings that represent different types
of data. OpenAI’s clip architecture:

Goal: Train embedding architectures so that 〈Ti, Ij〉 are similar
if image and sentence are similar. ࠂࠀ
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CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity
matrix.

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.
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CLIP FOR ZERO-SHOT LEARNING

ࠀࠁ߿ࠁ result: %ࠅࠆ accuracy on ImageNet image classification
challenge with no labeled training data. ࠄࠀ
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IMAGE SYNTHESIS (TEASER)
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AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.
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AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option :ࠀ Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option :ࠁ Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

ࠆࠀ
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AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

Main issue: most random inputs words will “miss” and produce
garbage results.
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AUTOENCODERS FOR DATA GENERATION

Variational auto-encoders attempt to resolve this issue.
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VARIATIONAL AUTOENCODERS

Developed from a different perspective than regular
autoencoders. Make the data generation goal more explicit.

• Train a neural network Gθ that takes in a length k code
word, z, and outputs an image.

• Assume z ∼ N ,߿) I). I.e., a random Gaussian vector.
• Goal is to maximize probability of producing a “natural
image”.

First attempt: Given training data xࠀ, . . . , xn,

max
θ

)
[Gθ(z) = xi for some i] · p(z)dz

= max
θ

Ez [Gθ(z) = xi for some i]

Issues: Super brittle, impossible to train.
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VARIATIONAL AUTOENCODERS

Bayesian approach: assume each xi is of the form
Gθ(z) + σN ,߿) I) for randomly chosen z. Choose parameters, θ,
to maximize the likelihood of the data:

max
θ

n∏

i=ࠀ

p(xi) = max
θ

n∏

i=ࠀ

)
p(xi | z) · p(z)dz

= max
θ

n∑

i=ࠀ

log

)
p(xi | z) · p(z)dz

= min
θ

n∑

i=ࠀ

− log

)
e−‖xi−Gθ(z)‖ࠁ/ࠁࠁσࠁ · p(z)dz
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VARIATIONAL AUTOENCODERS

max
θ

n∏

i=ࠀ

p(xi) = max
θ

n∏

i=ࠀ

)
p(xi | z) · p(z)dz

= max
θ

n∑

i=ࠀ

log

)
p(xi | z) · p(z)dz

How to deal with the integral? Very common approach in
generative modeling (beyond VAEs): Monte Carlo
approximation. Draw samples zࠀ, . . . , zm and observe that:

≈ max
θ

n∑

i=ࠀ

log

(
ࠀ
m

m∑

i=ࠀ

p(xi | zi)
)
.
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VARIATIONAL AUTOENCODERS

This approach does not work out of the box. The issue is that
the integral will be very poorly approximated by sampling:

)
p(xi | z) · p(z)dz '≈

m∑

i=ࠀ

p(xi | zi).

Second key idea: Importance sampling. For any distribution
q(z),

p(xi) =
)

p(xi | z) · p(z)dz =
)

q(z)p(xi | z)
q(z) · p(z)dz

Draw zࠀ, . . . , zm from q(z) and estimate:

p(xi) ≈
ࠀ
m

m∑

i=ࠀ

p(xi | z)
q(z) · p(z).

ࠂࠁ
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VARIATIONAL AUTOENCODERS

We can choose a different distribution for each xi. I.e., choose
qࠀ, . . . , qn. Ideally, want qi to be higher for z that are more
likely to generate xi. Ideal choice is qi(z) = p(z | xi).

ࠀ
m

m∑

i=ࠀ

p(xi | z)
qi(z)

· p(z) = ࠀ
m

m∑

i=ࠀ

p(xi | z) · p(z)
p(z | xi)

=
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VARIATIONAL AUTOENCODERS

Typical VAE approach: Assume qi is parameterized as a
multivariate Gaussian distribution with mean µi → Rk and
variances Σ = [σࠁ

ࠀ , . . . ,σ
ࠁ
k]. Train a model (e.g., neural network)

that maps xi to µi,Σi.

Simulateously minimize distance between qi and p(z | xi)
(typically using KL divergence) and maximize

∑n
i=ࠀ p(xi), where

p(xi) is approximated via importance sampling.

Lots of details here! Link to some good notes by Brian Kang.

ࠄࠁ
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VARIATIONAL AUTOENCODERS

VAEs are not really autoencoders. Not designed to map an
input x to an approximation x̃. But, their final architecture
ends up resembling that of an autoencoder:

ࠅࠁ
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GENERATIVE ADVERSARIAL NETWORKS

VAE’s give very good results, but tend to produce images with
immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

min
θ

L(θ) + P(θ)

ࠇࠁ
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

Let xࠀ, . . . , xn be real images and let zࠀ, . . . , zm be random code
vectors. The goal of the discriminator is to output a number between
,߿] [ࠀ which is close to ߿ if the image is fake, close to ࠀ if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑

i=ࠀ

− log (Dθ(xi)) +
m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi)) ࠈࠁ
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

Goal of the generator Gθ′ is the opposite. We want to maximize:

max
θ′

m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of
the adversary.

߿ࠂ
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

θ∗,θ′∗ solve min
θ

max
θ′

n∑

i=ࠀ

− log (Dθ(xi)) +
m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to
solve in practice.

• Repeatedly play: Fix one of θ or θ′, train the other to
convergence, repeat.

• Simultaneous gradient descent: Run a single gradient
descent step for each of θ,θ′ and update D and G
accordingly. Difficult to balance learning rates.

ࠀࠂ
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.
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DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

ࠂࠂ
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DIFFUSION

We will post a demo for generating MNIST digits via diffusion.

ࠃࠂ



WHAT ELSE?

Tons of other work going on in image generation. One key
topic is “class conditioned” generation:

ࠄࠂ
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SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Can also condition on another image...

ࠅࠂ
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SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

”A chair that looks like an avocado”
ࠆࠂ
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SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

”A diagram that explains variational autoencoders” ࠇࠂ
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REINFORCEMENT LEARNING (TEASER)
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REINFORCEMENT LEARNING

Rest of lecture: Give flavor of the area and insight into one
algorithm (Q-learning) which has been successful in recent
years.

Basic setup:

• Agent interacts with environment over time ,ࠀ . . . , t.
• Takes repeated sequence of actions, aࠀ, . . . , at which
effect the environment.

• State of the environment over time denoted sࠀ, . . . , st.
• Earn rewards rࠀ, . . . , rt depending on actions taken and
states reached.

• Goal is to maximize reward over time.

ࠈࠂ



REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

• Agent: Cart/software
controlling cart.

• State: Position of the car,
pendulum head, etc.

• Actions: Move cart left or
move right.

• Reward: ࠀ for every time
step that |θ| < ◦߿ࠈ

(pendulum is upright). ߿
when |θ| = ◦߿ࠈ ߿ࠃ
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REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:

• Semi-autonomous vehicles (airplanes, helicopters, drones, etc.)

• Industrial processes (e.g. controlling large chemical reactions)

• Robotics

control theory : reinforcement learning :: stats : machine learning

ࠀࠃ
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REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

• State: Position of all pieces
on board.

• Actions: Place new piece.

• Reward: ࠀ if in winning
position at time t. ߿
otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

ࠁࠃ

f I



REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

• State: Raw pixels on the
screen (sometimes there is
also hidden state which
can’t be observed by the
player).

• Actions: Actuate controller
(up,down,left,right,click).

• Reward: ࠀ if point scored at
time t.

ࠂࠃ
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MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

• S : Set of all possible states. # of states is |S|.

• A : Set of all possible actions. # of actions is |A|.

• R : Set of possible rewards. Could have R = R.

• Reward function
R(s,a) : S ×A→ probability distribution over R. rt ∼ R(st,at).

• State transition function
P(s,a) : S×A→ probability distribution over S . st+ࠀ ∼ P(st,at).

Why is this called a Markov decision process? What does the term
Markov refer to?

ࠃࠃ
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MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy Π : S → A from states to actions which maximize
expected cumulative reward.

• Start is state s߿.

• For t = ߿ . . . , T
• rt ∼ R(st,Π(st)).
• st+ࠀ ∼ P(st,Π(st)).

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

reward(Π) = E
T∑

t=߿
rt

[s߿,a߿, r߿], [sࠀ,aࠀ, rࠀ], . . . , [st,at, rt] is called a trajectory of the MDP
under policy Π.ࠁ
Itࠁ turns out that it is always optimal to use a fixed policy. There is no
benefit to changing Π over time. We will discuss this shortly. ࠄࠃ
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FLEXIBILITY OF MDPS

• Can be used to model time-varying environments. Just
add time t to the state vector.

• Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

• Can be used to model two-player games. Model adversary
as part of the transition function.

ࠅࠃ
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SIMPLE EXAMPLE: GRIDWORLD

• rt = ࠀ߿.− if not at an end position. ࠀ± if at end position.
• P(st,a) : %߿ࠆ of the time move in the direction indicated
by a. %߿ࠂ of the time move in a random direction.

What is the optimal policy Π? ࠆࠃ
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SIMPLE EXAMPLE: GRIDWORLD

• rt = ࠄ.− if not at an end position. ࠀ± if at end position.
• P(st,a) : %߿ࠆ of the time move in the direction indicated
by a. %߿ࠂ of the time move in a random direction.

What is the optimal policy Π? ࠇࠃ
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DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor γ and seek instead to take actions
which minimize:

E
T∑

t=߿
γtrt

where rt ∼ R(st,Π(st)) and st+ࠀ ∼ P(st,Π(st)) as before.

γ → :ࠀ No discount. Standard MDP expected reward.

γ → :߿ Care about short term reward more.

ࠈࠃ



VALUE FUNCTION

From now on assume T =∞. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy Π.

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Let Π∗
s = argmax VΠ(s). If we are in state s, at any point, we

should always take action Π∗
s(s).

߿ࠄ



VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

Proof: Suppose we has already taken j− ࠀ steps and seen
trajectory [s߿,a߿, r߿], . . . , [sj,aj, rj]. Then our expected reward is:

r߿ + γrࠀ + . . .+ γj−ࠀrj−ࠀ + EΠ

∑

t≥j

γtrj

= r߿ + γrࠀ + . . .+ γj−ࠀrj−ࠀ + γj · EΠ

∑

t≥߿
γtrt+j

= r߿ + γrࠀ + . . .+ γjrj + γj · VΠ(sj)

ࠀࠄ



VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s߿=s
∑

t≥߿
γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

Consequence: there is a single optimal policy Π∗ which
simultaneously maximizes VΠ(s) for all s. I.e.
Π∗
ࠀ = Π∗

ࠁ = . . . = Π∗
|S| = Π∗. We do not need to change the

policy over time to maximize expected reward.

Goal in RL is to find this optimal policy Π∗.

ࠁࠄ



TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R. Sometimes called the “planning” problem.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

ࠂࠄ
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VALUE ITERATION

Let V∗(s) = VΠ∗
(s). This function is equal to the expected

future reward if we play optimally starting in state s.

ࠃࠄ



VALUE ITERATION

In the full information setting, if we knew V∗ we can easily find
the optimal policy Π:

Π∗(s) = argmax
a

∑

s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

ࠄࠄ



VALUE ITERATION

V∗(s) satisfies what is called a Bellman equation:

V∗(s) = max
a

∑

s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

Run a fixed point iteration to find V∗:

• Start with initial guess V߿.
• For i = ,ࠀ . . . , z :

• For s → S :

• Vi(s) = maxa
∑

s′,r ·Pr(s
′, r | s, a)[r+ γVi−ࠀ(s′)]

Can be shown to converge in roughly z = ࠀ
γ−ࠀ iterations. What

is the computational cost of each iteration?

ࠅࠄ



TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

• Model-based RL methods essentially try to learn P and R
very accurately and then find Π∗ via a method like value
iteration. Require a lot of samples of the MDP.

• Model-free RL methods try to learn Π∗ without necessarily
obtaining an accurate model of the world – i.e. without
explicitly learning P and R.

ࠆࠄ



Q FUNCTION

Another important function:

• Q-function: QΠ(s,a) = EΠ,s߿=s,a߿=a
∑

t≥߿ γ
trt. Measures

the expected return if we start in state s, play action a,
and then follow policy Π.

Q∗(s,a) = max
Π

QΠ(s,a) = QΠ∗
(s,a).

ࠇࠄ



Q FUNCTION

Q∗(s,a) = max
Π

EΠ,s߿=s,a߿=a
∑

t≥߿
γtrt.

If we knew the function Q∗, we would immediately know an
optimal policy. Whenever we’re in state s, we should always
play action a∗ = argmaxa Q∗(s,a).

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. ࠈࠄ



BELLMAN EQUATION

Q∗ also satisfies a Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

߿ࠅ



Q LEARNING

Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

Again use fixed point iteration to find Q∗. Let Qi−ࠀ be our
current guess for Q∗ and suppose we are at some state s,a.

Qi(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Qi−ࠀ(s′,a′)

In reality, drop expectations and use a learning rate α

Qi(s,a) = −ࠀ) α)Qi(s,a) + α

(
R(s,a) + γmax

a′
Qi−ࠀ(s′,a′)

{
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Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy Π and run:

• Initialize Q߿ (e.g. all zeros)
• Start at s, play action a = Π(s), observe reward R(s,a).
• For i = ,ࠀ . . . , z

• Qi(s,a) = −ࠀ) α)Qi(s,a) + α
(
R(s,a) + γmaxa′ Qi−ࠀ(s′,a′)

)

• s← P(s,a)
• a← Π(s)

(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy Π that is not necessarily related to its current
guess for an optimal policy, which in this case would be
Π(s) = maxa Qi(s,a) at time i. ࠁࠅ



EXPLORATION VS. EXPLOITATION

For small enough α, Q-learning converges to Q∗ as long as we follow
a policy Π that visits every start (s,a) with non-zero probability.

Mild condition, but exact choice of Π matters for convergence rate.

• Random: At state s, choose a random action a.

• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

Random can be wasteful. Spend time improving parts of Q that
aren’t relevant to optimal play. Greedy can cause you to zero in on a
locally optimal policy without learning new strategies. ࠂࠅ



EXPLORATION VS. EXPLOITATION

Possible choices for Π:

• Random: At state s, choose a random action a.
• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

• ε-Greedy: At state s, choose argmaxa Qi(s,a) with
probability −ࠀ ε and a random action with probability ε.

Exploration-exploitation tradeoff. Increasing ε = more
exploration. ࠃࠅ



CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q∗ is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:

• Tic-tac-toe: (ࠂ×ࠂ)ࠂ ≈ ,߿ࠁ ߿߿߿
• Chess: ≈ ࠂࠃ߿ࠀ < ࠃࠅࠇࠁ (due to Claude Shannon).
• Go: (ࠈࠀ×ࠈࠀ)ࠂ ≈ .ࠀࠆࠀ߿ࠀ
• Atari: (߿ࠅࠀ×߿ࠀࠁ)ࠇࠁࠀ ≈ .߿߿߿,ࠀࠆ߿ࠀ

Number of atoms in the universe: ≈ .ࠁࠇ߿ࠀ
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MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Suppose our state can be represented by a vector in
Rd and our action a by an integer in ,ࠀ . . . , |A|. We could use a
linear function where θ is a small matrix:

ࠅࠅ



MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Could also use a (deep) neural network.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature .ࠄࠀ߿ࠁ ࠆࠅ



MACHINE LEARNING APPROACH

If Q(s,a, θ) is a good approximation to Q∗(s,a) then we have
an approximately optimal policy: Π̃∗(s) = argmaxa Q(s,a, θ).

• Start in state s߿.
• For t = ,ࠀ ,ࠁ . . .

• a∗ = argmaxa Q(s,a, θ)
• st ∼ P(st−ࠀ,a∗)

How do we find an optimal θ? If we knew Q∗(s,a) could use
supervised learning, but the true Q function is infeasible to

compute.

ࠇࠅ



Q-LEARNING W/ FUNCTION APPROXIMATION

Find θ which satisfies the Bellman equation:

Q∗(s,a) = Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q∗(s′,a′)

]

Q(s,a, θ) ≈ Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Should be true for all a, s. Should also be true for a, s ∼ D for
any distribution D:

Es,a∼DQ(s,a, θ) ≈ Es,a∼DEs′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Loss function:

L(θ) = Es,a∼D (y− Q(s,a, θ))ࠁ

where y = Es′∼P(s,a) [R(s,a) + γmaxa′ Q(s′,a′, θ)].

ࠈࠅ



Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:

∇L(θ) = Es,a∼D ,Q(s,a∇ࠁ−] θ) · [y− Q(s,a, θ)]]

In practice use stochastic gradient:

∇L(θ, s,a) = ࠁ− ·∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]

• Initialize θ߿

• For i = ,߿ ,ࠀ ,ࠁ . . .

• Run policy Π to obtain s,a and s′ ∼ P(s,a)
• Set θi+ࠀ = θi − η ·∇L(θi, s,a)

η is a learning rate parameter.

߿ࠆ



Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of Π matters a lot. Random play can be
wastefully, putting effort into approximating Q∗ well in parts of
the state-action space that don’t actually matter for optimal
play. ε-greedy approach is much more common:

• Initialize s߿.
• For t = ,߿ ,ࠀ ,ࠁ . . . ,

• ai =
{
argmaxa Q(st,a, θcurr) with probabilty −ࠀ) ε)

random action with probabilty ε
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REFERENCES

Lots of other details we don’t have time for! References:

• Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

• Stanford lecture video:
https://www.youtube.com/watch?v=lvoHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
cs231n_2017_lecture14.pdf

Important concept we did not cover: experience replay.

ࠁࠆ
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https://www.youtube.com/watch?v=lvoHnicueoE
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ATARI DEMO

https://www.youtube.com/watch?v=V1eYniJ0Rnk

ࠂࠆ

https://www.youtube.com/watch?v=V1eYniJ0Rnk

