CS-GY 6923: Lecture 14
Finish Semantic Embeddings, Modern Image
Generation, Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such

that similar inputs map to similar vectors (e.g., with high inner
product).

“Cat” “Kitten” “Dog”

1T
i/

For words, the mapping is typically just a lookup table.

LN apo

HOW TO GET EMBEDDINGS?

term-document matrix single docuement

o o, % % BOW features LSA features
& nonnonoo "~ -
doc2o|o|o|1|{o|1][0|0]|0 Y

1l1fof1|ofofof1]o ‘ X -~

oo o|o|o|olol1]1 ~ word vectors
doc_nf 1 ofo0 0 0 [1 1

document vectors

For documents or words, earliest approaches were based on
latent semantic analysis (PCA on term document matrix).

WORD EMBEDDINGS

More modern word embedding recipe:

1. Choose similarity metric k(word;, word;) which can be
computed for any pair of words.

2. Construct similarity matrix M € R"*" with
M,"j = f?(WOI’Cl,’, WOI’dj).
3. Find low rank approximation M =~ Y'Y where Y € R**",

4. Columns of Y are word embedding vectors.

We expect that (y;, y;) will be larger for more similar words.

MODERN WORD EMBEDDINGS

Common choice for similarity metric is to use co-occurence
frequency in windows.

dog park crowded the

The girl walks to her{dog to the park.
It can take a long time to parkyour car in NYC. & 0 2 0 3
|The\dog park is|always|crowded on Saturdays. o

. ©
The girl walks to her dog to the park. ‘-‘;; 2 0 1 2
It can take a long time to park your car in NYC.
The dog|park is always crowded‘on Saturdays. 8

2| o 1 0 0

The girl walks to 3
It can take a long time to park your car in NYC.
The dog park is|always crowded on Saturdays. = s 2 0 0

Usually followed by some tranformation or normalization. E.g,,

k(word;, word;) = pl()i(),g()f)' ’

MODERN WORD EMBEDDINGS

Current state of the art models: GLoVE, word2vec.

- word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

- Forword2vec, similarity metric is the “point-wise mutual
: P p(i)
information”: log OB

Common to use pre-trained word vectors:

- Compilation of many sources:
https://github.com/3Top/word2vec-api

https://github.com/3Top/word2vec-api

CAVEAT ABOUT FACTORIZATION
2 \ Y

M

L

4
% "%,

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite’ then the optimal low-rank
approximation does not have this form.

"l.e,, k(word;, word;) is not a positive semidefinite kernel.

CAVEAT ABOUT FACTORIZATION

R T % %

%o

v]

M = wr

6;?
B
&
N
s
&

- For each word i we get a left and right embedding vector
w; and y;. It's reasonable to just use one or the other.

- If (y;,yj) is large and positive, we expect thaty; and y; have
similar similarity scores with other words, so they typically
are still related words.

- Another option is to use as your features for a word the
concatenation [w;, y;j]

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

item1 item2 itemn

L way

similarity matrix

M

14
=

Zwa

wey

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

10

NODE EMBEDDINGS

Y &
* f ﬁ‘m‘l ° L -Q‘
B | ~_¢ L5 n" ,.g
He 274 , B4 e
aftg o\ /» , -~ ,.. o ?
“ Ugn g Y
X 7 “ {xr pl .Qu
a. fe @ s g .A/ﬂu
Y o AR L Ll e
o O LI i)
a® o ’ Aa A 0

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

1 /Qi . 1,3,4,4,52,1,25
& / . « 6,8,6,43,1,5,3, 4
| NE3 N\ 7,8,6,8,7,8,6,8,6
\ \\i\ \Q \ ;

zd - "”"”%5 \bs 4,6,8,6,4,3,1,2,5

n

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

node1 node2 .. node 8
1,3,4,4,52,1,2,5 sl |2 !
6,8,6,43,1,5,3, 4 il |, .
7,8,6,8,7,8,6,8,6 o
4,6,8,6,4,3,1,2,5 3

[1 0 0

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).

12

BIMODAL EMBEDDINGS

We can also create embeddings that represent different types

of data. OpenAl’s clip architecture:
My new puppy! .

Best dim sum ever.._

Text

Encoder

o
NYC in the rain. — | Ty
[

s | I ‘II'TI LT, | 1Ty 1, Ty

- o ‘\\
“ . I LT | LT | LT LTy
— Image L LT, | T, | I3 T LT
@ 4: Encoder [3 3741 3742 3ELg! 37 IN

/

: /
R Py

ﬂ'% i/ In INTy | INT2 | INT3 InTN

Goal: Train embedding architectures so that (T;, 1;) are similar

if image and sentence are similar.

13

CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity

matrix.
9@ =zl
My new puppy! 1 0 0
Best dim sum ever. 0 1 0
NYC in the rain. 0 0 1

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.

14

CLIP FOR ZERO-SHOT LEARNING

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford*! Jong Wook Kim *! Chris Hallacy ! Aditya Ramesh' Gabriel Goh! Sandhini Agprwal’
Girish Sastry' Amanda Askell | Pamela Mishkin' Jack Clark' Gretchen Krueger' Ilya

A photo of Text ‘
a " Encoder

Image 1
—> I'Ty |)T

A photo of
a 3

2021 result: 76% accuracy on ImageNet image classification
challenge with no labeled training data. e

T3

Tn

LTy LTy

IMAGE SYNTHESIS (TEASER)

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images 7

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

- Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

- Option 2: Draw x randomly from &, the space of images
representable by the autoencoder.

m

How do we randomly select an image from S?

AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

Ny o= (z)
nz-‘ Z, K

Ny == 2)
£

'

Main issue: most random inputs words will “miss” and produce
garbage results.

AUTOENCODERS FOR DATA GENERATION

Space of “natural”
images J

Variational auto-encoders attempt to resolve this issue.

VARIATIONAL AUTOENCODERS

Developed from a different perspective than regular
autoencoders. Make the data generation goal more explicit.

- Train a neural network Gy that takes in a length k code
word, z, and outputs an image.

- Assume z ~ N(0,1). l.e, @a random Gaussian vector.

- Goal is to maximize probability of producing a “natural
image”.

First attempt: Given training data xy, ..., Xp,
meax/ 1[Gy(z) = x; for some i] - p(z)dz
= measz]l[Gg(Z) = x; for some]
Issues: Super brittle, impossible to train.

20

VARIATIONAL AUTOENCODERS

Bayesian approach: assume each x; is of the form
Go(z) + o N (0, 1) for randomly chosen z. Choose parameters, 6,
to maximize the likelihood of the data:

mpx [[otx) = me] [o 12)-p2)d
- mpx3_log [P 12)-p2)d

n
— _ —lIxi—Ge(@)l3/20*
meln; Iog/e 2 p(z)dz

21

VARIATIONAL AUTOENCODERS

n n
max [T ptx) = mpn]] [Pt 12)-p2)d
= I=
n
= m<3 g [pi12)-p2)d
=
How to deal with the integral? Very common approach in

generative modeling (beyond VAEs): Monte Carlo
approximation. Draw samples zs,...,zy and observe that:

n m
1
R max _51 log (m 51 p(Xi | Zi)) :
= =

22

VARIATIONAL AUTOENCODERS

This approach does not work out of the box. The issue is that
the integral will be very poorly approximated by sampling:

/ p(x |2)-p@)dz % 3 p(xi|2).
=1

Second key idea: Importance sampling. For any distribution

q(2), .
px) = [pl12) @itz = [q@ 2 plaje

Draw z,...,zy from g(z) and estimate:

ORTDS P ().

23

VARIATIONAL AUTOENCODERS

We can choose a different distribution for each x;. l.e., choose
g1,...,qn. Ideally, want g; to be higher for z that are more
likely to generate x;. Ideal choice is gj(z) = p(z | x;).

lmp(X,‘|Z). TZm:P:Z -p(2)
p(z | xi)

4 -

2%

VARIATIONAL AUTOENCODERS

Typical VAE approach: Assume g; is parameterized as a
multivariate Gaussian distribution with mean u; € R* and
variances X = [0, ..., o). Train a model (e.g, neural network)
that maps x; to p;, X;.

Simulateously minimize distance between g; and p(z | x;)
(typically using KL divergence) and maximize "7, p(x;), where
p(x;) is approximated via importance sampling.

Lots of details here! Link to some good notes by Brian Kang.

25

https://bjlkeng.io/posts/variational-autoencoders/

VARIATIONAL AUTOENCODERS

VAEs are not really autoencoders. Not designed to map an
input x to an approximation X. But, their final architecture
ends up resembling that of an autoencoder:

random
sample

x E7B y

17 “encode” “decode” L_|

26

GENERATIVE ADVERSARIAL NETWORKS

VAE's give very good results, but tend to produce images with
immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

n, =z)
n, = (2)

Ny == 2)
£

\

27

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don't look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

mein L(8) + P(0)

28

GENERATIVE ADVERSARIAL NETWORKS (GANS)

real-world
image

generator

code vector

Let X,...,X, be real images and let z;, .. .,z, be random code
vectors. The goal of the discriminator is to output a number between
[0,1] which is close to O if the image is fake, close to 1if it's real.

Train weights of discriminator Dg to minimize:

mlnz log (Dg(x +Z log (1 — De(Ger(2;)) 29

i=1

GENERATIVE ADVERSARIAL NETWORKS (GANS)

real-world

image generator

code vector

Goal of the generator Gy is the opposite. We want to maximize:

m

maxz —log (1 — Dg(Ger(zi))

o’
=1

This is called an “adversarial loss function”. D is playing the role of

the adversary. 20

GENERATIVE ADVERSARIAL NETWORKS (GANS)

n m
* i . -) o o (7
0*,6™ solve min mezlaxz log (Da(x;)) + Z log (1 — Do(Geg(z)))

i=1 =1

This is called a minimax optimization problem. Really tricky to
solve in practice.

- Repeatedly play: Fix one of @ or @', train the other to
convergence, repeat.

- Simultaneous gradient descent: Run a single gradient
descent step for each of 8,8’ and update D and G
accordingly. Difficult to balance learning rates.

31

GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.

32

DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

Forward Diffusion Process >

X0 Denoising UNet

1
Reverse Diffusion Process

33

DIFFUSION

We will post a demo for generating MNIST digits via diffusion.

§
- b

» i ~ ™
g +) o e z o
7 a i *

34

o
L
n
-
L
=
<
I
=

Tons of other work going on in image generation. One key

”

topic is “class conditioned” generation:

u

Y99y
4999

A
944

(4 YYYYy
/

Yy yy
“Hy 4y

b T T T}

{44949 4
1449494

q
Y
4

N M

22050205 6 o T LT 050
G Gy G () (i) Gy Gy Gy G
I I T T L W YL A W)
MM MM e M e M m
MMM MMM
MHMMOHMM@OEO M
OOMOMEOEOOOA
OO OOOOO O

OO OO DO

NN

NN

e

~

NNNNNNNNN
anNNNNNNNN
NN
(2 T2 S0 W5 WO WO T o]
(0 9 T Y5 Wn Wa Wa Wo Woll
(2 2 T2 Ya Wa Wa Wa o Wo
(2.2 X2 X2 Xa Xa Xa Xa Xa!
(232 Xa Na Na Wa Na N o
DR NN A

~

49999191

SR

~

~

35

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Can also condition on another image...

36

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

"A chair that looks like an avocado”

37

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

VARIATIONAL AUTOENCOROER

ENCORDER ENCORDER + LATENT SPACE
3 O
i ©: 0 o ® g
g o) €=> 0 e e > nnlcoo:
% R o ~ @
g 5
VAGRATIONAL _~ LATENT SPACE
AUTOENCORDER

= LATENT SPACE |
OB P

pa ‘16..@

=7 [E

/ TN
| Ry

LANOWDVACE DECODER

M = RECONSPECTION LOSS + R RECORFECTONS M
FROM LALTENT VECTORS — KL DIVERENS

"A diagram that explains variational autoencoders” =

REINFORCEMENT LEARNING (TEASER)

REINFORCEMENT LEARNING

Rest of lecture: Give flavor of the area and insight into one
algorithm (Q-learning) which has been successful in recent

years.
Basic setup:
- Agent interacts with environment over time 1,...,t.
- Takes repeated sequence of actions, a4,...,as which
effect the environment.
- State of the environment over time denoted s, ..., st
- Earn rewards rq,...,r: depending on actions taken and

states reached.

+ Goal is to maximize reward over time.

39

REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

- Agent: Cart/software - Actions: Move cart left or
controlling cart. move right.

- Reward: 1 for every time
step that |0] < 90°
- State: Position of the car, (pendulum is upright). 0

pendulum head, etc. when |6] = 90° 40

REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:
- Semi-autonomous vehicles (airplanes, helicopters, drones, etc.)
- Industrial processes (e.g. controlling large chemical reactions)

- Robotics

control theory : reinforcement learning :: stats : machine learning

41

REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

- State: Position of all pieces - Reward: 1if in winning
on board. position at time t. 0

- Actions: Place new piece. otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

42

REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

- State: Raw pixels on the
screen (sometimes there is
also hidden state which
can't be observed by the
player).

- Actions: Actuate controller

(up,down, left,right,click).

- Reward: 1if point scored at

time t.

43

MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

- §: Set of all possible states. # of states is |S]|.
- A:Setof all possible actions. # of actions is |AJ.
- R : Set of possible rewards. Could have R = R.

- Reward function
R(s,a): S x A — probability distribution over R. ri ~ R(St, Gt).

- State transition function
P(s,a) : S x A — probability distribution over S. Sy ~ P(St, G;).

Why is this called a Markov decision process? What does the term
Markov refer to?

44

MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy M : S — A from states to actions which maximize
expected cumulative reward.

- Start is state sg.
- Fort=0...,T
° rt ~ R(St, H(St))
* Sty P(St, I'I(St))

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

;
reward(M) = EZ re
t=0

[S0, ao, ro], [51, a1, 1], - - -, [St, at, 7] is called a trajectory of the MDP
under policy M2

%It turns out that it is always optimal to use a fixed policy. There is no
benefit to changing M over time. We will discuss this shortly.

45

FLEXIBILITY OF MDPS

- Can be used to model time-varying environments. Just
add time t to the state vector.

- Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

- Can be used to model two-player games. Model adversary
as part of the transition function.

46

SIMPLE EXAMPLE: GRIDWORLD

—

staj*
T

actions:]
u

- r = —.01if not at an end position. £1 if at end position.
- P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M? 7

SIMPLE EXAMPLE: GRIDWORLD

end

+1
end

-1

start T

actions:] — l =

u " od !

- r = —.5if not at an end position. £1 if at end position.

- P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy M? i

DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor v and seek instead to take actions
which minimize:

T
E Z ’)/trt
t=0

where ri ~ R(st,M(st)) and S¢q ~ P(st, MN(s¢)) as before.
~v — 1: No discount. Standard MDP expected reward.

~ — 0: Care about short term reward more.

49

VALUE FUNCTION

From now on assume T = oo. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy IM.

Vn(s) = En sy=s Z’Ytrt
t>0

Let M = argmax V'(s). If we are in state s, at any point, we
should always take action M%(s).

50

VALUE FUNCTION

Value function:

Vn(s) = En sy=s Z’Ytrt
t>0

Claim: Let M} = arg max V™'(s). If we are in state s, at any point,
we should always take action I%(s).

Proof: Suppose we has already taken j — 1 steps and seen

trajectory [So, o, ro], - - -, [S}, @j, 1j]. Then our expected reward is:
ro + —|—...—|—’Yj_1l’j_1 —l—EnZ’ytl’j
t>]
=ro+yyM—+... —|—’Yj_1l’j_1 —|—’)/j -Ep nytrt—s—j

t>0
:fo+7f1+...—|—’yjrj—|-’yj~vn(5j)

51

VALUE FUNCTION

Value function:
Vn(s) = EH,SOZS E’Ytrt
t>0

Claim: Let M} = arg max V'(s). If we are in state s, at any point,
we should always take action Mz(s).

Consequence: there is a single optimal policy IM* which
simultaneously maximizes VI(s) for all s. l.e.

My =MN; =... ="M =MN" We do not need to change the
policy over time to maximize expected reward.

Goal in RL is to find this optimal policy M*.

52

TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R. Sometimes called the “planning” problem.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

53

VALUE ITERATION

Let V*(s) = V" (s). This function is equal to the expected
future reward if we play optimally starting in state s.

.=+1 D='1

end
-1

start

54

VALUE ITERATION

In the full information setting, if we knew V* we can easily find
the optimal policy I:

start

n*(s) = arg max > Pr(s,r|s,a)[r+ V(s

s'r

55

VALUE ITERATION

V*(s) satisfies what is called a Bellman equation:

Vi(s) = mé)xz “Pr(s’,r|s,a)[r+~V*(s)]

s'r

Run a fixed point iteration to find V*:

- Start with initial guess V°.
- Fori=1,...,z:
- Forses§:
- V(s) =maxe Y, - Pr(s’,r | s,a)[r +4V'(s)]

Can be shown to converge in roughly z = ﬁ iterations. What
is the computational cost of each iteration?

56

TWO SETTINGS

Full information: We know S, A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

- Model-based RL methods essentially try to learn P and R
very accurately and then find M* via a method like value
iteration. Require a lot of samples of the MDP.

- Model-free RL methods try to learn M* without necessarily
obtaining an accurate model of the world - i.e. without
explicitly learning P and R.

57

Q FUNCTION

Another important function:

- Q-function: Q"(s, a) = En sy=s,ay—a d_¢=0 7'rt- Measures
the expected return if we start in state s, play action a,
and then follow policy M.

Q*(s,a) = max Q"(s,a) = Q" (s, a).

end Q*(s a)
+1 states '
end 7 u
-1 -
Re)
2 d
S [

58

Q FUNCTION

Q*(Sa a) = ml_?x EH,S():S,GOIO Z 'Ytrt-
t>0

If we knew the function Q*, we would immediately know an
optimal policy. Whenever we're in state s, we should always
play action a* = arg max, Q*(s, a).

Q'(s,a

states (s,2)

" u

g r

-2 .

(1] l
B~ DER

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. 59

BELLMAN EQUATION

Q* also satisfies a Bellman equation:

Q*(s,a) = E[R(s, a)] + YEs/~p(s,a) max Q*(s',a").

60

Q LEARNING

Bellman equation:
Q*(s,a) = E[R(s, a)] + YEs/.p(s,a) max Q*(s',ad).

Again use fixed point iteration to find Q*. Let Q"~" be our
current guess for Q* and suppose we are at some state s, a.

Q'(s,a) = E[R(s,)] + VEs~p(s.a) max Q-'(s',a)
In reality, drop expectations and use a learning rate «

Q'(s,a) = (1— a)Q'(s,a) + (R(s, @) + 7 max Q(s, a’))

61

Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy M and run:

- Initialize Q° (e.g. all zeros)
- Start at s, play action a = T1(s), observe reward R(s, a).
- Fori=1,...,z
- Q(s,a) = (1— a)Q/(s,a) + a (R(s,a) + ymaxa Q~Y(s',a’))
- S+ P(s,a)
- a+T(s)
(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy N that is not necessarily related to its current
guess for an optimal policy, which in this case would be

MN(s) = maxq Q'(s,a) at time 1. o

EXPLORATION VS. EXPLOITATION

For small enough «, Q-learning converges to Q* as long as we follow
a policy MM that visits every start (s, a) with non-zero probability.

Mild condition, but exact choice of N matters for convergence rate.

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

end
+1

end
-1

start

Random can be wasteful. Spend time improving parts of Q that
aren't relevant to optimal play. Greedy can cause you to zero in on a

locally optimal policy without learning new strategies. o

EXPLORATION VS. EXPLOITATION

Possible choices for I:

- Random: At state s, choose a random action a.

- Greedy: At state s, choose arg max, Q'(s, a). l.e. the current
guess for the best action.

- e-Greedy: At state s, choose arg max, Q'(s, a) with
probability 1 — e and a random action with probability e.

Exploration-exploitation tradeoff. Increasing e = more

exploration. o4

CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q* is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:
- Tic-tac-toe: 3G*3) ~ 20,000
- Chess: ~ 10*® < 28%* (due to Claude Shannon).
. Go: 3(19><19) ~ 10171'

. Atari: 128(210X160) ~ 1071,000.

Number of atoms in the universe: ~ 1082,

65

MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a,#) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Suppose our state can be represented by a vector in
R? and our action a by an integer in 1,...,|.A|. We could use a
linear function where # is a small matrix:

d

|
|r/z|{ 6

Q(s,a,0) = z[al

v |
|
[

66

MACHINE LEARNING APPROACH

Learn a simpler function Q(s, a,#) ~ Q*(s, a) parameterized by
a small number of parameters 6.

Example: Could also use a (deep) neural network.

&

Convolution Convolution Fully connected Fully connectex

o] R

=
B

of Ef\=

ook] B O

&

Arcjejeviy]>
TEEEEER NEEANNE
CEELEEEPERE[

DeepMind: “Human-level control through deep reinforcement
learning”, Nature 2015. 67

MACHINE LEARNING APPROACH

If Q(s, a,0) is a good approximation to Q*(s,a) then we have
an approximately optimal policy: ﬁ*(s) = argmax, Q(s, a, 6).

- Start in state so.

- Fort=1,2,...
- a* = argmax, Q(s,a,0)
-+ S¢ ~ P(st_1,0%)

How do we find an optimal 6? If we knew Q*(s, a) could use
supervised learning, but the true Q function is infeasible to
compute.

68

Q-LEARNING W/ FUNCTION APPROXIMATION

Find 6 which satisfies the Bellman equation:

Q*(s,a) = Es/p(s,a) [R(s, a)+-~ max Q*(s, a’)]
Q(s, a,0) = Egp(s,a) [R(S, a) + v max Q(s,a, 9)} .

Should be true for all a,s. Should also be true for a,s ~ D for
any distribution D:

Es,a~pQ(S, a,0) = Es g~DEsp(s,a) [R(s, a)+ -~ max Q(s, a, 9)} .
Loss function:
L(0) = Esaup (v — Q(S, @, 0))
where y = Eg.p(s q) [R(S, a) + v maxq Q(s', d’, 0)].

69

Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:
VL(Q) = E&U’VD [_2VQ(Sa a, 9) ’ [y - O(57 a, 9)]]

In practice use stochastic gradient:

VL(9,s,a) = —-2-VQ(s,a,0) - |R(s,a) +ymaxQ(s',d’,0) — Q(s,a,)
a/

- Initialize 6,
- Fori=0,1,2,...
- Run policy N to obtain s,a and s’ ~ P(s, a)
- Set 9f+1 = 9/ - n- VL(9i7S7 a)
7 1S a learning rate parameter.

70

Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of N matters a lot. Random play can be
wastefully, putting effort into approximating Q* well in parts of
the state-action space that don't actually matter for optimal
play. e-greedy approach is much more common:

- Initialize so.
- Fort=0,1,2,...,
o — {arg max, Q(St, a,curr) With probabilty (1—e)
random action with probabilty e

Ul

REFERENCES

Lots of other details we don’t have time for! References:

- Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

- Stanford lecture video:
https://www.youtube.com/watch?v=1voHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
€s231n_2017_lecturels4.pdf

Important concept we did not cover: experience replay.

72

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

ATARI DEMO

https://www.youtube.com/watch?v=V1leYniJORnk

73

https://www.youtube.com/watch?v=V1eYniJ0Rnk

