
CS-GY 6923: Lecture 14
Finish Semantic Embeddings, Modern Image
Generation, Reinforcement Learning

NYU Tandon School of Engineering, Prof. Christopher Musco

1

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

2

SEMANTIC EMBEDDING

Goal: Learn mapping from inputs to numerical vectors such
that similar inputs map to similar vectors (e.g., with high inner
product).

For words, the mapping is typically just a lookup table.

3

HOW TO GET EMBEDDINGS?

For documents or words, earliest approaches were based on
latent semantic analysis (PCA on term document matrix).

4

WORD EMBEDDINGS

More modern word embedding recipe:

1. Choose similarity metric k(wordi,wordj) which can be
computed for any pair of words.

2. Construct similarity matrix M ∈ Rn×n with
Mi,j = k(wordi,wordj).

3. Find low rank approximation M ≈ YTY where Y ∈ Rk×n.
4. Columns of Y are word embedding vectors.

We expect that ⟨yi, yj⟩ will be larger for more similar words.

5

MODERN WORD EMBEDDINGS

Common choice for similarity metric is to use co-occurence
frequency in windows.

Usually followed by some tranformation or normalization. E.g.,
k(wordi,wordj) = p(i,j)

p(i)p(j) . 6

MODERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

Common to use pre-trained word vectors:

• Compilation of many sources:
https://github.com/3Top/word2vec-api

7

https://github.com/3Top/word2vec-api

CAVEAT ABOUT FACTORIZATION

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite1 then the optimal low-rank
approximation does not have this form.

1I.e., k(wordi,wordj) is not a positive semidefinite kernel.

8

CAVEAT ABOUT FACTORIZATION

• For each word i we get a left and right embedding vector
wi and yi. It’s reasonable to just use one or the other.

• If ⟨yi, yj⟩ is large and positive, we expect that yi and yj have
similar similarity scores with other words, so they typically
are still related words.

• Another option is to use as your features for a word the
concatenation [wi, yi]

9

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

10

NODE EMBEDDINGS

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

11

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).

12

BIMODAL EMBEDDINGS

We can also create embeddings that represent different types
of data. OpenAI’s clip architecture:

Goal: Train embedding architectures so that ⟨Ti, Ij⟩ are similar
if image and sentence are similar. 13

CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity
matrix.

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.

14

CLIP FOR ZERO-SHOT LEARNING

2021 result: 76% accuracy on ImageNet image classification
challenge with no labeled training data. 15

IMAGE SYNTHESIS (TEASER)

15

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

16

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option 2: Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

17

AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

Main issue: most random inputs words will “miss” and produce
garbage results.

18

AUTOENCODERS FOR DATA GENERATION

Variational auto-encoders attempt to resolve this issue.

19

VARIATIONAL AUTOENCODERS

Developed from a different perspective than regular
autoencoders. Make the data generation goal more explicit.

• Train a neural network Gθ that takes in a length k code
word, z, and outputs an image.

• Assume z ∼ N (0, I). I.e., a random Gaussian vector.
• Goal is to maximize probability of producing a “natural
image”.

First attempt: Given training data x1, . . . , xn,

max
θ

∫
1[Gθ(z) = xi for some i] · p(z)dz

= max
θ

Ez1[Gθ(z) = xi for some i]

Issues: Super brittle, impossible to train.

20

VARIATIONAL AUTOENCODERS

Bayesian approach: assume each xi is of the form
Gθ(z) + σN (0, I) for randomly chosen z. Choose parameters, θ,
to maximize the likelihood of the data:

max
θ

n∏
i=1

p(xi) = max
θ

n∏
i=1

∫
p(xi | z) · p(z)dz

= max
θ

n∑
i=1

log

∫
p(xi | z) · p(z)dz

= min
θ

n∑
i=1
− log

∫
e−∥xi−Gθ(z)∥22/2σ2 · p(z)dz

21

VARIATIONAL AUTOENCODERS

max
θ

n∏
i=1

p(xi) = max
θ

n∏
i=1

∫
p(xi | z) · p(z)dz

= max
θ

n∑
i=1

log

∫
p(xi | z) · p(z)dz

How to deal with the integral? Very common approach in
generative modeling (beyond VAEs): Monte Carlo
approximation. Draw samples z1, . . . , zm and observe that:

≈ max
θ

n∑
i=1

log

(
1
m

m∑
i=1

p(xi | zi)
)
.

22

VARIATIONAL AUTOENCODERS

This approach does not work out of the box. The issue is that
the integral will be very poorly approximated by sampling:∫

p(xi | z) · p(z)dz ̸≈
m∑
i=1

p(xi | zi).

Second key idea: Importance sampling. For any distribution
q(z),

p(xi) =
∫

p(xi | z) · p(z)dz =
∫

q(z)p(xi | z)q(z) · p(z)dz

Draw z1, . . . , zm from q(z) and estimate:

p(xi) ≈
1
m

m∑
i=1

p(xi | z)
q(z) · p(z).

23

VARIATIONAL AUTOENCODERS

We can choose a different distribution for each xi. I.e., choose
q1, . . . , qn. Ideally, want qi to be higher for z that are more
likely to generate xi. Ideal choice is qi(z) = p(z | xi).

1
m

m∑
i=1

p(xi | z)
qi(z)

· p(z) = 1
m

m∑
i=1

p(xi | z) · p(z)
p(z | xi)

=

24

VARIATIONAL AUTOENCODERS

Typical VAE approach: Assume qi is parameterized as a
multivariate Gaussian distribution with mean µi ∈ Rk and
variances Σ = [σ2

1 , . . . , σ
2
k]. Train a model (e.g., neural network)

that maps xi to µi,Σi.

Simulateously minimize distance between qi and p(z | xi)
(typically using KL divergence) and maximize

∑n
i=1 p(xi), where

p(xi) is approximated via importance sampling.

Lots of details here! Link to some good notes by Brian Kang.

25

https://bjlkeng.io/posts/variational-autoencoders/

VARIATIONAL AUTOENCODERS

VAEs are not really autoencoders. Not designed to map an
input x to an approximation x̃. But, their final architecture
ends up resembling that of an autoencoder:

26

GENERATIVE ADVERSARIAL NETWORKS

VAE’s give very good results, but tend to produce images with
immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

27

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

min
θ

L(θ) + P(θ)

28

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Let x1, . . . , xn be real images and let z1, . . . , zm be random code
vectors. The goal of the discriminator is to output a number between
[0, 1] which is close to 0 if the image is fake, close to 1 if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi)) 29

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Goal of the generator Gθ′ is the opposite. We want to maximize:

max
θ′

m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of
the adversary.

30

GENERATIVE ADVERSARIAL NETWORKS (GANS)

θ∗,θ′∗ solve min
θ

max
θ′

n∑
i=1
− log (Dθ(xi)) +

m∑
i=1
− log (1− Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to
solve in practice.

• Repeatedly play: Fix one of θ or θ′, train the other to
convergence, repeat.

• Simultaneous gradient descent: Run a single gradient
descent step for each of θ,θ′ and update D and G
accordingly. Difficult to balance learning rates.

31

GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.

32

DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

33

DIFFUSION

We will post a demo for generating MNIST digits via diffusion.

34

WHAT ELSE?

Tons of other work going on in image generation. One key
topic is “class conditioned” generation:

35

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Can also condition on another image...

36

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

”A chair that looks like an avocado”
37

SEMANTIC EMBEDDINGS + GENERATIVE MODELS

Or a sentence...

”A diagram that explains variational autoencoders” 38

REINFORCEMENT LEARNING (TEASER)

38

REINFORCEMENT LEARNING

Rest of lecture: Give flavor of the area and insight into one
algorithm (Q-learning) which has been successful in recent
years.

Basic setup:

• Agent interacts with environment over time 1, . . . , t.
• Takes repeated sequence of actions, a1, . . . , at which
effect the environment.

• State of the environment over time denoted s1, . . . , st.
• Earn rewards r1, . . . , rt depending on actions taken and
states reached.

• Goal is to maximize reward over time.

39

REINFORCEMENT LEARNING EXAMPLES

Classic inverted pendulum problem:

• Agent: Cart/software
controlling cart.

• State: Position of the car,
pendulum head, etc.

• Actions: Move cart left or
move right.

• Reward: 1 for every time
step that |θ| < 90◦
(pendulum is upright). 0
when |θ| = 90◦ 40

REINFORCEMENT LEARNING EXAMPLES

This problem has a long history in Control Theory. Other
applications of classical control:

• Semi-autonomous vehicles (airplanes, helicopters, drones, etc.)

• Industrial processes (e.g. controlling large chemical reactions)

• Robotics

control theory : reinforcement learning :: stats : machine learning

41

REINFORCEMENT LEARNING EXAMPLES

Strategy games, like Go:

• State: Position of all pieces
on board.

• Actions: Place new piece.

• Reward: 1 if in winning
position at time t. 0
otherwise.

This is a sparse reward problem. Payoff only comes after many times
steps, which makes the problem very challenging.

42

REINFORCEMENT LEARNING EXAMPLES

Video games, like classic Atari games:

• State: Raw pixels on the
screen (sometimes there is
also hidden state which
can’t be observed by the
player).

• Actions: Actuate controller
(up,down,left,right,click).

• Reward: 1 if point scored at
time t.

43

MATHEMATICAL FRAMEWORK FOR RL

Model problem as a Markov Decision Process (MDP):

• S : Set of all possible states. # of states is |S|.

• A : Set of all possible actions. # of actions is |A|.

• R : Set of possible rewards. Could have R = R.

• Reward function
R(s,a) : S ×A → probability distribution over R. rt ∼ R(st,at).

• State transition function
P(s,a) : S ×A → probability distribution over S . st+1 ∼ P(st,at).

Why is this called a Markov decision process? What does the term
Markov refer to?

44

MATHEMATICAL FRAMEWORK FOR RL

Goal: Find a policy Π : S → A from states to actions which maximize
expected cumulative reward.

• Start is state s0.

• For t = 0 . . . , T
• rt ∼ R(st,Π(st)).
• st+1 ∼ P(st,Π(st)).

The time horizon T could be short (game with fixed number of steps),
very long (stock investing), or infinite. Goal is to maximize:

reward(Π) = E
T∑

t=0
rt

[s0,a0, r0], [s1,a1, r1], . . . , [st,at, rt] is called a trajectory of the MDP
under policy Π.2
2It turns out that it is always optimal to use a fixed policy. There is no
benefit to changing Π over time. We will discuss this shortly. 45

FLEXIBILITY OF MDPS

• Can be used to model time-varying environments. Just
add time t to the state vector.

• Can be used to model games where actions have different
effect if play in sequence (e.g. combo in a video game).
Just add list of previous few actions to state.

• Can be used to model two-player games. Model adversary
as part of the transition function.

46

SIMPLE EXAMPLE: GRIDWORLD

• rt = −.01 if not at an end position. ±1 if at end position.
• P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy Π? 47

SIMPLE EXAMPLE: GRIDWORLD

• rt = −.5 if not at an end position. ±1 if at end position.
• P(st,a) : 70% of the time move in the direction indicated
by a. 30% of the time move in a random direction.

What is the optimal policy Π? 48

DISCOUNT FACTOR

For infinite or very long times horizon games (large T), we often
introduce a discount factor γ and seek instead to take actions
which minimize:

E
T∑

t=0
γtrt

where rt ∼ R(st,Π(st)) and st+1 ∼ P(st,Π(st)) as before.

γ → 1: No discount. Standard MDP expected reward.

γ → 0: Care about short term reward more.

49

VALUE FUNCTION

From now on assume T =∞. We can do this without loss of
generality by adding a time parameter to state and moving into
an “end state” with no additional rewards once the time hits T.

Value function: Measures the expected return if we start in
state s and follow policy Π.

VΠ(s) = EΠ,s0=s
∑
t≥0

γtrt

Let Π∗
s = argmax VΠ(s). If we are in state s, at any point, we

should always take action Π∗
s(s).

50

VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s0=s
∑
t≥0

γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

Proof: Suppose we has already taken j− 1 steps and seen
trajectory [s0,a0, r0], . . . , [sj,aj, rj]. Then our expected reward is:

r0 + γr1 + . . .+ γj−1rj−1 + EΠ

∑
t≥j

γtrj

= r0 + γr1 + . . .+ γj−1rj−1 + γj · EΠ

∑
t≥0

γtrt+j

= r0 + γr1 + . . .+ γjrj + γj · VΠ(sj)

51

VALUE FUNCTION

Value function:

VΠ(s) = EΠ,s0=s
∑
t≥0

γtrt

Claim: Let Π∗
s = argmax VΠ(s). If we are in state s, at any point,

we should always take action Π∗
s(s).

Consequence: there is a single optimal policy Π∗ which
simultaneously maximizes VΠ(s) for all s. I.e.
Π∗
1 = Π∗

2 = . . . = Π∗
|S| = Π∗. We do not need to change the

policy over time to maximize expected reward.

Goal in RL is to find this optimal policy Π∗.

52

TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R. Sometimes called the “planning” problem.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

53

VALUE ITERATION

Let V∗(s) = VΠ∗
(s). This function is equal to the expected

future reward if we play optimally starting in state s.

54

VALUE ITERATION

In the full information setting, if we knew V∗ we can easily find
the optimal policy Π:

Π∗(s) = argmax
a

∑
s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

55

VALUE ITERATION

V∗(s) satisfies what is called a Bellman equation:

V∗(s) = max
a

∑
s′,r
·Pr(s′, r | s,a)[r+ γV∗(s′)]

Run a fixed point iteration to find V∗:

• Start with initial guess V0.
• For i = 1, . . . , z :

• For s ∈ S :

• Vi(s) = maxa
∑

s′,r ·Pr(s
′, r | s, a)[r+ γVi−1(s′)]

Can be shown to converge in roughly z = 1
1−γ iterations. What

is the computational cost of each iteration?

56

TWO SETTINGS

Full information: We know S , A, the transition function P and
reward function R.

Reinforcement Learning setting: We do not know P or R, but we
can repeatedly play the MDP, running whatever policy we like.

• Model-based RL methods essentially try to learn P and R
very accurately and then find Π∗ via a method like value
iteration. Require a lot of samples of the MDP.

• Model-free RL methods try to learn Π∗ without necessarily
obtaining an accurate model of the world – i.e. without
explicitly learning P and R.

57

Q FUNCTION

Another important function:

• Q-function: QΠ(s,a) = EΠ,s0=s,a0=a
∑

t≥0 γ
trt. Measures

the expected return if we start in state s, play action a,
and then follow policy Π.

Q∗(s,a) = max
Π

QΠ(s,a) = QΠ∗
(s,a).

58

Q FUNCTION

Q∗(s,a) = max
Π

EΠ,s0=s,a0=a
∑
t≥0

γtrt.

If we knew the function Q∗, we would immediately know an
optimal policy. Whenever we’re in state s, we should always
play action a∗ = argmaxa Q∗(s,a).

Q has more parameters than V, but you can use it to determine
an optimal policy without knowing transition probabilities. 59

BELLMAN EQUATION

Q∗ also satisfies a Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

60

Q LEARNING

Bellman equation:

Q∗(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Q∗(s′,a′).

Again use fixed point iteration to find Q∗. Let Qi−1 be our
current guess for Q∗ and suppose we are at some state s,a.

Qi(s,a) = E[R(s,a)] + γEs′∼P(s,a)max
a′

Qi−1(s′,a′)

In reality, drop expectations and use a learning rate α

Qi(s,a) = (1− α)Qi(s,a) + α

(
R(s,a) + γmax

a′
Qi−1(s′,a′)

)

61

Q LEARNING

How do we choose states s and a to make the update for? In
principal you can do anything you want! E.g. choose some
policy Π and run:

• Initialize Q0 (e.g. all zeros)
• Start at s, play action a = Π(s), observe reward R(s,a).
• For i = 1, . . . , z

• Qi(s,a) = (1− α)Qi(s,a) + α
(
R(s,a) + γmaxa′ Qi−1(s′,a′)

)
• s← P(s,a)
• a← Π(s)

(restart if we reach a terminating state)

Q-learning is considered an off-policy RL method because it
runs a policy Π that is not necessarily related to its current
guess for an optimal policy, which in this case would be
Π(s) = maxa Qi(s,a) at time i. 62

EXPLORATION VS. EXPLOITATION

For small enough α, Q-learning converges to Q∗ as long as we follow
a policy Π that visits every start (s,a) with non-zero probability.

Mild condition, but exact choice of Π matters for convergence rate.

• Random: At state s, choose a random action a.

• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

Random can be wasteful. Spend time improving parts of Q that
aren’t relevant to optimal play. Greedy can cause you to zero in on a
locally optimal policy without learning new strategies. 63

EXPLORATION VS. EXPLOITATION

Possible choices for Π:

• Random: At state s, choose a random action a.
• Greedy: At state s, choose argmaxa Qi(s,a). I.e. the current
guess for the best action.

• ϵ-Greedy: At state s, choose argmaxa Qi(s,a) with
probability 1− ϵ and a random action with probability ϵ.

Exploration-exploitation tradeoff. Increasing ϵ = more
exploration. 64

CENTRAL ISSUE IN MODERN REINFORCEMENT LEARNING

Another issue: Even writing down Q∗ is intractable... This is a
function over |S||A| possible inputs. Even for relatively simple
games, |S| is gigantic...

Back of the envelope calculations:

• Tic-tac-toe: 3(3×3) ≈ 20, 000
• Chess: ≈ 1043 < 2864 (due to Claude Shannon).
• Go: 3(19×19) ≈ 10171.
• Atari: 128(210×160) ≈ 1071,000.

Number of atoms in the universe: ≈ 1082.

65

MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Suppose our state can be represented by a vector in
Rd and our action a by an integer in 1, . . . , |A|. We could use a
linear function where θ is a small matrix:

66

MACHINE LEARNING APPROACH

Learn a simpler function Q(s,a, θ) ≈ Q∗(s,a) parameterized by
a small number of parameters θ.

Example: Could also use a (deep) neural network.

DeepMind: “Human-level control through deep reinforcement
learning”, Nature 2015. 67

MACHINE LEARNING APPROACH

If Q(s,a, θ) is a good approximation to Q∗(s,a) then we have
an approximately optimal policy: Π̃∗(s) = argmaxa Q(s,a, θ).

• Start in state s0.
• For t = 1, 2, . . .

• a∗ = argmaxa Q(s,a, θ)
• st ∼ P(st−1,a∗)

How do we find an optimal θ? If we knew Q∗(s,a) could use
supervised learning, but the true Q function is infeasible to

compute.

68

Q-LEARNING W/ FUNCTION APPROXIMATION

Find θ which satisfies the Bellman equation:

Q∗(s,a) = Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q∗(s′,a′)

]
Q(s,a, θ) ≈ Es′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Should be true for all a, s. Should also be true for a, s ∼ D for
any distribution D:

Es,a∼DQ(s,a, θ) ≈ Es,a∼DEs′∼P(s,a)

[
R(s,a) + γmax

a′
Q(s,a, θ)

]
.

Loss function:

L(θ) = Es,a∼D (y− Q(s,a, θ))2

where y = Es′∼P(s,a) [R(s,a) + γmaxa′ Q(s′,a′, θ)].

69

Q-LEARNING W/ FUNCTION APPROXIMATION

Minimize loss with gradient descent:

∇L(θ) = Es,a∼D [−2∇Q(s,a, θ) · [y− Q(s,a, θ)]]

In practice use stochastic gradient:

∇L(θ, s,a) = −2 · ∇Q(s,a, θ) ·
[
R(s,a) + γmax

a′
Q(s′,a′, θ)− Q(s,a, θ)

]

• Initialize θ0

• For i = 0, 1, 2, . . .

• Run policy Π to obtain s,a and s′ ∼ P(s,a)
• Set θi+1 = θi − η · ∇L(θi, s,a)

η is a learning rate parameter.

70

Q-LEARNING W/ FUNCTION APPROXIMATION

Again, the choice of Π matters a lot. Random play can be
wastefully, putting effort into approximating Q∗ well in parts of
the state-action space that don’t actually matter for optimal
play. ϵ-greedy approach is much more common:

• Initialize s0.
• For t = 0, 1, 2, . . . ,

• ai =
{
argmaxa Q(st,a, θcurr) with probabilty (1− ϵ)

random action with probabilty ϵ

71

REFERENCES

Lots of other details we don’t have time for! References:

• Original DeepMind Atari paper:
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf,
which is very readable.

• Stanford lecture video:
https://www.youtube.com/watch?v=lvoHnicueoE and
slides: http://cs231n.stanford.edu/slides/2017/
cs231n_2017_lecture14.pdf

Important concept we did not cover: experience replay.

72

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.youtube.com/watch?v=lvoHnicueoE
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture14.pdf

ATARI DEMO

https://www.youtube.com/watch?v=V1eYniJ0Rnk

73

https://www.youtube.com/watch?v=V1eYniJ0Rnk

