CS-GY 6923: Lecture 13

Principal Component Analysis, Semantic
Embeddings

NYU Tandon School of Engineering, Prof. Christopher Musco



TRANSFER LEARNING

Empirical observation: Features learned when training models
like deep neural nets are often useful for problems beyond
what the model was trained on.
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TRANSFER LEARNING

Very useful in domains like computer vision where we have huge
labeled datasets to train deep models on. Approach:

1. Download network trained on large image classification dataset
(e.g. Imagenet).

2. Extract features z for any new image x by running it through the
network up until layer before last.

3. Use these features for a new problem (e.g., quidditch ball
detection), typically using a simpler machine learning algorithm
that requires less data (nearest neighbor, logistic regression,
etc.).



UNSUPERVISED FEATURE LEARNING

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.



AUTOENCODER

First of many simple but clever ideas: If we have inputs
X1,...,Xn € RY but few or no targets y1, ..., ¥y, just make the
inputs the targets.

* Let fp : BY — R? be our model.
- Let Lg be a loss function. E.g. squared loss:
Lo(X) =[x — fa(X)II2) (x - 50 06)].2
o(X) ={|Ix — fo(X)|5- — 1 -5 X,
« Train model: 6* = ming >__; Lg(xX).
b - —
If fo is @ model that incorporates feature learning, then these
features can be used for supervised tasks.

fo is called an autoencoder. It maps input space to input
space (e.g. images to images, french to french, PDE solutions to
PDE solutions).



AUTOENCODER

Important property of autoencoders: no matter the architecture,
there must always be a bottleneck with fewer parameters than the
input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.




AUTOENCODER

Separately name the mapping from input to bottleneck and from
bottleneck to output.
p l& 24

Encoder: e : RY — RF Decoder: d : Ru\—> R‘L

o= 6 (@CX))

Hidden layers Output layer

-(,fm t/f

oM
Often symmetric, but does not have to be.



AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

IEW Eﬁm

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters:(d = 49152.\
Bottleneck “latent” parameters: k = 1024. 8


https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as supervised
methods for feature extraction, but they require no labeled
data.

There are a lot of cool applications of autoencoders beyond
feature learning!

- Learned data compression.

- Denoising and in-painting.
NOISINS aid TN~paint

- Data/image synthesis.



AUTOENCODERS FOR DATA COMPRESSION

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Input layer Hidden layer Output layer

Encode e Decode d

Given input x, we can completely recover f(x) from z = e(x). z
typically has many fewer dimensions than x and for a typical



AUTOENCODERS FOR IMAGE COMPRESSION

The best lossy compression algorithms are tailor made for specific
types of data:

- JPEG 2000 for images
- MP3 for digital audio.
- MPEG-4 for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.
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AUTOENCODERS FOR IMAGE COMPRESSION

With enough input data, autoencoders can be trained to find this
structure on their own.

o x

JPEG 2000, 6037 bytes (0171 bipx), PSNR: 23.47 dB, MS-SSIM: 0.9036

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than

“hand-tuned” algorithms like JPEG. 12



AUTOENCODERS FOR IMAGE CORRECTION

Encoder —>E—> Decoder

Compressed
representation

Image denoising
oL oM™
B/ Fc

L 47

)

Denoised image

Image inpainting
Train autoencoder on uncorrupted images (unsupervised). Pass
corrupted image x through autoencoder and return f(x) as repaired
result. 13



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Why does this work?

compressed (’L‘; 6

representation

Consider 128 x 128 x 3 images with pixels values in 0,1...,255.
. . "_/\-)
How many possible images are there?

If z holds k, 8 bit values, how many unique images w can be
output by the autoencoder function f?

14



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

WP 8<%
(1)
w *wu%v)
, 0S©

Space of “natliral"
images 1.

An accurate autoencoder with a small bottleneck must have a
representation space S that closely approximates Z. Both will

be much smaller than A. 5



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images J

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

16



AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

- Option 1: Draw each pixel value in x uniformly at random.
Draws a random |

- Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

1§ 5 56)

How do we randomly select an image from S§?

17



AUTOENCODERS FOR DATA GENERATION

Randomly select code z, then set x = d(z).!

'Some details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.

18



PRINCIPAL COMPONENT ANALYSIS



PRINCIPAL COMPONENT ANALYSIS

Deeper dive into understanding a simple, but powerful
autoencoder architecture. Specifically we will view principal
component analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often
L=

the go-to baseline method for denoising, dimensionality

reduction, etc.

Very important outside machine learning as well.

19



PRINCIPAL COMPONENT ANALYSIS

Consider the simplest possible autoencoder:

Hidden layer

- One hidden layer. No non-linearity. No biases.
- Latent space of dimension k.

- Weight matrices are Wy € R9** and W, e RFfx, 4



PRINCIPAL COMPONENT ANALYSIS

Given input x € RY, what is f(x) expressed in linear algebraic

terms? (()qD(&y k) = ((xk)

d k d d
r—l‘—\ = r—‘)—\
B w, |-l ®

w, decoder
L
encoder
KM

(

o

1t fx)" = x"W;W,

U‘/"\"/ —

21



PRINCIPAL COMPONENT ANALYSIS

encoder
d
A
y - [ )
(E21) W, = f(x)
Al
k decoder
Encoder: z = e(x) = x'W;. Decoder: d(z) = zW,

%L, O

22



PRINCIPAL COMPONENT ANALYSIS

Given training data set xy, . .. ,Xn, let X denote our data matrix.

Let X = XW,Ws,.
d k d (xj
n I e ) r— N)
Q0 x W, OO0 flx,)
% . (x,)
0 _ e,
3 ) L3
Xﬂ f(xn)
wrd)
{\k\a
wé) (& vy
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FROBENIUS NORM

Natural squared autoencoder loss: Minimize L(X,X) where:

B =D - ol 2 L
2 i@l Y 4 N 29
e \) ‘Ij ~
I 20 =SS g e
i=1 j=1 N
— X~ %I} )
S

Goal: Find W4y, W, to minimize the Frobenius norm loss
X — X||2 = ||X — XW;W, |2 (sum of squared entries).

24



LOW-RANK APPROXIMATION

Rank in linear algebra:

—_— -

-[The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

+ The rows of a matrix with row rank‘k;can all be written as linear

combinations of k rows. -;(“,, @ﬁﬂ_
- Column rank = row rank :
k d d
A

A
= i \ i \

Z1 w2 V-

(VHE(UVJ
3 I (O

Xisa . It only has rank k for k < d. )



LOW-RANK APPROXIMATION

Principal component analysis is the task of finding W4, W5,
which amounts to finding a rank k matrix X which
approximates the data matrix X as closely as possible.

Finding the best Wy and W, is a non-convex problem. We could
try running an iterative method like gradient descent anyway.
But there is also a direct algorithm!

26



SINGULAR VALUE DECOMPOSITION

Any matrix X can be written: o (V\, &)
@ left singular vectors  singular values right singular vectors
0,
o O
X = ) 2 "4
F — -
O O
@ f 04
J
\of
G S S
I

Where UlU =1, VIV=1,and oy >0, >...04 > 0. l.e. Uand V are
orthogonal matrices. - -

This is called the singular value decomposition.

Can be computed in O(nd?) time (faster with approximation algos). -



ORTHOGONAL MATRICES

wor4£1c voT-0"0 . L

Let us,...,u, € R" denote the columns of U. l.e. the left
singular vectors of X. Recall that orthogonality means that:

—_— ———— 1

0
T =
Y Ul =L
lulp= 1 ului =0

\lmu,:/, AV

28



SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:
Q,({/\XV\AVD ((AKA«) = vrd

left singular vectors  singular values  right singular vectors

o

0,
(o

N || g ”
1k UK% 3 i/
é Yo b ws:‘bfo \M/G\‘:

fola W

CEckart—Young—Mirsky Theorem) For any k < d, X, = U,?Zkvl s
the optimal k rank approximation to X: -
Xp= argmin ||X—=X[Z

X with rank < k
29



OPTIMAL LOW-RANK APPROXIMATION

That's great, but not quite in the form we wanted. Optimal rank
kR approximation is X, = U,?Z,?VL. We want an approximation of

the form:
X = XWyWs
k d d
———— P e S e——)

X, vlu'l‘, a( WF- f(x1)
X, f(x,)

W, _
X = X

30



OPTIMAL LOW-RANK APPROXIMATION

Claim: X, @ XV@I.&, can choose Wy =V, W, = VL.

- T
Coal' from tueb [UcZ9)" m/k X =X Vi Vae

| o0

i:][j\EZ“]“ VTV, ~ ,;

viv = 1
W
' ] 6‘6 _
X\/k 2 ls )] g ”-\6“ I Q.O, 6,4 - 64 Yu
ViV %
v

\ﬂk + Uy \9\1 b
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PRINCIPAL COMPONENT ANALYSIS

k d d
L A
r L 1 [ 1

@ v

@ rincipal
components

2= XY, -

>

2

n loading
vectors

Usually x’s columns (features) are mean centered and
normalized to variance 1 before computing principal

components. 32



SINGULAR VALUE DECOMPOSITION

Computing the SVD.

- Full SVD:
U,S,V = scipy.linalg.svd(X).

Runs in O(nd?) time.

- Just the top k components:
Ur,Sk,Ve = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndR) time.

33



CONNECTION TO EIGENDECOMPOSITION

Recall that for a matrix M € RP*P, g is an eigenvector of M if
Ag = Mq for any scalar \. (- [\0‘,J ’S
—_— - Ee 0

IDI
. @_cg_ly;n_ns (the left singulatﬁtors) are the

orthonormal eigenvectors of XX,

- Vs columns (the right singulgryectors) are the
orthonormal eigenvectors o
< o2 = \(XXT) = \(XTX)

Exercise: Verify this directly. This means you can use any
eigensolver for computing the SVD.

34



PCA APPLICATIONS

Like any autoencoder, PCA can be used for:

- Feature extraction
- Denoising and rectification
- Data generation

- Compression

- Visualization

denoising

35
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LOW RANK APPROXIMATION

Error vs. R is dictated by X's singular values. The singular
values are often called the spectrum of X. /’5 /(/P/) Y6y

X - xknF—Za

=R+l

0
0 100 200 Y300 400 500 600 700 800

rank 37



COLUMN REDUNDANCY

Colinearity of data features leads to an approximately

low-rank data matrix.

o~ A,}
bedrooms| bathrooms| sq.ft.|floors y / e 3
home 1 2 2 1800 | 2 (
home 2 4 25 2700 | 1 t /
home n 5 35 [3600 3 . \é
NN
sale price ~ 1.05 - list price.

property tax ~ .01 - list price.

38



COLUMN REDUNDANCY

Sometimes these relationships are simple, other times more
complex. But as long as there exists linear relationships
between features, we will have a lower rank matrix.

. . 1
yard size ~ lot size — 5 square footage.

. 1 1
cumulative GPA & -year 1 GPA + 5 vear 2 GPA

1 1
+ Z-year3 GPA + Z-yeam GPA.

39



LOW-RANK INTUITION

Two other examples of data with good low-rank

approximations:

1. Genetic data:

single nucleotide polymorphisms (SNPs) loci

144 312
indivi 1 A
inﬁz
individual n A

436

800

943

2. “Term-document” matrix with bag-of-words data:

doc_1

doc_n

on /09’7/)%"@ %y %o
0o|j0f1|0|0]|1 1|00
0o|0fo0 1/0(1|0|0]|0O
1 1|0 1/10(0|0|1]|0
ojofojofoj|o0|0|1 1
i1(fojo0oj0|O0|O0O|O0]1 1

40



PRINCIPAL COMPONENTS

.4
Sy

What do principal components and loading vectors look like?

41



PRINCIPAL COMPONENTS

MNIST principal components:

k principal
components
k d d
Il A A
r 1 [ | [ 1
%
Z
Z=XV,
zn
n loading
vectors

Often principal components are difficult to interpret

42



LOADING VECTORS

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which
recombine the top k principal components vy,..., Vv, to
approximately reconstruct x.

k d
[ . L [ 1
X )~ PPz 5 Va
—-_— L H
1) Vk
- ﬂ*Zz E% E*Z~ l

X
1

Provide a short “finger print” for any image x which can be used to
WS |l

reconstruct that image. i3



LOADING VECTORS: SIMILARITY VIEW

For any x with loading vector z, the it" entry z; is the inner
product similarity between x and the it" principal component,

-
V. X; Vi
r [ \ X )
X ~ 2D I:|V1 a l [ I
=S Vi
k principal
components
Z= XV,
n loading
vectors

210 H 2 e O B0 z3=(g,$)...

44



LOADING VECTORS: PROJECTION VIEW

Since vq,...,Vp are orthonormal, this operation is a projection
onto first k principal components.

l.e. we are projecting x onto the k-dimensional subspace

spanned by vq,...,Vp.
45



LOADING VECTORS: PROJECTION VIEW

For an example x;, the loading vector z; contains the
coordinates in the projection space:

46



SIMILARITY PRESERVATION

Important takeaway for data visualization and more: Latent
feature vectors preserve similarity and distance information in
the original data.

Let X;...,X, € R? be our original data vectors, z; . ..,z, € RF
be our loading vectors (encoding), and %; ..., %, € RY be our
low-rank approximated data.

We have:

<112 2
%112 = 1lzill2

M = <Z,‘,Zj>

1% — %112 = llzi — zlI3

47



SIMILARITY PRESERVATION

ad a good low rank approximation, i.e.
and [1%; — %j[[5 =~ [[x; — x;[|3, we

Conclusion: If
1%i[15 =~ 1113
expect that:

N
DT ) ~ 23
<Xiaxj>"-3 Zj,Z

X — xj[[5 ~ |1 — zj||5
—————— —,

-~

Useful in obtaining short “finger prints” for complex data.

Note: this is not true of most autoencoders, but unique to PCA.
Typically compressions themselves cannot be directly used to
approximate distance, similarity,. etc.

48



TERM DOCUMENT MATRIX

Word-document matrices tend to be low rank.

o 6

| 5 S, 660/’%% 0ao %y o 2,
ocifolol1]o]ol2]a]o]o]|—7 k }

b ( ‘ doc2fofo|of1|[o|2|0o|0]0

9 0 s lifafof1fofofof1]o P

9 0 “Jolofo|o|o|ofof1]|1

b (o) docnf1|{o|ofofo]ofo|1]1 ‘ﬂ

23

Documents tend to fall into a relatively small number of
different categories, which use similar sets of words:

- Financial news: markets, analysts, dow, rates, stocks
- US Politics: president, senate, pass, slams, twitter, media
- StackOverflow posts: python, help, convert, javascript

49



LATENT SEMANTIC ANALYSIS

Latent semantic analysis = PCA applied to a word-document
matrix (usually from a large corpus). One of the most
fundamental techniques in natural language processing (NLP).

term-document matrix

%

% ¥, s,

%

L

ololels oY

slolr]e]e

1
0
0
0
0

1
1
0
0
0

1
0
0
0
0

PCA

BOW features

P

X

YU Vi T

document vectors

Each column of z corresponds to a latent “category” or “topic”.
Corresponding row in Y corresponds to the “frequency” with
which different words appear in documents on that topic.

50



LATENT SEMANTIC ANALYSIS

L2857 % 657

Similar documents have similar LSA document vectors. I.e.
(zi,zj) is large.

- z; provides a more compact “finger print” for documents
than the long bag-of-words vectors. Useful for e.g search
engines.

-( Comparing document vectors is often more effective than

comparing raw BOW features. Two documents can have
((z,—,z}-)) large even if they have no overlap in words. E.g.
because both share a lot of words with words with
another document R, or with a bunch of other documents.

51



EIGENFACES

Same fingerprinting idea was also important in early facial
recognition systems based on “eigenfaces™

Each image above is one of the principal components of a
dataset containing images of faces.

52



SEMANTIC EMBEDDINGS



FROM PCA TO SEMANTIC EMBEDDINGS

Document embeddings are clearly useful. What about the
word embeddings? It turns out these are super useful as well!

Reminder: The i,j entry of X equals (z;,y)).

T

kecs

\pa/&*\’u'/

OON °RG

Wy 1]
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WORD EMBEDDINGS

single docuement

BOW features LSA features

al

X ~
2 wo YE vectors

<yi;ZCl> ~1
o |

—
document vectors

hen doc, contains word;.
word; and word; both appear in dacg, then

(Vi»Za) = (¥, 2qa) =~ 1, SO We expect (y;, y;) to be large.

Vi

Yj

If two words often appear in the same documents, their word
vectors tend to point more in the same direction.
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WORD EMBEDDINGS

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors.
Dissimilar words to dissimilar vectors.

excellent
easy great

difficult

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near
synonyms. Or that “difficult” and “easy” are antonyms. 55



WORD EMBEDDINGS

For similar words, (y;,y;) should be large. l.e. y; and y; point in
the same direction.

» body part

ot P
travel s

@relatlve -



WORD EMBEDDINGS: MOTIVATING PROBLEM

(Review 1: Very small and handy for traveling or camping:
Excellent quality, operation, and appearance.

Review 2: So far this thing is great. Well designed, compact,
and easy to use. I'll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
omeone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

57



BAG-OF-WORDS FEATURES

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review 1: Very small and handy for traveling or camping. Excellent
quality, operation, and appearance.

[ ) Y ) Y ) ) ) ]

Review 2: So far this thing is great. Well designed, compact, and easy
to use. I'll never use another can opener.

[ ? ’ ? ’ ? ) ? ]

Review 3: Not entirely sure this was worth $20. Mom couldn’t figure
out how to use it and it’s fairly difficult to turn for someone with
arthritis.



SEMANTIC EMBEDDINGS

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are
near synonyms. Or that “difficult” and “easy” are antonyms.

excellent
easy great

difficult

This can be addressed by first mapping words to semantically
meaningful vectors. That mapping can be trained using a much large
corpus of text than the data set you are working with (e.g. Wikipedia,
Twitter, news data sets).

59



USING WORD EMBEDDINGS

How to go from word embeddings to features for a whole
sentence or chunk of text?
remove

“stop words”
Very small handy#er traveling é7camping, [ small, handy, traveling, camping ]
g #pa handy, g ping, mummmm) [ small, handy, traveling, camping

|

V1Y . Yq

~
word wﬂ

embedding -

[ small, handy, traveling, camping] ‘ J

?2??

ViV ... ¥
e d feature vector

60



USING WORD EMBEDDINGS

A few simple options:

Feature vector g
small
average
useless handy
average
heavy
Feature vector X = [y1,¥2, - - -, Yql- _
0
Y}
) |/
ViV . Vg _ﬂ
X 61



USING WORD EMBEDDINGS

To avoid issues with inconsistent sentence length, word
ordering, etc., can concatenate a fixed number of top principal
components of the matrix of word vectors:

)

SVD

ViV, Vi

x N [ S C

There are much more complicated approaches that account for
word position in a sentence. Lots of pretrained libraries
available (e.g. Facebook’s anerSent). 62



WORD EMBEDDINGS

RN

_—

Another view on word embeddi rom LSA: :(\1 5. \/\4,1

o %
o D9, g

doc_ 1o [0 |1

Y

Z word vectors
———

doc_2

1

R
mlrl|rlo|o]<
]

o|lo|o|lo|e]|:

olo|r|r]|e

olo|o|r|r

o|lo|o|lo|r

R

o|lo|o|o

0

1

oo
doc nj 1

term-document matrix X documey
vectors

0

We chose Z to equal XV, = UyX and Y = V/.

Could have just as easily set Z = U, and Y = X,V!, so Z has
orthonormal columns.
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WORD EMBEDDINGS

Another view on word embeddings from LSA:

o

5. %
%9, s,

3

%,

0

0|0

1

0

1

—
doc_1) o
doc 2o | o
L . g
! 0
1

0,

4

1
0
0
0
o

olo|r|r|o

o|lo|o|lo|o]|:

olo|o|r|r

olo|o|lo|r

0
1
1
1

mlr|o|o

term-document matrix X

- X~ 2ZY

~
~

L= Vu

UV =T

271 1T

Y

document
vectors

\(: i\.\VkT

(XX~ Yz'2y :@
- 50 for word; and vvordj, ~| [XTX]i,j>

& o Lw“*"“fp\zﬁ V0

word vectors
22

o

b
\
AN
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WORD EMBEDDINGS

doc2fofo|o|1|0|1|0|0]0O Y

]

V4 word vectors

docnfi1|o0|o0|0fO0|O0|0O|1]|1

document
X vectors

term-document matrix
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WORD EMBEDDINGS

(vi,y;) is larger if word; and word; appear in more documents
together (high value in word-word co-occurrence matrix, X'X).
Similarity of word embeddings mirrors similarity of word context.

General word embedding recipe:
14{Choose similarity metric kR(word;, word;) which can be computed
for any pair of Words,j

2. Construct similarity matrix M € R"*" with M; ; = k(word;, word;).

3. Find low rank approximation M ~ Y'Y where Y € RF*".

4. Columns o@are word embedding vectors.

We expect that (y;,y;) will be larger for more similar words.

i}

66



WORD EMBEDDINGS

5 s, U‘/m %, G

%

v

5. %
6y, %5,

o

How do current state-of-the-art methods differ from LSA?

- Similarity based on co-occurrence in smaller chunks of words.
E.g. in sentences or in any consecutive sequences of 3, 4, or 10
words.

- Usually transformed in non-linear way. E.g.

k(word;,word;) = QZ)LD’)? where p(i,j) is the frequency both I,

appeared together, and p(i), p(j) is the frequency either one

appeared. -



MODERN WORD EMBEDDINGS

Computing word similarities for “window size” 4:

dog park crowded the

The girl walks to her|dog to the park.

It can take a long time to parkyour car in NYC.

0 2 0 3
|The dog park islalways|crowded on Saturdays.

Sop

The girl walks to her dog to the park.
It can take a long time to park your car in NYC.
The dog|park is always crowded|on Saturdays.

The girl walks to

It can take a long time to park your car in NYC.

The dog park is|always crowded on Saturdays.

papmosd  Jed

ay
w
N
o
o
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MODERN WORD EMBEDDINGS

Current state of the art models: GLoVE, word2vec.

- word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

- Forword2vec, similarity metric is the “point-wise mutual

information”: log p[(Jj()ig()j)'
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CAVEAT ABOUT FACTORIZATION

we,,é%s %, %
7 Y
& \

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite? then the optimal low-rank
approximation does not have this form.

’l.e,, R(word;, word;) is not a positive semidefinite kernel.
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CAVEAT ABOUT FACTORIZATION

%

Y |

M = wr

%, %,
S

EN

- For each word | we get a left and right embedding vector
w; and y;. It's reasonable to just use one or the other.

- If {y;,y)) is large and positive, we expect thaty; and y; have
similar similarity scores with other words, so they typically
are still related words.

- Another option is to use as your features for a word the
concatenation [wj, yj]
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EASIEST WAY TO USE WORD EMBEDDINGS

Lots of pre-trained word vectors are available online:

- Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

- Compilation of many sources:
https://github.com/3Top/word2vec-api
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WORD EMBEDDINGS MATH

Lots of cool demos for what can be done with these
embeddings. E.g. “vector math” to solve analogies.

Vector Math

King - Man

-

King
/7l Queen
7
/
/ Man

- Woman

he slower
\ she slow
cat
himself faster slowest
dog \
\ cats

herself
fast /\
England longer
fastest
long

longest

o 7
Paris / Italy
Londo/

Rome
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FORWARD LOOKING APPLICATION: UNSUPERVISED TRANSLATION

- Train word-embeddings for languages separately. Obtain lowish
dimensional point clouds of words.

- Perform rotation/alignment to match up these point clouds.

- Equivalent words should land on top of each other.

No needs for labeled training data like translated pairs of sentences!
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FORWARD LOOKING APPLICATION: UNSUPERVISED TRANSLATION

Why not monkey or whale language?

Earth Species Project (www.earthspecies.org), CETI Project
(www.projectceti.org)
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SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

item1 item2

itemn

L way

similarity matrix

M

zway

way

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

14
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NODE EMBEDDINGS

a

ER I & \ - _rﬂn
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a ~ e
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Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

1 o 7 1,3,4,4,52,1,2,5

Q\Qj;\\ ’// \\\ Q\ 6,8,6,4,3,1,53,4
\2\ \\\: 0\3 \\\6 \\\ 71 81 6' 8' 7' 8' 6' 8' 6
\ ‘ . \\:\\ \O\ ] \\\ :

, O~"> 5 o 4,6,8,6,4,3,1,2,5
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NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

node1 node2 .. node 8
1,3,4,4,52,1,2,5 Bl 0|2 !
6,8,6,43,1,5,3, & I .
7,8,6,8,7,8,6,8,6 o
4,6,8,6,4,3,1,2,5 g

® 1 0 0

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).
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BIMODAL EMBEDDINGS

We can also create embeddings that represent different types

of data. OpenAl’s clip architecture:
My new puppy! 0

N
Best dim sum ever.\\\\’
* Text

5 Encoder
NYC in the rain. ///}

-~ | I »

_ Image I
.| Encoder
/

. / H

. / D N
N : o/ i

! 1 // In
e

|

T | T, | T Tn
TEmll 1T, | 1T I, Ty
LT | LT, LT LTy
LT, | T, | LT I3 Ty

|
INTy | INT2

INTs

InTn ‘

Goal: Train embedding architectures so that (T;,1;) are similar

if image and sentence are similar.
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CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity

matrix.
My new puppy! 1 0 0
Best dim sum ever. 0 1 0
NYC in the rain. 0 0 1

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.
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CLIP FOR ZERO-SHOT LEARNING

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford "' Jong Wook Kim *! Chris Hallacy' Aditya Ramesh' Gabriel Goh' Sandhini Agarwal'
Girish Sastry! Amanda Askell! Pamela Mishkin' Jack Clark' Gretchen Krueger' Ilya

—
A photo of Text
a . Encoder
./'//J//
Fl TN T W iy ‘
Image I LT | 1T, [T 1T
EncoderH 1 1'h lZ‘I3 1IN

A photo of 81
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IMAGE SYNTHESIS



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images J

f(x) = d(e(x)) projects an image x closer to the space of
natural images.
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AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

- Option 1: Draw each pixel value in x uniformly at random.

Draws a random image from A.

- Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

m

How do we randomly select an image from S§?
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AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

n, =z )
N, == (2, )
y

N == 7 )
£

\

Main issue: most random inputs words will “miss” and produce
garbage results.
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AUTOENCODERS FOR DATA GENERATION

Space of “natural”
images 7

Variational auto-encoders attempt to resolve this issue.
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VARIATIONAL AUTOENCODERS

Variational auto-encoders attempt to resolve this issue. Basic
ideas:

- Add noise during training.
- Add penalty term so that distribution of code vectors
generated looks like mean 0, variance 1 Gaussian.

Input Output
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Encoder Decoder

86



GENERATIVE ADVERSARIAL NETWORKS

Variation AE’s give very good results, but tends to produce
images with immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

n, == z
\X
nzﬂ‘ Z, K y

n; == 2z )
£

\
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

m@in L(8) + P(0)
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

real-world
image

generator

code vector

Let X,...,X, be real images and let z;,...,z, be random code
vectors. The goal of the discriminator is to output a number between
[0,1] which is close to 0 if the image is fake, close to 1 if it's real.

Train weights of discriminator Dg to minimize:

mlnz log (De(x +Z log (1 — Do (Ger(2))) 39

i=1



GENERATIVE ADVERSARIAL NETWORKS (GANS)

real-world

image generator

code vector

Goal of the generator Gy js the opposite. We want to maximize:

mee/lxz —log (1 — Dg(Ger(z))

i=1

This is called an “adversarial loss function”. D is playing the role of
the adversary.
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

0,0’ solve m(;n maxz log (Dg(x +Z log (1 — Dg(Ger(z;))
=1

This is called a minimax optimization problem. Really tricky to
solve in practice.

- Repeatedly play: Fix one of 8* or ", train the other to
convergence, repeat.

- Simultaneous gradient descent: Run a single gradient
descent step for each of 8*,0™ and update D and G
accordingly. Difficult to balance learning rates.

- Lots of tricks (e.g, slightly different loss functions) can
help.
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GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.
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DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

Forward Diffusion Process >

\ X0 Denoising UNet

Reverse Diffusion Process ‘
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DIFFUSION

We will post a demo for generating digits by training on MNIST.

ool Jege] Jeja]
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SEMANTIC EMBEDDINGS + DIFFUSION

Text to image synthetsis: Dall-E, Imagen, Stable Diffusion

D\

\

"A chair that looks like an avocado”
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