
CS-GY :ࠂࠁ69 Lecture ࠂࠀ
Principal Component Analysis, Semantic
Embeddings

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

TRANSFER LEARNING

Empirical observation: Features learned when training models
like deep neural nets are often useful for problems beyond
what the model was trained on.

ࠁ

0

TRANSFER LEARNING

Very useful in domains like computer vision where we have huge
labeled datasets to train deep models on. Approach:

.ࠀ Download network trained on large image classification dataset
(e.g. Imagenet).

.ࠁ Extract features z for any new image x by running it through the
network up until layer before last.

.ࠂ Use these features for a new problem (e.g., quidditch ball
detection), typically using a simpler machine learning algorithm
that requires less data (nearest neighbor, logistic regression,
etc.).

ࠂ

_

UNSUPERVISED FEATURE LEARNING

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.

ࠃ

w

AUTOENCODER

First of many simple but clever ideas: If we have inputs
xࠀ, . . . , xn → Rd but few or no targets yࠀ, . . . , yn, just make the
inputs the targets.

• Let fθ : Rd → Rd be our model.
• Let Lθ be a loss function. E.g. squared loss:
Lθ(x) = ‖x− fθ(x)‖ࠁࠁ.

• Train model: θ∗ = minθ
∑n

i=ࠀ Lθ(x).

If fθ is a model that incorporates feature learning, then these
features can be used for supervised tasks.

fθ is called an autoencoder. It maps input space to input
space (e.g. images to images, french to french, PDE solutions to

PDE solutions).

ࠄ

I

t -
z 8 € 1 1 Xi-fo

(xi)113

AUTOENCODER

Important property of autoencoders: no matter the architecture,
there must always be a bottleneck with fewer parameters than the
input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.

ࠅ

i 01 TO
A

AUTOENCODER

Separately name the mapping from input to bottleneck and from
bottleneck to output.

Encoder: e : Rd → Rk Decoder: d : Rd → Rk

f(x) =

Often symmetric, but does not have to be. ࠆ

K d UL d

dCecx))

|
" "001
encoder decoder

AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = .ࠁࠄࠀࠈࠃ
Bottleneck “latent” parameters: k = .ࠃࠁ߿ࠀ ࠇ

§

I ' -

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as supervised
methods for feature extraction, but they require no labeled
data.

There are a lot of cool applications of autoencoders beyond
feature learning!

• Learned data compression.
• Denoising and in-painting.
• Data/image synthesis.

ࠈ

=

AUTOENCODERS FOR DATA COMPRESSION

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Given input x, we can completely recover f(x) from z = e(x). z
typically has many fewer dimensions than x and for a typical
image f(x) will closely approximate x.

߿ࠀ

4000

AUTOENCODERS FOR IMAGE COMPRESSION

The best lossy compression algorithms are tailor made for specific
types of data:

• JPEG ߿߿߿ࠁ for images

• MPࠂ for digital audio.

• MPEG-ࠃ for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.

ࠀࠀ

o

)

AUTOENCODERS FOR IMAGE COMPRESSION

With enough input data, autoencoders can be trained to find this
structure on their own.

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than
“hand-tuned” algorithms like JPEG. ࠁࠀ

I : :

AUTOENCODERS FOR IMAGE CORRECTION

Train autoencoder on uncorrupted images (unsupervised). Pass
corrupted image x through autoencoder and return f(x) as repaired
result. ࠂࠀ

Oo a

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Why does this work?

Consider ×ࠇࠁࠀ ×ࠇࠁࠀ ࠂ images with pixels values in ,߿ ࠀ . . . , .ࠄࠄࠁ
How many possible images are there?

If z holds k, ࠇ bit values, how many unique images w can be
output by the autoencoder function f?

ࠃࠀ

If""

,

"" " "°"""µD ..:p#isa "

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

An accurate autoencoder with a small bottleneck must have a
representation space S that closely approximates I . Both will
be much smaller than A.

ࠄࠀ

(a)yy6yl8xn8x3-
Go0@q6uin.s
e,

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

ࠅࠀ

.
-

- n

.

.

.

.

.

F
. .

• a

G

÷
• .

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option :ࠀ Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option :ࠁ Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

ࠆࠀ

%

AUTOENCODERS FOR DATA GENERATION

How do we randomly select an image x from S?

Randomly select code z, then set x = d(z).ࠀ

Someࠀ details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.

ࠇࠀ

j÷o
÷¥.'¥0

0

PRINCIPAL COMPONENT ANALYSIS

ࠇࠀ

PRINCIPAL COMPONENT ANALYSIS

Deeper dive into understanding a simple, but powerful
autoencoder architecture. Specifically we will view principal
component analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often
the go-to baseline method for denoising, dimensionality
reduction, etc.

Very important outside machine learning as well.

ࠈࠀ

-

PRINCIPAL COMPONENT ANALYSIS

Consider the simplest possible autoencoder:

• One hidden layer. No non-linearity. No biases.

• Latent space of dimension k.

• Weight matrices are Wࠀ → Rd×k and Wࠁ → Rk×d. ߿ࠁ

ID

,

8$"'@I
o

i e ,OOO
&

UW,end
× " w ,

PRINCIPAL COMPONENT ANALYSIS

Given input x → Rd, what is f(x) expressed in linear algebraic
terms?

f(x)T = xTWࠀWࠁ

ࠀࠁ

Cxd)(dxk)→ (l i k)

j - t

d

÷÷÷
-

PRINCIPAL COMPONENT ANALYSIS

Encoder: z = e(x) = xTWࠀ. Decoder: d(z) = zWࠁ

ࠁࠁ

2 :
e-coder

vector

• x
length

K -

O

- - - - -

Xiu,U ,

PRINCIPAL COMPONENT ANALYSIS

Given training data set xࠀ, . . . , xn, let X denote our data matrix.
Let X̃ = XWࠀWࠁ.

ࠂࠁ

-

o o o o o o

f =

°

" "

=

o

(nd)(dem)
(kid)
→
(mid)

FROBENIUS NORM

Natural squared autoencoder loss: Minimize L(X, X̃) where:

L(X, X̃) =
n∑

i=ࠀ

‖xi − f(xi)‖ࠁࠁ

=
n∑

i=ࠀ

d∑

j=ࠀ

(xi[j]− f(xi)[j])ࠁ

= ‖X− X̃‖ࠁF

Goal: Find Wࠀ,Wࠁ to minimize the Frobenius norm loss
‖X− X̃‖ࠁF = ‖X− XWࠀWࠁ‖ࠁF (sum of squared entries).

ࠃࠁ

O dw i n

(- % .

→
aims.!

halli...EE?fijI'

,

' E x t

w

- a s

LOW-RANK APPROXIMATION

Rank in linear algebra:

• The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

• The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

• Column rank = row rank = rank.

X̃ is a low-rank matrix. It only has rank k for k & d.
ࠄࠁ

÷
-

- O
-

F -dude

and"'"'
n f) " "Jo

LOW-RANK APPROXIMATION

Principal component analysis is the task of finding Wࠀ, Wࠁ,
which amounts to finding a rank k matrix X̃ which
approximates the data matrix X as closely as possible.

Finding the best Wࠀ and Wࠁ is a non-convex problem. We could
try running an iterative method like gradient descent anyway.
But there is also a direct algorithm!

ࠅࠁ

SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

Where UTU = I, VTV = I, and σࠀ ≥ σࠁ ≥ . . .σd ≥ .߿ I.e. U and V are
orthogonal matrices.

This is called the singular value decomposition.

Can be computed in O(ndࠁ) time (faster with approximation algos). ࠆࠁ

m i u(yd)

O

o

°

- o - -

1
stiffs

- - - - - -

ORTHOGONAL MATRICES

Let uࠀ, . . . ,un → Rn denote the columns of U. I.e. the left
singular vectors of X. Recall that orthogonality means that:

‖ui‖ࠁࠁ = uTi uj =

ࠇࠁ

b u t # I vote.O t o :I

= p :
I 0

krill::vitui

SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

Eckart–Young–Mirsky Theorem: For any k ≤ d, Xk = UkΣkVTk is
the optimal k rank approximation to X:

Xk = argmin
X̃ with rank ≤ k

‖X− X̃‖ࠁF.

ࠈࠁ

¥ 0,i*÷÷÷÷÷÷
±

=

-

OPTIMAL LOW-RANK APPROXIMATION

That’s great, but not quite in the form we wanted. Optimal rank
k approximation is Xk = UkΣkVTk. We want an approximation of
the form:

X̃ = XWࠀWࠁ

߿ࠂ

- -

= - t -

o : @

OPTIMAL LOW-RANK APPROXIMATION

Claim: Xk = UkΣkVTk = XVkVTk. I.e., can choose Wࠀ = Vk, Wࠁ = VTk.

ࠀࠂ

00-0 - -

IT:XVuvut
Goal: Prove that#--XI.

x u n :
11131011M¥.

¥ . ±
V iva=/"§

" "I]Fd÷l¥.in/.ifff..fiYif
ao.o.u..auIYu-.Uu4ix

PRINCIPAL COMPONENT ANALYSIS

Usually x’s columns (features) are mean centered and
normalized to variance ࠀ before computing principal
components. ࠁࠂ

i o
O

SINGULAR VALUE DECOMPOSITION

Computing the SVD.

• Full SVD:
U,S,V = scipy.linalg.svd(X).

Runs in O(ndࠁ) time.
• Just the top k components:
Uk,Sk,Vk = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndk) time.

ࠂࠂ

CONNECTION TO EIGENDECOMPOSITION

Recall that for a matrix M → Rp×p, q is an eigenvector of M if
λq = Mq for any scalar λ.

• U’s columns (the left singular vectors) are the
orthonormal eigenvectors of XXT.

• V’s columns (the right singular vectors) are the
orthonormal eigenvectors of XTX.

• σࠁ
i = λi(XXT) = λi(XTX)

Exercise: Verify this directly. This means you can use any
eigensolver for computing the SVD.

ࠃࠂ

- =

• - R= ('9%,]
O -

O
-

O
- o o -

PCA APPLICATIONS

Like any autoencoder, PCA can be used for:

• Feature extraction
• Denoising and rectification
• Data generation
• Compression
• Visualization

ࠄࠂ

0 0 0

LOW-RANK APPROXIMATION

The larger we set k, the better approximation we get.

ࠅࠂ

7 8 4

"co..

LOW RANK APPROXIMATION

Error vs. k is dictated by X’s singular values. The singular
values are often called the spectrum of X.

‖X− Xk‖ࠁF =
d∑

i=k

σࠁ
i .

ࠆࠂ

+,

¥611.1.-26cg

*YEO

,

A

COLUMN REDUNDANCY

Colinearity of data features leads to an approximately
low-rank data matrix.

sale price ≈ ࠄ߿.ࠀ · list price.
property tax ≈ ࠀ߿. · list price.

ࠇࠂ

DE

COLUMN REDUNDANCY

Sometimes these relationships are simple, other times more
complex. But as long as there exists linear relationships
between features, we will have a lower rank matrix.

yard size ≈ lot size− ࠀ
ࠁ
· square footage.

cumulative GPA ≈ ࠀ
ࠃ
· year ࠀ GPA+

ࠀ
ࠃ
· year ࠁ GPA

+
ࠀ
ࠃ
· year ࠂ GPA+

ࠀ
ࠃ
· year ࠃ GPA.

ࠈࠂ

LOW-RANK INTUITION

Two other examples of data with good low-rank
approximations:

.ࠀ Genetic data:

.ࠁ “Term-document” matrix with bag-of-words data:

߿ࠃ

(=)

PRINCIPAL COMPONENTS

What do principal components and loading vectors look like?

ࠀࠃ

risky

PRINCIPAL COMPONENTS

MNIST principal components:

Often principal components are difficult to interpret. ࠁࠃ

g I

LOADING VECTORS

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which
recombine the top k principal components vࠀ, . . . , vk to

approximately reconstruct x.

Provide a short “finger print” for any image x which can be used to
reconstruct that image.

ࠂࠃ

C b i o %
8

-

- - - -

a n

LOADING VECTORS: SIMILARITY VIEW

For any x with loading vector z, the ith entry zi is the inner
product similarity between x and the ith principal component,
vi.

ࠃࠃ

-

" i t "

o '¥4,414

- - -

LOADING VECTORS: PROJECTION VIEW

So we approximate x ≈ x̃ = 〈x, vࠀ〉 · vࠀ + . . .+ 〈x, vk〉 · vk.

Since vࠀ, . . . , vk are orthonormal, this operation is a projection
onto first k principal components.

I.e. we are projecting x onto the k-dimensional subspace
spanned by vࠀ, . . . , vk.

ࠄࠃ

- - - -

F
O \ Z ,

O

°
o

LOADING VECTORS: PROJECTION VIEW

For an example xi, the loading vector zi contains the
coordinates in the projection space:

ࠅࠃ

€ ok ,

SIMILARITY PRESERVATION

Important takeaway for data visualization and more: Latent
feature vectors preserve similarity and distance information in
the original data.

Let xࠀ . . . , xn → Rd be our original data vectors, zࠀ . . . , zn → Rk

be our loading vectors (encoding), and x̃ࠀ . . . , x̃n → Rd be our
low-rank approximated data.

We have:

‖x̃i‖ࠁࠁ = ‖zi‖ࠁࠁ
〈x̃i, x̃j〉 = 〈zi, zj〉

‖x̃i − x̃j‖ࠁࠁ = ‖zi − zj‖ࠁࠁ

ࠆࠃ

-

-

SIMILARITY PRESERVATION

Conclusion: If our data had a good low rank approximation, i.e.
‖x̃i‖ࠁࠁ ≈ ‖xi‖ࠁࠁ,〈x̃i, x̃j〉 ≈ 〈xi, xj〉, and ‖x̃i − x̃j‖ࠁࠁ ≈ ‖xi − xj‖ࠁࠁ, we
expect that:

‖xi‖ࠁࠁ ≈ ‖zi‖ࠁࠁ
〈xi, xj〉 ≈ 〈zi, zj〉

‖xi − xj‖ࠁࠁ ≈ ‖zi − zj‖ࠁࠁ

Useful in obtaining short “finger prints” for complex data.

Note: this is not true of most autoencoders, but unique to PCA.
Typically compressions themselves cannot be directly used to
approximate distance, similarity,. etc.

ࠇࠃ

d o
= L' i n

C g O
- I

TERM DOCUMENT MATRIX

Word-document matrices tend to be low rank.

Documents tend to fall into a relatively small number of
different categories, which use similar sets of words:

• Financial news: markets, analysts, dow, rates, stocks
• US Politics: president, senate, pass, slams, twitter, media
• StackOverflow posts: python, help, convert, javascript

ࠈࠃ

6 6
I 0 @ → t £
b l
o o ¥

% '?

LATENT SEMANTIC ANALYSIS

Latent semantic analysis = PCA applied to a word-document
matrix (usually from a large corpus). One of the most
fundamental techniques in natural language processing (NLP).

Each column of z corresponds to a latent “category” or “topic”.
Corresponding row in Y corresponds to the “frequency” with
which different words appear in documents on that topic.

߿ࠄ

⇒ I t
f go.am#--y

LATENT SEMANTIC ANALYSIS

Similar documents have similar LSA document vectors. I.e.
〈zi, zj〉 is large.

• zi provides a more compact “finger print” for documents
than the long bag-of-words vectors. Useful for e.g search
engines.

• Comparing document vectors is often more effective than
comparing raw BOW features. Two documents can have
〈zi, zj〉 large even if they have no overlap in words. E.g.
because both share a lot of words with words with
another document k, or with a bunch of other documents.

ࠀࠄ

(2¥17K Ex i ,X I

' i ,

EIGENFACES

Same fingerprinting idea was also important in early facial
recognition systems based on “eigenfaces”:

Each image above is one of the principal components of a
dataset containing images of faces.

ࠁࠄ

0 0 0 0

SEMANTIC EMBEDDINGS

ࠁࠄ

FROM PCA TO SEMANTIC EMBEDDINGS

Document embeddings are clearly useful. What about the
word embeddings? It turns out these are super useful as well!

Reminder: The i, j entry of X̃ equals 〈zi, yj〉.

ࠂࠄ

wordvectors

8
g HH." 11111
%

WORD EMBEDDINGS

• 〈yi, za〉 ≈ ࠀ when doca contains wordi.
• If wordi and wordj both appear in doca, then
〈yi, za〉 ≈ 〈yj, za〉 ≈ ,ࠀ so we expect 〈yj, yj〉 to be large.

If two words often appear in the same documents, their word
vectors tend to point more in the same direction.

ࠃࠄ

G i s §O -
=

- - o

WORD EMBEDDINGS

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors.
Dissimilar words to dissimilar vectors.

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near
synonyms. Or that “difficult” and “easy” are antonyms. ࠄࠄ

WORD EMBEDDINGS

For similar words, 〈yi, yj〉 should be large. I.e. yi and yj point in
the same direction.

ࠅࠄ

°.

WORD EMBEDDINGS: MOTIVATING PROBLEM

Review :ࠀ Very small and handy for traveling or camping.
Excellent quality, operation, and appearance.

Review :ࠁ So far this thing is great. Well designed, compact,
and easy to use. I’ll never use another can opener.

Review :ࠂ Not entirely sure this was worth .߿ࠁ$ Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
someone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

ࠆࠄ

l I

I
l

BAG-OF-WORDS FEATURES

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review :ࠀ Very small and handy for traveling or camping. Excellent
quality, operation, and appearance.

[, , , , , , ,]

Review :ࠁ So far this thing is great. Well designed, compact, and easy
to use. I’ll never use another can opener.

[, , , , , , ,]

Review :ࠂ Not entirely sure this was worth .߿ࠁ$ Mom couldn’t figure
out how to use it and it’s fairly difficult to turn for someone with
arthritis.

[, , , , , , ,] ࠇࠄ

SEMANTIC EMBEDDINGS

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are
near synonyms. Or that “difficult” and “easy” are antonyms.

This can be addressed by first mapping words to semantically
meaningful vectors. That mapping can be trained using a much large
corpus of text than the data set you are working with (e.g. Wikipedia,
Twitter, news data sets).

ࠈࠄ

USING WORD EMBEDDINGS

How to go from word embeddings to features for a whole
sentence or chunk of text?

߿ࠅ

a - - - - -

. . . .

Off:O

USING WORD EMBEDDINGS

A few simple options:
Feature vector x = ࠀ

q
∑q

i=ࠀ yq.

Feature vector x = [yࠀ, yࠁ, . . . , yq].

ࠀࠅ

O

:
O

USING WORD EMBEDDINGS

To avoid issues with inconsistent sentence length, word
ordering, etc., can concatenate a fixed number of top principal
components of the matrix of word vectors:

There are much more complicated approaches that account for
word position in a sentence. Lots of pretrained libraries
available (e.g. Facebook’s InferSent). ࠁࠅ

00%
\

WORD EMBEDDINGS

Another view on word embeddings from LSA:

We chose Z to equal XVk = UkΣk and Y = VTk.

Could have just as easily set Z = Uk and Y = ΣkVTk, so Z has
orthonormal columns.

ࠂࠅ

✓
' ''÷iE#uh

-

- I

- -

WORD EMBEDDINGS

Another view on word embeddings from LSA:

• X ≈ ZY
• XTX ≈ YTZTZY = YTY
• So for wordi and wordj, 〈yi, yj〉 ≈ [XTX]i,j.

What does the i, j entry of XTX reprent?

ࠃࠅ

butV u= I
z t z . - I

D¥¥÷÷.
0 5 . . . - O

0 0 . 0
word

J -
#of

downy},.ge,,,-y both
word

"
' " d

WORD EMBEDDINGS

What does the i, j entry of XTX reprent?

ࠄࠅ

WORD EMBEDDINGS

〈yi, yj〉 is larger if wordi and wordj appear in more documents
together (high value in word-word co-occurrence matrix, XTX).
Similarity of word embeddings mirrors similarity of word context.

General word embedding recipe:

.ࠀ Choose similarity metric k(wordi,wordj) which can be computed
for any pair of words.

.ࠁ Construct similarity matrix M → Rn×n with Mi,j = k(wordi,wordj).

.ࠂ Find low rank approximation M ≈ YTY where Y → Rk×n.

.ࠃ Columns of Y are word embedding vectors.

We expect that 〈yi, yj〉 will be larger for more similar words.

ࠅࠅ

r g -
- - -

- - -

O

- -

WORD EMBEDDINGS

How do current state-of-the-art methods differ from LSA?

• Similarity based on co-occurrence in smaller chunks of words.
E.g. in sentences or in any consecutive sequences of ,ࠂ ,ࠃ or ߿ࠀ
words.

• Usually transformed in non-linear way. E.g.
k(wordi,wordj) =

p(i,j)
p(i)p(j) where p(i, j) is the frequency both i, j

appeared together, and p(i), p(j) is the frequency either one
appeared.

ࠆࠅ

I

l . '

MODERN WORD EMBEDDINGS

Computing word similarities for “window size” :ࠃ

ࠇࠅ

MODERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg .(ࠃࠀ߿ࠁ

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

ࠈࠅ

- -

CAVEAT ABOUT FACTORIZATION

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefiniteࠁ then the optimal low-rank
approximation does not have this form.

,.I.eࠁ k(wordi,wordj) is not a positive semidefinite kernel.

߿ࠆ

CAVEAT ABOUT FACTORIZATION

• For each word i we get a left and right embedding vector
wi and yi. It’s reasonable to just use one or the other.

• If 〈yi, yj〉 is large and positive, we expect that yi and yj have
similar similarity scores with other words, so they typically
are still related words.

• Another option is to use as your features for a word the
concatenation [wi, yi]

ࠀࠆ

EASIEST WAY TO USE WORD EMBEDDINGS

Lots of pre-trained word vectors are available online:

• Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

• Compilation of many sources:
https://github.com/3Top/word2vec-api

ࠁࠆ

1

https://nlp.stanford.edu/projects/glove/
https://github.com/3Top/word2vec-api

WORD EMBEDDINGS MATH

Lots of cool demos for what can be done with these
embeddings. E.g. “vector math” to solve analogies.

ࠂࠆ

i t

FORWARD LOOKING APPLICATION: UNSUPERVISED TRANSLATION

• Train word-embeddings for languages separately. Obtain lowish
dimensional point clouds of words.

• Perform rotation/alignment to match up these point clouds.

• Equivalent words should land on top of each other.

No needs for labeled training data like translated pairs of sentences!

ࠃࠆ

Ooo
o

FORWARD LOOKING APPLICATION: UNSUPERVISED TRANSLATION

Why not monkey or whale language?

Earth Species Project (www.earthspecies.org), CETI Project
(www.projectceti.org)

ࠄࠆ

www.earthspecies.org
www.projectceti.org

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

ࠅࠆ

NODE EMBEDDINGS

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

ࠆࠆ

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. .(ࠇࠀ߿ࠁ

ࠇࠆ

BIMODAL EMBEDDINGS

We can also create embeddings that represent different types
of data. OpenAI’s clip architecture:

Goal: Train embedding architectures so that 〈Ti, Ij〉 are similar
if image and sentence are similar. ࠈࠆ

CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity
matrix.

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.

߿ࠇ

CLIP FOR ZERO-SHOT LEARNING

ࠀࠁ߿ࠁ result: %ࠅࠆ accuracy on ImageNet image classification
challenge with no labeled training data.

ࠀࠇ

IMAGE SYNTHESIS

ࠀࠇ

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

ࠁࠇ

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option :ࠀ Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option :ࠁ Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

ࠂࠇ

AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

Main issue: most random inputs words will “miss” and produce
garbage results.

ࠃࠇ

AUTOENCODERS FOR DATA GENERATION

Variational auto-encoders attempt to resolve this issue.

ࠄࠇ

VARIATIONAL AUTOENCODERS

Variational auto-encoders attempt to resolve this issue. Basic
ideas:

• Add noise during training.
• Add penalty term so that distribution of code vectors
generated looks like mean ,߿ variance ࠀ Gaussian.

ࠅࠇ

GENERATIVE ADVERSARIAL NETWORKS

Variation AE’s give very good results, but tends to produce
images with immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

ࠆࠇ

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

min
θ

L(θ) + P(θ)

ࠇࠇ

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Let xࠀ, . . . , xn be real images and let zࠀ, . . . , zm be random code
vectors. The goal of the discriminator is to output a number between
,߿] [ࠀ which is close to ߿ if the image is fake, close to ࠀ if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑

i=ࠀ

− log (Dθ(xi)) +
m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi)) ࠈࠇ

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Goal of the generator Gθ′ is the opposite. We want to maximize:
max
θ′

m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of
the adversary.

߿ࠈ

GENERATIVE ADVERSARIAL NETWORKS (GANS)

θ∗,θ′∗ solve min
θ

max
θ′

n∑

i=ࠀ

− log (Dθ(xi)) +
m∑

i=ࠀ

− log −ࠀ) Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to
solve in practice.

• Repeatedly play: Fix one of θ∗ or θ′∗, train the other to
convergence, repeat.

• Simultaneous gradient descent: Run a single gradient
descent step for each of θ∗,θ′∗ and update D and G
accordingly. Difficult to balance learning rates.

• Lots of tricks (e.g., slightly different loss functions) can
help.

ࠀࠈ

GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.

ࠁࠈ

DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

ࠂࠈ

DIFFUSION

We will post a demo for generating digits by training on MNIST.

ࠃࠈ

SEMANTIC EMBEDDINGS + DIFFUSION

Text to image synthetsis: Dall-E, Imagen, Stable Diffusion

”A chair that looks like an avocado”
ࠄࠈ

