CS-GY 6923: Lecture 12

Finish Convolutional Networks, Adversarial
Examples, Autoencoders

NYU Tandon School of Engineering, Prof. Christopher Musco



RECALL FROM LAST LECTURE

Common way of processing images, time series, audio, etc. is
via convolution with a filter:

Can perform operations like smoothing, template matching,
edge detection, etc.
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EDGE DETECTION + PATTERN MATCHING

Feed edge detection result into pattern matcher that looks for
long vertical lines.




HIERARCHICAL CONVOLUTIONAL FEATURES

m) mean(V,)
Vi
mean(V¢) =.062  vs. mean(V,) = .054

The image with highest average response to (edge detector) +
(vertical pattern) is the city scape.

mean(V) = V'8 where 8 = [1/n,...,1/n]. So the new features in V
could be combined with a simple linear classifier to separate
cityscapes from landscapes.



HIERARCHICAL CONVOLUTIONAL FEATURES

Hierarchical combinations of simple convolution filters are
very powerful for understanding images.

Edge detection seems like a critical first step.

Lots of evidence from biology.



VISUAL SYSTEM

Light comes into the eye through the lens and is detected by an
array of photosensitive cells in the retina.
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Fig. 13. Tangential section through the human fovea.
Larger cones (arrows) are blue cones. From Anelt et a. 1987

Rod cells are sensitive to all light, larger cone cells are sensitive to
specific colors. We have three types of cones:
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VISUAL SYSTEM

Signal passes from the retina to the primary (V1) visual cortex, which
has neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!



EDGE DETECTORS IN CATS

Huber + Wiesel, 1959: “Receptive fields of single neurones in the cat's
striate cortex.” Won Nobel prize in 1987.

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Different neurons fire when the cat is presented with stimuli at
different angles. Cool video at
https://www.youtube.com/watch?v=0GxVfKIgX5E.

"What the Frog’s Eye Tells the Frog's Brain”, Lettvin et al. 1959. Found
explicit edge detection circuits in a frogs visual cortex.


https://www.youtube.com/watch?v=OGxVfKJqX5E

EXPLICIT FEATURE ENGINEERING
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- Convolve image with edge detection filters at many

different angles.

State of the art until 13 years ago:

- Hand engi




CONVOLUTIONAL NEURAL NETWORKS

Neural network approach: Learn the parameters of the convolution
filters based on training data. W, U, - Yy

Convolutional Layer

(28x28x1) (24 x24xn1) (12x12xnl)

First convolutional layer involves n convolution filters Wy, ..., W,
Each is small, e.g. 5 x 5. Every entry in W; is a free parameter: ~ 25-q
parameters to learn.

Produces g matrices of hidden variables: i.e. a tensor with depth q.

(L Each output in the tensor is processed with a non-linearity. Most
commonly a Rectified Linear Unity (ReLU): x = max(X, 0).



WEIGHT SHARING

Convolutional layers can be viewed as fully connected layers
with added constraints. Many of the weights are forced to 0
and we have(weight sharing)constraints.

\4| b V‘(,(*-L (\‘9( XI +U'VKVM3K;

@ W, - rdal k12, X, 49K

Weight sharing needs to be accounted for when running 5
backprop/gradient descent.



CONVOLUTIONAL NEURAL NETWORKS

25 797
For a28 x 28 imagp like MNIST, a fully connected layer that extracts

th fi resasg,5x5 filters would require

(éS -28-24-24)-g ¥ parameters. Compare to 254.

By “baking in” knowledge about what type of features matter, we
greatly simplify the network. Lo Y\

\11;.1 . .,L/O"'g
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Convolutional Layer

n1 channels nl channels
(24 x24xn1) (12x12 xn1)

INPUT
(28x28x1)

13



POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

(28 x28x1) (24 x24xn1) (12x12xnl)

Most common approach is .
DA PPoS:

14



POOLING AND DOWNSAMPLING

Average Pooling

2 28 | 184 39;15 28 | 184
0 (1-80 70 | 38 100 |) 70 | 38
—
12 i 2 12 | 12 i 2
12 12J|L45 6 12|12 | 45 | 6
2x2 2x2
pool size pool size
100 184\ & 36\ 80
/.
k12 45 12 [ 15
\

T
Reduces number of variables.

Helps “smooth” result of
convolutional filters.

Improves shift-invariance.
-
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OVERALL NETWORK ARCHITECTURE

Conv_1
Convolution
(5 x5) kernel
valid padding

INPUT
(28x28x1)

fc_3
Fully-Connected
Neural Network
RelU activation

Conv_2

Convolution
(5 x 5) kernel
valid padding

Max-Pooling Max-Pooling

(2x2)

n1channels nl channels n2 channels n2 Cheaa

(24 x24xn1) (12x12xn1) (8x8xn2) (4x4xn2)

——

fc_4

Fully-Connected
Neural Network

/_M

(with
dropout)

n3 units

@0

1} "{jy. 1
2

' K]

ouTPUT

Each layer contains a 3D tensor of variables. Last few layers

are standard fully connected layers.
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UNDERSTANDING LAYERS

What type of convolutional filters do we learn from gradient descent?
Lots of edge detectors in the first layer!
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Other layers are harder to understand but roughly hidden variables

Raw data Low-level features Mid-level features High-level features
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UNDERSTANDING LAYERS

Go through dataset and find the inputs that most “excite” a
given neuron h. le. for which |h(x)| is largest.

a1



UNDERSTANDING LAYERS

Alternative approach: Solve the optimization problem
maxx |[h(x)| e.g. using gradient descent.

19



UNDERSTANDING LAYERS

Early work had some interesting results.

Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

Flamingo

“Understanding Neural Networks Through Deep Visualization”, Yosinski,

Clune, Nguyen, Fuchs, Lipson.
20



UNDERSTANDING LAYERS

There has been a lot of work on improving these methods by
regularization. l.e. solve maxy |h(X)] here g constrains x to
look more like a “natural image”.

If you are interested in learning more on these techniques, there is a
great Distill article at:
https://distill.pub/2017/feature-visualization/.

21


https://distill.pub/2017/feature-visualization/

UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

B0 <

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)
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UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

A

Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

General obervation: Depth more important than width. Alexnet 2012

had(s layersymodern convolutional nets can have 100s.
B 23



TRICKS OF THE TRADE

Beyond techinques discussed for general neural nets (back-prop,
batch gradient descent, adaptive learning rates) training deep
networks requires a lot of “tricks”.

- Batch normalization (accelerate training).

- Dropout (prevent oyer-fitting)

- Residual connections (accelerate training, allow for more depth
-100s of layers).

- Data augmentation.

And deep networks require lots of training data and lots of time.

24



BATCH NORMALIZATION

Start with any neural network architecture:

X
Wi
For input X, (’ b
)
wx+b”

where w, b, and s are weights, bias, and non-linearity. 25



BATCH NORMALIZATION

o \n(v-'(f-—“t"“'\““‘r‘b’ ..3“_-_ \.)17*4’\.9
s a function of the input x. We can write it as z(x). Consider
the mean and standard deviation of the hidden variable over
our entire dataset xq...,Xn:

Just as normalization (mean centering, scaling to unit variance)
is sometimes used for input features, batch-norm applies
normalization to learned features.

26



BATCH NORMALIZATION

Can add a batch normalization layer after any layer:

class 1
class 2

class 3

class 4

g="&
— 0'/
u=-s(0)

Has the effect of mean-centering/normalizing z. Typically we actualy
allowu =s(y-u +£) for learned parameters v and c.
~

27



BATCH NORMALIZATION

Proposed in 2015: “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, loffe, Szegedy.

- = = Inception
- - BN-Baseline
BN-x5
BN-x30

+ BN-x5-Sigmoid
4 Steps to match Inception

) k 5M oM 15M 20m 25M 3om
Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Doesn't change the expressive power of the network, but allows for
significant convergence acceleration. It is not yet well understood
why batch normalizition speeds up training.
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DROPOUT

Proposed in 2012: “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”, Srivastava, Hinton, Krizhevsky, Sutskever,
Salakhutdinov:

(a) Standard Neural Net

During training, ignore a random subset of neurons during each
gradient step. Select each neuron to be included independently with
probability p (typically p ~ .5). During testing, no dropout is used.

29



DROPOUT

- Only used on fully connected layers.

- Simultaneously performs model regularization (model
simplification) and model averaging.

- Has become less important in modern CNNs (convolutional
neural nets) as the final fully connected layers become less
important. But still a very helpful technique to know about!

For example, will be very helpful in avoiding overfitting in the demo
on convolutional nets, since we train a pretty shallow network with
the last layer doing a lot of the heavy lifting.

30



DATA AUGMENTATION

Great general tool to know about. Main idea:

- More training data typically leads to a more accurate model.

- Artificially enlarge training data with simple transformations.

Take training images and randomly shift, flip, rotate, skew, darken,
lighten, shift colors, etc. to create new training images. Final
classifier will be more robust to these transformations.

31



DEEP LEARNING TRICKS

Try these techinques out in demo_cnn_classifier.ipynb
on CIFAR-10 dataset.

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck 32



DEEPER AND DEEPER, BIGGER AND BIGGER

After AlexNet (8 layers, 60 million parameters) achieved start of
the art performance on ImageNet, progress proceeded rapidly:

Classification: ImageNet Challenge top-5 error

152 layers
A
\

\
\ 16.4
\
\
\ 11.7
22 layers 19 layers
\ 6.7 7.3
3.57 ] layers 8 Iayers shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

33



GENERALIZATION FOR NEURAL NETWORKS

Even with weight sharing, convolution, etc. modern neural
networks typically have 100s of millions or billions of
parameters. And we often don't train them with regularization.
Intuitively we might expect them to overfit to training data.

\

1 —nail I-” 2 |I'

34



GENERALIZATION FOR NEURAL NETWORKS

In fact, we now know that modern neural nets easily overfit to
training data. Papers have shown that they can fit large vision
data sets with random class labels to perfect accuracy.

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt

M Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht' Oriol Vinyals

University of California, Berkeley Google DeepMind

brecht@berkeley.edu vinyals@google.com

But we don't always see a large gap between training and test
error. Don't take this to mean overfitting isn’t a problem when
using neural nets! It's just not always a problem. For example,
overfitting is common when using fully connected networks.
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GENERALIZATION FOR NEURAL NETWORKS

We even see this lack of overfitting for MNIST data. See
keras_demo_mnist.ipynb that | posted on the website:

100

098

accuarcy

0.88 — training accuracy
test accuracy

0 5 10 15 20 25 30
epochs

Overparameterization seems to be part of the story.

——
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GENERALIZATION FOR NEURAL NETWORKS

Growing realization is that this phenomena doesn't only apply to

neural nets — it can also be true for overparameterized polynomials.

8 Degrees of Freedom

20 Degrees of F

redom

17N @fw

(TN W1

-4 -2 0 2

4

80 Degrees of Freedom
D esE=

2 4

D 41 Ll !

-4 -2 0 2

The choice of training algo (e.g. gradient descent) seems important.

4

2 4
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DOUBLE DESCENT

We sometimes see a “double descent curve” for these models. Test
error is worst for “just barely” overparameterized models, but gets
better with lots of overparameterization.

Error

Test Error

Training Error

Complexity

Caveat: We don't usually see this same curve for neural networks,
but maybe gives some hint about what is going on. 38



OVERFITTING IN NEURAL NETS

Take away: Modern neural network overfit, but still seem fairly

robust. Perform well on any new test data we throw that them.
N

QXQJ 9= -

Or do they? /’)
m«ﬂ/

/
Intriguing properties of neural networks

Christian Szegedy Wojciech Zaremba Ilya Sutskever Joan Bruna
Google Inc. New York University Google Inc. New York University
Dumitru Erhan Ian Goodfellow Rob Fergus
Google Inc. University of Montreal New York University

Facebook Inc.
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ADVERSARIAL EXAMPLES



ADVERSARIAL EXAMPLES

Main discovery: It is possible to find imperceptibly small
perturbations of input images that will fool deep neural
networks. This seems to be a universal phenomenon.

40



ADVERSARIAL EXAMPLES

\qué(@/m}/9> r xLS)x

How to find “good” perturbations: /)Aus,
Fix modelf@input.)q(,, correct label y. Consider the loss ¢(0, x, ).

Solve the optimization problem:

(max £(6,x 4—@)/) )

9,]|8]|<e
e —

Can be solved using gradient descent! We just need to
compute the derivative of the loss with respect to the image
pixels. Backprop can do this easily.

41



ADVERSARIAL EXAMPLES

We will post a lab where you can find your own adversarial
examples for a model called Resnet18. The entire model +

weights are available pretrained through PyTorch, so we do not
need to train it ourselves.

nput Image Noisy Image

. i5 &
Predmt-un(dawsy!

Probability: 0.6289699673652649

Probability: 0 7903719 37410706
=

42



TRANSFER LEARNING



TRANSFER LEARNING

State-of-the-art supervised learning models like neural
networks learn very good features.

But they require lots and lots of data. Imagenet has 14 million
unlabeled images. Mostly of everyday objects.

43



ONE-SHOT LEARNING

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

Ny, y‘/

quaffle bludger snitch

Example: Classify images of different Quidditch balls.

4



ONE-SHOT LEARNING

Real example: Classify images of insects for use in agricultural
applications in new localities.

Zero-Shot Insect Detection via Weak Language Supervision

(Benjamin Feuer,' Ameya Joshi,'/Minsu Cho,' Kewal Jani,! Shivani Chiranjeevi, > Zi Kang Deng, *
Aditya Balu, > Asheesh K. Singh, > Soumik Sarkar, > Nirav Merchant, 3 Arti Singh, 2
Baskar Ganapathysubr ian, 2 Chinmay Hegde !

! New York University —_ =

2 Jowa State University
3 University of Arizona

Aedes Vexans

Creatonotos Gangis Daphnis Neril

Hypena Deceptalis ~ Pyralis Farinalis

45



ONE-SHOT LEARNING

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

(Major question in ML: How? Can we design ML algorithms
which can do the same?

46



TRANSFER LEARNING

Transfer knowledge from one task we already know how to
solve to another.

For example, we have learned from past experience that balls
used in sports have consistent shapes, colors, and sizes. These
features can be used to distinguish balls of different type.

47



FEATURE LEARNING

Examples of possible high-level features a human would learn:

roundness

size relative
to human
hand

Features



FEATURE LEARNING

If these features are highly informative (i.e. lead to highly
separable data) few training examples are needed to learn.

g

yellowish color

<{roundness
_/

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.

49



TRANSFER LEARNING

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

224x224x3 224x224x64

low-level
112412 ¢ 125 features

9 convolution+ReLU
max pooling
fully nected +RelU
softmax

|
X ERM Z ERK VER

—

Even if we can’t put into words what each feature in z means... ¢,



TRANSFER LEARNING

This is now a common technique in computer vision:
1. Download network trained on large image classification dataset
(e.g. Imagenet).

2. Extract features z for any new image x by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
(github.com/thatbrguy/Object—Detection—Quidditch}

51


github.com/thatbrguy/Object-Detection-Quidditch

UNSUPERVISED FEATURE LEARNING

Transfer learning: Lots of labeled data for one problem makes
up for little labeled data for another.

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.

52



SUPERVISED VS. UNSUPERVISED LEARNING

- Supervised learning: All input data examples come with
targets/labels. What machines have been really good at
for the past 10 years.

- Unsupervised learning: No input data examples come
with targets/labels. Interesting problems to solve include
clustering, anomaly detection, semantic embedding, etc.

- Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human
babies are really good at, and we have recently made
machines a lot better at.

Next few lectures: How do we learn interesting features
without access to labels?

53



AUTOENCODER

First of many simple but clever ideas: If we have inputs
X1,...,Xn € RY but few or no targets y1, ..., ¥y, just make the
inputs the targets.

- Let fo :@ RY be our model.

- Letly be a loss function. E.g. squared loss:
Lo(x) = I|x — fo(X) 3

- Train model: ,6; = ming > 1, Lo(X).

—<T "2

If fo is @ model that incorporates feature learning, then these
features can be used for supervised tasks.

fo is called an autoencoder. It maps input space to input
space (e.g. images to images, french to french, PDE solutions to
PDE solutions).

54



AUTOENCODER

Two examples;(of autoencoder architectures:

®

55



AUTOENCODER

Important property of autoencoders: no matter the architecture,
there must always be a bottleneck with fewer parameters than the
input. The bottleneck ensures information is “distilled” from
low-level features to high-level features. S

E Hidden ayers Output ayer

,,,,,

vvvvvv
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AUTOENCODER

Separately name the mapping from input to bottleneck and from
bottleneck to output.

Encoder: e : RY — RF Decoder: d : RY — RF

Input layer Hidden layers Output layer

) 7

A V2 \ V4

J

\

Often symmetric, but does not have to be. =



AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:
()

) |l

_nwgiﬁ
Lk L

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 58


https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as supervised
methods for feature extraction, but they require no labeled
data.’

There are a lot of cool applications of autoencoders beyond
feature learning!

- Learned data compression.

- Denoising and in-painting.

- Data/image synthesis.

"Recent progress on self-supervised learning achieves the best of both
worlds - state-of-the-art feature learning with no labeled data.

59



AUTOENCODERS FOR DATA COMPRESSION

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

) )
Encode e Decode d
Given input x, we can completely recover f(x) from z = e(x). z

typically has many fewer dimensions than x and for a typical

image f(x) will closely approximate x. -



AUTOENCODERS FOR IMAGE COMPRESSION

The best lossy compression algorithms are tailor made for specific
types of data:

- JPEG 2000 for images
- MP3 for digital audio.
- MPEG-4 for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.

TANDON SCHOOL §
OF ENGINEERING

nic Institute
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AUTOENCODERS FOR IMAGE COMPRESSION

With enough input data, autoencoders can be trained to find this
structure on their own.

o x

JPEG 2000, 6037 bytes (0171 bipx), PSNR: 23.47 dB, MS-SSIM: 0.9036

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than

“hand-tuned” algorithms like JPEG. 02



AUTOENCODERS FOR IMAGE CORRECTION

Encoder —>E—» Decoder -2

Denoised image

o®

Train autoencoder on uncorrupted images (unsupervised). Pass
corrupted image x through autoencoder and return f(x) as repaired
result.

63



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Why does this work?

compressed
representation

Consider 128 x 128 x 3 images with pixels values in 0,1...,255.

How many possible images are there?

If z holds k values in 0,.1,.2,...,1, how many unique images w
can be output by the autoencoder function f?

64



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images J

For a good (accurate, small bottleneck) autoencoder, S will
closely approximate Z. Both will be much smaller than A.
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AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images J

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

66



AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

- Option 1: Draw each pixel value in x uniformly at random.

Draws a random image from A.

- Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

m

How do we randomly select an image from S§?

67



AUTOENCODERS FOR DATA GENERATION

How do we randomly select an image x from S?

compressed
representation

Randomly select code z, then set x = d(z).

%L ots of details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.

68



AUTOENCODERS FOR DATA GENERATION DEMO

We will upload a demo on autoencoder based image

generation for the "Fashion MNIST” data set:

P T A <t s s s <2 0D Y
LTS I I I e < e s s 50
|

Latent Space Dimension 2

69



PRINCIPAL COMPONENT ANALYSIS



PRINCIPAL COMPONENT ANALYSIS

Deeper dive into understanding a simple, but powerful
autoencoder architecture. Specifically we will view principal
component analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often
the go-to baseline method for feature extraction and
dimensionality reduction.

Very important outside machine learning as well.

70



Consider the simplest possible autoencoder:

Input layer Hidden layer

“bottleneck”

— < ——+

- One hidden layer. No non-linearity. No biases.

- Latent space of dimension k.

- Weight matrices are Wy € R9*f and W, e RFf*9,

Output layer

PRINCIPAL COMPONENT ANALYSIS

71



PRINCIPAL COMPONENT ANALYSIS

Given input x € RY, what is f(x) expressed in linear algebraic

terms?
S ;
X w, = f(x)
w, decoder
encoder

f(X)T = XTW1 W2
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PRINCIPAL COMPONENT ANALYSIS

d k

—
encoder l
d
[ - \
Z W, = ‘ f(X)
k

decoder

Encoder: e(x) = x"W;. Decoder: d(z) = zW,

73



PRINCIPAL COMPONENT ANALYSIS

Given training data set x;, ..., Xp, let X denote our data matrix.
Let X = XW;W,.
d k d d
{—Jﬁ r_l_\l . \ [ . 1
X W, f(x1)
o = 0x,)
X = X

Xﬂ f(xn)
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FROBENIUS NORM

Natural squared autoencoder loss: Minimize L(X,X) where:

ZHX'— x;)II3
= ZZ(X/U] -

i=1 j=1
= |IX = X||?

Goal: Find W4y, W, to minimize the Frobenius norm loss
X — X||2 = ||X — XW;W, |2 (sum of squared entries).
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LOW-RANK APPROXIMATION

Rank in linear algebra:

+ The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

- The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

- Column rank = row rank = rank.

=~
o
—o

% w,
)
2w, = X
Zn
Xisa . It only has rank k for k < d.
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LOW-RANK APPROXIMATION

Principal component analysis is the task of finding W4, W5,
which amounts to finding a rank k matrix X which
approximates the data matrix X as closely as possible.

Finding the best Wy and W, is a non-convex problem. We could
try running an iterative method like gradient descent anyway.
But there is also a direct algorithm!

77



SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

d left singular vectors  singular values right singular vectors
g,

0,
X = U 3 VT

Og

n gy

WhereU'U=1,VIV=1l,and oy >0, >...04> 0. l.e. Uand V are
orthogonal matrices.

This is called the singular value decomposition.

Can be computed in O(nd?) time (faster with approximation algos). s



ORTHOGONAL MATRICES

Let us,...,u, € R" denote the columns of U. l.e. the left
singular vectors of X.

U’ u =,

luillz = u

79



SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values right singular vectors

A

0,
Oy

Xk = Uk zk

Eckart-Young-Mirsky Theorem: For any k < d, X, = U,?Zkvl s
the optimal k rank approximation to X:
Xp= argmin ||X—X|Z

X with rank < k
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SINGULAR VALUE DECOMPOSITION

Claim: X = UpX V], = XV, V],

So for a model with k hidden variables, we obtain an optimal

autoencoder by setting Wy = Vi, W, = V. f(x) = x"V,,V]. o



PRINCIPAL COMPONENT ANALYSIS

k d d
—— ! ) [ ]
Z1 VkT
Z . .
2 k principal
components
Z=XV, = X
Zn
n loading
vectors

Usually x’s columns (features) are mean centered and
normalized to variance 1 before computing principal

components. 8



SINGULAR VALUE DECOMPOSITION

Computing the SVD.

- Full SVD:
U,S,V = scipy.linalg.svd(X).

Runs in O(nd?) time.

- Just the top k components:
U,S,V = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndR) time.
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CONNECTION TO EIGENDECOMPOSITION

Recall that for a matrix M € RP*P, q is an eigenvector of M if
Agq = Mq for any scalar A.

- U's columns (the left singular vectors) are the
orthonormal eigenvectors of XX

- V's columns (the right singular vectors) are the
orthonormal eigenvectors of X'X.

< o2 = \(XXT) = \(XTX)

Exercise: Verify this directly. This means you can use any
eigensolver for computing the SVD.
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PCA APPLICATIONS

Like any autoencoder, PCA can be used for:

- Feature extraction
- Denoising and rectification
- Data generation

- Compression

- Visualization
-- .... :‘. :
denoising ; ; .
synthetic data generation
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LOW RANK APPROXIMATION

Error vs. R is dictated by X's singular values. The singular
values are often called the spectrum of X.

d
IX = Xellz = of.
ik

IX - X3 lI%

0 100 200 300 400 500 600 700 800
rank k
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COLUMN REDUNDANCY

Colinearity of data features leads to an approximately

low-rank data matrix.

bathrooms

sq.ft.|

floors| Ii

bedrooms
home 1 2
home 2 “
home n 5

85

1800
2700

3600

sale price ~ 1.05 - list price.
property tax ~ .01 - list price.
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COLUMN REDUNDANCY

Sometimes these relationships are simple, other times more
complex. But as long as there exists linear relationships
between features, we will have a lower rank matrix.

. . 1
yard size ~ lot size — 5 square footage.

. 1 1
cumulative GPA & -year 1 GPA + 5 vear 2 GPA

1 1
+ Z-year3 GPA + Z-yeam GPA.
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LOW-RANK INTUITION

Two other examples of data with good low-rank

approximations:

1. Genetic data:

single nucleotide polymorphisms (SNPs) loci

144 312
individual 1 A
individual 2
individual n A

436

800

943

2. “Term-document” matrix with bag-of-words data:

doc_1

doc_n

on /09’7/)%"@ %y %o
0o|j0f1|0|0]|1 1|00
0o|0fo0 1/0(1|0|0]|0O
1 1|0 1/10(0|0|1]|0
ojofojofoj|o0|0|1 1
i1(fojo0oj0|O0|O0O|O0]1 1
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EXAMPLES OF LOW-RANK STRUCTURE

SNPs matrices tend to be very low-rank.

single nucleotide polymorphisms (SNPs) loci
144 312 436 800 943
individual1 A
individual 2

individual n A A

Most of the information in x is explained by just a few latent
variable.

X 4 X
A2 2 4 3 o) e Lo —

encode decode
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EXAMPLES OF LOW-RANK STRUCTURE

“Genes Mirror Geography Within Europe” — Nature, 2008.

X z
1 2 2 4 3 1| w5 .21 e——)p |

encode decode

In data collected from European populations, latent variables
capture information about geography.

z[1] ~ relative north-south position of birth place

z[2] ~ relative east-west position of birth place

Individuals born in similar places tend to have similar genes.
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PCA FOR DATA VISUALIZATION

“Genes Mirror Geography Within Europe” — Nature, 2008.

Genetic data can be nicely visualized using PCA! Plot each data
example x using two loading variables in z. &



PRINCIPAL COMPONENTS

For more complex data, what do principal components and
loading vectors look like?
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MNIST principal components:

k principal
components
k d d
Il A A
r 1 [ | [ 1
%
%
Z=XV,
zn
n loading
vectors

Often principal components are difficult to interpret

PRINCIPAL COMPONENTS
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LOADING VECTORS

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which
recombine the top k principal components vy,..., Vv, to
approximately reconstruct x.

k d
A A

@00 E -
X v, v, A A

Provide a short “finger print” for any image x which can be used to

reconstruct that image. o



LOADING VECTORS: SIMILARITY VIEW

For any x with loading vector z, z; is the inner product similarity
between x and the it" principal component v;.

k d
r . 1 [ 0 IV
X = Z I:' :1
=M
k principal
components
Z=XV,
n loading
vectors

z1=<m,n) zz=(m,m) z3=<g,@)...

97



LOADING VECTORS: PROJECTION VIEW

So we approximate X &= X = (X, V1) - Vi + ... + (X, Vg) - Vp.

Zy'Vq

Since vq,...,Vp are orthonormal, this operation is a projection
onto first k principal components.

l.e. we are projecting x onto the k-dimensional subspace

spanned by vq,...,Vp.
98



LOADING VECTORS: PROJECTION VIEW

For an example x;, the loading vector z; contains the
coordinates in the projection space:
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SIMILARITY PRESERVATION

Important takeaway for data visualization and more: Latent
feature vectors preserve similarity and distance information in
the original data.

Let X;...,X, € R? be our original data vectors, z; . ..,z, € RF
be our loading vectors (encoding), and %; ..., %, € RY be our
low-rank approximated data.

We have:

o2 2
1Xill2 = [|zill2
<)?H)'Zj> = <Z,‘,Zj>

1% — %12 = llz; — zlI3
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SIMILARITY PRESERVATION

Conclusion: If our data had a good low rank approximation, we
expect that:

x5 ~ [|zilI3
<Xi7 X}> = <Zi7 Z}>

X = X112 ~ llzi = zl2

When we come back from break, will use this to motivate
semantic embeddings.
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