
CS-GY 6923: Lecture 11
Backpropagation, Convolutional Neural
Networks, Adversarial Examples

NYU Tandon School of Engineering, Prof. Christopher Musco
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NEURAL NETWORK RECAP

Neural networks are a very general family of functions that
combine linear “layers” with non-linear activiation functions.
Can we used for regression or classification.
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NEURAL NETWORK EQUATIONS

Neural network math:

We have one parameter for every edge in the diagram (a
weight) and one for every node (a bias).
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NEURAL NETWORK EQUATIONS

Usually think about the weights as organized into matrices,
one per layer.
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NEURAL NETWORK EQUATIONS

Usually think about the weights as organized into matrices,
one per layer.

This is also how computations are arranged: very fast to
compute matrix-multiplications on GPUs.
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MAIN IDEA OF NEURAL NETWORKS

Neural networks simultaneously learn a feature
transformation, and how to combine features for prediction.
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TRAINING NEURAL NETWORKS

Let f(θ, x) be our neural network.

Goal: Given training data (xࠀ, yࠀ), . . . , (xn, yn) minimize the loss

L(θ) =
n∑

i=ࠀ

L (yi, f(θ, xi)) ,

where L is, e.g., binary cross-entropy (logistic) loss for
classification, ℓࠁ loss for regression, etc.
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GRADIENT OF THE LOSS

Approach: minimize the loss by using stochastic gradient
descent.

So we can focus on computing the gradient for a single
training example (x, y):

∇L (y, f(θ, x)) .
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MULTIVARIABLE CHAIN RULE

Let y(x), z(x),w(x) be functions of x and let f(y, z,w) be a
function of y, z,w.

df
dx

=
df
dy

· dy
dx

+
df
dz

· dz
dx

+
df
dw

· dw
dx
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GRADIENT OF THE LOSS

Applying chain rule each partial derivative of the loss:

∇L (y, f(θ, x)) = ∂L
∂f(θ, x) ·∇f(θ, x)

Binary cross-entropy example:

L (y, f(θ, x)) = −y log(f(θ, x))− −ࠀ) y) log(ࠀ− f(θ, x))
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GRADIENT OF THE LOSS

We have reduced our goal to computing ∇f(θ, x), where the
gradient is with respect to the parameters θ.

Backpropagation: efficient way to compute ∇f(θ, x). It derives
its name because we compute gradient from back to front:
starting with the parameters closest to the output of the
neural net. ࠀࠀ

oo:O



BACKPROP NOTATION

Notation for few slides:
• a,b, . . . , z are the node names, and denote values at the nodes
after applying non-linearity.

• ā, b̄, . . . , z̄ denote values before applying non-linearity, but after
adding bias.

• Wi,j is the weight of edge from node i to node j.

• s(·) : R → R is the non-linear activation function.

• βj is the bias for node j.

Example: h = s(h̄) = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh)
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BACKPROP NOTATION

Example: h = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh) and

h̄ = c ·Wc,h + d ·Wd,h + e ·We,h + βh.
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BACKPROP EXAMPLE

Goal: Compute the gradient ∇f(θ, x), which contains the partial
derivatives with respect to every parameter:

• ∂z/∂βz
• ∂z/∂Wf,z, ∂z/∂Wg,z, ∂z/∂Wh,z

• ∂z/∂βf, ∂z/∂βg, ∂z/∂βh
• ∂z/∂Wc,f, ∂z/∂Wc,g, ∂z/∂Wc,h

• ∂z/∂Wd,f, ∂z/∂Wd,g, ∂z/∂Wd,h

•
...

• ∂z/∂Wa,c, ∂z/∂Wa,d, ∂z/∂Wa,e

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.
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BACKPROP EXAMPLE

Step 1: Forward pass.

• Using current parameters, compute the output z by
moving from left to right.

• Store all intermediate results:

c̄, d̄, ē, c,d, e, f̄, ḡ, h̄, f,g,h, z̄, z.
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BACKPROP EXAMPLE

Step 1: Forward pass.

c̄ = Wa,c · a+Wb,c · b+ βc c = s(c̄)
d̄ = Wa,d · a+Wb,d · b+ βd d = s(d̄)
ē = Wa,e · a+Wb,e · b+ βe e = s(ē)
f̄ = Wc,f · c+Wd,f · d+We,f · e+ βf f = s(̄f)
...
z̄ = Wf,z · f+Wg,z · g+Wh,z · f+ βz z = s(z̄)

Question: What is runtime in terms of # of parameters P? ࠅࠀ
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BACKPROP EXAMPLE

Step 2: Backward pass.

• Using current parameters and computed node values,
compute the partial derivatives of all parameters by
moving from right to left.
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BACKPROP EXAMPLE

Step 2: Backward pass. Deepest layer.

∂z
∂βz

=
∂z̄
∂βz

· ∂z
∂z̄

= ࠀ · s′(z̄)

∂z
∂Wf,z

=
∂z̄

∂Wf,z
· ∂z
∂z̄

= f · s′(z̄)

∂z
∂Wg,z

=
∂z̄

∂Wg,z
· ∂z
∂z̄

= g · s′(z̄)

∂z
∂Wh,z

=
∂z̄

∂Wh,z
· ∂z
∂z̄

= h · s′(z̄)
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BACKPROP EXAMPLE

Step 2: Backward pass.

∂z
∂f

=
∂z̄
∂f

· ∂z
∂z̄

= Wf,z · s′(z̄)

∂z
∂g

=
∂z̄
∂g

· ∂z
∂z̄

= Wg,z · s′(z̄)

∂z
∂h

=
∂z̄
∂h

· ∂z
∂z̄

= Wh,z · s′(z̄)

Compute partial derivatives with respect to nodes, even though
these are not used in the gradient. ࠈࠀ
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BACKPROP EXAMPLE

Step 2: Backward pass.

∂z
∂ f̄

=
∂z
∂f

· ∂f
∂ f̄

=
∂z
∂f

· s′(̄f)

∂z
∂ḡ

=
∂z
∂g

· ∂g
∂ḡ

=
∂z
∂g

· s′(ḡ)

∂z
∂h̄

=
∂z
∂h

· ∂h
∂h̄

=
∂z
∂h

· s′(h̄)

And for “pre-nonlinearity” nodes.
߿ࠁ
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BACKPROP EXAMPLE

Step 2: Backward pass. Next layer.

∂z
∂βf

=
∂z
∂ f̄

· ∂ f̄
∂βf

=
∂z
∂ f̄

· ࠀ

∂z
∂Wc,f

=
∂z
∂ f̄

· ∂ f̄
∂Wc,f

=
∂z
∂ f̄

· c

∂z
∂Wd,f

=
∂z
∂ f̄

· ∂ f̄
∂Wd,f

=
∂z
∂ f̄

· d

∂z
∂We,f

=
∂z
∂ f̄

· ∂ f̄
∂We,f

=
∂z
∂ f̄

· e
ࠀࠁ
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BACKPROP EXAMPLE

Step 2: Backward pass. Next layer. Use multivariate chain rule.

∂z
∂c

=
∂z
∂ f̄

· ∂ f̄
∂c

+
∂z
∂ḡ

· ∂ḡ
∂c

+
∂z
∂h̄

· ∂h̄
∂c

=
∂z
∂ f̄

·Wc,f +
∂z
∂ḡ

·Wc,g +
∂z
∂h̄

·Wc,h

∂z
∂d

=
∂z
∂ f̄

·Wd,f +
∂z
∂ḡ

·Wd,g +
∂z
∂h̄

·Wd,h

∂z
∂e

=
∂z
∂ f̄

·We,f +
∂z
∂ḡ

·We,g +
∂z
∂h̄

·We,h
ࠁࠁ
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BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let vi be a vector containing the value of all nodes j in layer i.

vࠂ =
[
z
]

vࠁ =

⎡

⎢⎣
f
g
h

⎤

⎥⎦ vࠀ =

⎡

⎢⎣
c
d
e

⎤

⎥⎦

Let v̄i be a vector containing j̄ for all nodes j in layer i.

v̄ࠂ =
[
z̄
]

v̄ࠁ =

⎡

⎢⎣
f̄
ḡ
h̄

⎤

⎥⎦ v̄ࠀ =

⎡

⎢⎣
c̄
d̄
f̄

⎤

⎥⎦

Note: vi = s(v̄i), where s is applied entrywise.
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BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let δi be a vector containing ∂z/∂j for all nodes j in layer i.

δࠂ =
[
ࠀ
]

δࠁ =

⎡

⎢⎣
∂z/∂f
∂z/∂g
∂z/∂h

⎤

⎥⎦ δࠀ =

⎡

⎢⎣
∂z/∂c
∂z/∂d
∂z/∂e

⎤

⎥⎦

Let δ̄i be a vector containing ∂z/∂ j̄ for all nodes j in layer i.

δ̄ࠂ =
[
∂z/∂z̄

]
δ̄ࠁ =

⎡

⎢⎣
∂z/∂ f̄
∂z/∂ḡ
∂z/∂h̄

⎤

⎥⎦ δ̄ࠀ =

⎡

⎢⎣
∂z/∂c̄
∂z/∂d̄
∂z/∂ē

⎤

⎥⎦

Note: δ̄i = s′(v̄i)× δi where × denotes entrywise multiplication.
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BACKPROP LINEAR ALGEBRA

Let Wi be a matrix containing all the weights for edges between layer
i and layer i+ .ࠀ

W߿ =

⎡

⎢⎣
Wa,c Wb,c

Wa,d Wb,d

Wa,e Wb,e

⎤

⎥⎦ Wࠀ =

⎡

⎢⎣
Wc,f Wd,f We,f

Wc,g Wd,g We,g

Wc,h Wd,h We,h

⎤

⎥⎦ Wࠁ =
[
Wf,z Wg,z Wh,z

]

ࠄࠁ
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BACKPROP LINEAR ALGEBRA

Claim 1: Node derivative computation is matrix multiplication.

δi = WT
i δ̄i+ࠀ

What is the computational complexity if Wi ∈ Rk×m?

ࠅࠁ

01km)f) U t i m e

= - -

- -



BACKPROP LINEAR ALGEBRA

Let ∆i be a matrix contain the derivatives for all weights for edges
between layer i and layer i+ .ࠀ

ࠁ∆ =
[
∂z/∂Wf,z ∂z/∂Wg,z ∂z/∂Wh,z

]

ࠀ∆ =

⎡

⎢⎣
∂z/∂Wc,f ∂z/∂Wd,f ∂z/∂We,f

∂z/∂Wc,g ∂z/∂Wd,g ∂z/∂We,g

∂z/∂Wc,h ∂z/∂Wd,h ∂z/∂We,h

⎤

⎥⎦

߿∆ = . . .
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BACKPROP LINEAR ALGEBRA

Claim 2: Weight derivative computation is an outer-product between
the (i+ st(ࠀ derivative vector and the ith value vector.

∆i = viδ̄
T
i+ࠀ.

What is the computational complexity of computing the derivatives
for a single weight matrix Wi ∈ Rk×m?

ࠇࠁ
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BACKPROPAGATION

Takeaways:

• Backpropagation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

• Total computation cost is linear in the number of
parameters of the network to compute f(θ, x) and thus
∇L (y, f(θ, x)) for a single training example x, y.

• SGD can be run in O(P) time per iteration for a network
with P parameters.

• Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.
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CONVERGENCE

Least squares regression, logistic regression, SVMs, even all of
these with kernels lead to convex losses.

Neural networks very much do not...

߿ࠂ
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CONVERGENCE

But SGD still performs remarkably well in practice. Understanding
this phenomenon is still an open research question in machine
learning and optimization. Current hypotheses include:

• Initialization seems important (random uniform vs. random
Gaussian vs. Xavier initialization vs. He initialization vs. etc.)

• Randomization helps in escaping local minima.

• Many local minima are global minima?

• SGD finds “good” local minima?

ࠀࠂ
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AUTODIFF

Issue: Backpropagation + SGD is fast, but tedious to implement.

Typical to use automatic differentiation, which can compute
the gradient of pretty much any function you can code up.

def loss (W, b ) :
preds = pred ic t (W, b , inputs )
label_probs = preds * ta rge t s + ( ࠀ − preds ) * ( ࠀ − ta rge t s )
return −np . sum ( jnp . log ( label_probs ) )

from j a x import grad
W_grad , b_grad = grad ( loss , ( ߿ , ࠀ ) ) (W, b )
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LIBRARIES

May mature low-level libraries that handle neural network
representation, autodiff, have built in optimizers (SGD, ADAM,
etc.), etc.

ࠂࠂ



LIBRARIES

Higher-level libraries like Keras make it even easy to work with
this software. Tools for easily defining and building neural
networks with specific structure, tracking training, etc.

ࠃࠂ



LIBRARIES

Define:

Compile:

Train:

Last week we released two demos on working with Keras:
keras_demo_synthetic.ipynb and

keras_demo_mnist.ipynb

ࠄࠂ
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CONVOLUTIONAL NETS
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FEATURE EXTRACTION

Why do neural networks work so well?

Treat feature transformation/extraction as part of the learning
process instead of making this the users job.

But sometimes they still need a nudge in the right direction...

ࠅࠂ



BASIC FEATURE EXTRACTION

Sigmoid activation: Each hidden variable hi equals ࠀ
e−h̄i+ࠀ

where h̄i = wTx+ b for input x.

Other non-linearities yield similar features.

ࠆࠂ
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BASIC FEATURE EXTRACTION

If you combine more hidden variables, you can start building
more complex classifiers.

What about even more complex datasets?

ࠇࠂ
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BASIC FEATURE EXTRACTION

With more layers, complexity starts ramping up:

But there is a limit...

ࠈࠂ
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BASIC FEATURE EXTRACTION

Modern machine learning algorithms can differentiate
between images of African and Asian elephants:

The features needed for this task are far more complex then
we could expect a network to learn completely on its own
using combinations of linear layers + non-linearities.

߿ࠃ



CONVOLUTIONAL FEATURE EXTRACTION

Remainder of lecture: Understand why convolution is a
powerful way of extracting features from image data. Also
super valuable for

• Audio data.
• Time series data.

Ultimately, can build convolutional networks that already have
convolutional feature extraction pre-coded in.

Just one way of “nudging” the neural network in the right
direction. I.e., deciding on an architecture to match our specific
data. Different data requires different “nudges”.

ࠀࠃ
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MOTIVATING EXAMPLE

What features would tell use this image contains a stop sign?

Typically way of vectorizing an image chops up and splits up
any pixels in the stop sign. We need very complex features to
piece these back together again... ࠁࠃ
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CONVOLUTION

Objects or features of an image often involve pixels that are spatially
correlated. Convolution explicitly encodes this.

Definition (Discrete 1D convolutionࠀ)
Given x ∈ Rd and w ∈ Rk the discrete convolution x! w is a
d− k+ ࠀ vector with:

[x! w]i =
k∑

j=ࠀ

x(j+i−ࠀ)wj

Think of x ∈ Rd as long data vector (e.g. d = (ࠁࠀࠄ and w ∈ Rk as short
filter vector (e.g. k = .(ࠇ u = [x! w] is a feature transformation.
Thisࠀ is slightly different from the definition of convolution you might have
seen in a Digital Signal Processing class because w does not get “flipped”. In
signal processing our operation would be called correlation.
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1D CONVOLUTION
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MATCH THE CONVOLUTION
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2D CONVOLUTION

Definition (Discrete 2D convolution)
Given matrices x ∈ Rdࠀ×dࠁ and w ∈ Rkࠀ×kࠁ the discrete convolution
x! w is a (dࠀ − kࠀ + ×(ࠀ (dࠁ − kࠁ + (ࠀ matrix with:

[x! w]i,j =
kࠀ∑

ℓ=ࠀ

kࠁ∑

h=ࠀ

x(i+ℓ−ࠀ),(j+h−ࠀ) · wℓ,h

Again technically this is “correlation” not “convolution”. Should be
performed in Python using scipy.signal.correlate2d instead
of scipy.signal.convolve2d.

w is called the filter or convolution kernel and again is typically
much smaller than x.

ࠅࠃ

£ 1 - t /
-



2D CONVOLUTION

w =

⎡

⎢⎣
߿ ࠀ ࠁ
ࠁ ࠁ ߿
߿ ࠀ ࠁ

⎤

⎥⎦
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2D CONVOLUTION

w =

⎡

⎢⎣
߿ ࠀ ࠁ
ࠁ ࠁ ߿
߿ ࠀ ࠁ

⎤

⎥⎦
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ZERO PADDING

Sometimes “zero-padding” is introduced so x! w is dࠀ × dࠁ if x
is dࠀ × dࠁ.

Need to pad on left and right by (kࠀ − ࠁ/(ࠀ and on top and
bottom by (kࠁ − .ࠁ/(ࠀ

ࠈࠃ
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APPLICATIONS OF CONVOLUTION

Examples code will be available in
demo1_convolutions.ipynb.

Application 1: Blurring/smooth.

In one dimension:

• Uniform (moving average) filter: wi =
ࠀ
k for i = ,ࠀ . . . , k.

• Gaussian filter: wi ∼ exp(i−k/ࠁ)ࠁ/σࠁ for i = ,ࠀ . . . , k.

߿ࠄ
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SMOOTHING FILTERS

ࠀࠄ
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SMOOTHING FILTERS

Useful for smoothing time-series data, or removing
noise/static from audio data.

Replaces every data point with a local average.

ࠁࠄ



SMOOTHING IN TWO DIMENSIONS

In two dimensions:

• Uniform filter: wi,j =
ࠀ

kࠀkࠁ for i = ,ࠀ . . . , kࠀ, j = ,ࠀ . . . , kࠁ.

• Gaussian filter: wi ∼ exp
(i−kࠁ/ࠀ)

(ࠁ/ࠁj−k)+ࠁ
ࠁ

σࠁ for i = ,ࠀ . . . , kࠀ,
j = ,ࠀ . . . , kࠁ.

Larger filter equates to more smoothing.

ࠂࠄ
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SMOOTHING IN TWO DIMENSIONS

For Gaussian filter, you typically choose k " σࠁ to capture the
fall-off of the Gaussian.

Both approaches effectively denoise and smooth images.
ࠃࠄ
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SMOOTHING FOR FEATURE EXTRACTION

When combined with other feature extractors, smoothing at
various levels allows the algorithm to focus on high-level
features over low-level features.
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APPLICATIONS OF CONVOLUTION

Application 2: Pattern matching.

Slide a pattern over an image. Output of convolution will be
higher when pattern correlates well with underlying image.

ࠅࠄ
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LOCAL PATTERN MATCHING

Applications of local pattern matching:

• Check if an image contains text.
• Look for specific sound in audio recording.
• Check for other well-structured objects

ࠆࠄ



3D CONVOLUTION

Recall that color images actually have three color channels for
red, green, blues. Each pixel is represented by ࠂ values (e.g. in
,߿ . . . , (ࠄࠄࠁ giving the intensity in each channel.

,߿] ,߿ [߿ = black, ,߿] ,߿ [߿ = white, ,ࠀ] ,߿ [߿ = pure red, etc.

View image as 3D tensor:

ࠇࠄ
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3D CONVOLUTION

Definition (Discrete 3D convolution)
Given tensors x ∈ Rdࠀ×dࠁ×dࠂ and w ∈ Rkࠀ×kࠁ×kࠂ the discrete
convolution x! w is a
(dࠀ − kࠀ + ×(ࠀ (dࠁ − kࠁ + ×(ࠀ (dࠂ − kࠂ + (ࠀ tensor with:

[x! w]i,j,g =
kࠀ∑

ℓ=ࠀ

kࠁ∑

m=ࠀ

kࠂ∑

n=ࠀ
x(i+ℓ−ࠀ),(j+m−ࠀ),(g+n−ࠀ) · wℓ,m,n

ࠈࠄ
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APPLICATION 2: PATTERN MATCHING

More powerful patter matching in color images:

߿ࠅ
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APPLICATIONS OF CONVOLUTION

Application 3: Edge detection.

These are Dࠁ edge detection filter:

Wࠀ =
[
ࠀ ࠀ−

]
Wࠁ =

[
ࠀ
ࠀ−

]

ࠀࠅ
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APPLICATIONS OF CONVOLUTION

Sobel filter is more commonly used:

Wࠀ =

⎡

⎢⎣
ࠀ ߿ ࠀ−
ࠁ ߿ ࠁ−
ࠀ ߿ ࠀ−

⎤

⎥⎦ Wࠁ =

⎡

⎢⎣
ࠀ ࠁ ࠀ
߿ ߿ ߿
ࠀ− ࠁ− ࠀ−

⎤

⎥⎦

ࠁࠅ
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DIRECTIONAL EDGE DETECTION

Can define edge detection filters for any orientation.

ࠂࠅ

1¥
o o o O



EDGE DETECTION

How would edge detection as a feature extractor help you
classify images of city-scapes vs. images of landscapes?

ࠃࠅ



EDGE DETECTION

mean(EC) = ࠇ߿ࠀ. vs. mean(EL) = ࠂࠁࠀ.

The image with highest vertical edge response isn’t the city-scape.
ࠄࠅ
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EDGE DETECTION + PATTERN MATCHING

Feed edge detection result into pattern matcher that looks for
long vertical lines.

ࠅࠅ
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HIERARCHICAL CONVOLUTIONAL FEATURES

mean(VC) = ࠁࠅ߿. vs. mean(VL) = ࠃࠄ߿.

The image with highest average response to (edge detector) +
(vertical pattern) is the city scape.

mean(V) = VTβ where β = ,n/ࠀ] . . . , .[n/ࠀ So the new features in V
could be combined with a simple linear classifier to separate
cityscapes from landscapes.

ࠆࠅ



HIERARCHICAL CONVOLUTIONAL FEATURES

Hierarchical combinations of simple convolution filters are
very powerful for understanding images.

Edge detection seems like a critical first step.

Lots of evidence from biology.

ࠇࠅ



VISUAL SYSTEM

Light comes into the eye through the lens and is detected by an
array of photosensitive cells in the retina.

Rod cells are sensitive to all light, larger cone cells are sensitive to
specific colors. We have three types of cones:

ࠈࠅ



VISUAL SYSTEM

Signal passes from the retina to the primary (Vࠀ) visual cortex, which
has neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!
߿ࠆ



EDGE DETECTORS IN CATS

Huber + Wiesel, :ࠈࠄࠈࠀ “Receptive fields of single neurones in the cat’s
striate cortex.” Won Nobel prize in .ࠀࠇࠈࠀ

Different neurons fire when the cat is presented with stimuli at
different angles. Cool video at
https://www.youtube.com/watch?v=OGxVfKJqX5E.

”What the Frog’s Eye Tells the Frog’s Brain”, Lettvin et al. .ࠈࠄࠈࠀ Found
explicit edge detection circuits in a frogs visual cortex.

ࠀࠆ
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EXPLICIT FEATURE ENGINEERING

State of the art until ࠂࠀ years ago:

• Convolve image with edge detection filters at many
different angles.

• Hand engineer features based on the responses.
• SIFT and HOG features were especially popular.

ࠁࠆ



CONVOLUTIONAL NEURAL NETWORKS

Neural network approach: Learn the parameters of the convolution
filters based on training data.

First convolutional layer involves n convolution filters Wࠀ, . . . ,Wq.
Each is small, e.g. ×ࠄ .ࠄ Every entry in Wi is a free parameter: ∼ ࠄࠁ · q
parameters to learn.

Produces q matrices of hidden variables: i.e. a tensor with depth q.

Each output in the tensor is processed with a non-linearity. Most
commonly a Rectified Linear Unity (ReLU): x = max(x̄, .(߿

ࠂࠆ



WEIGHT SHARING

Convolutional layers can be viewed as fully connected layers
with added constraints. Many of the weights are forced to ߿
and we have weight sharing constraints.

Weight sharing needs to be accounted for when running
backprop/gradient descent.

ࠃࠆ



CONVOLUTIONAL NEURAL NETWORKS

A fully connected layer that extracts the same features would require
ࠇࠁ) · ࠇࠁ · ࠃࠁ · (ࠃࠁ · q = ,ࠀࠄࠃ ࠃࠇࠄ · q parameters. Difference of over
,߿߿ࠁ x߿߿߿ from .qࠄࠁ

By “baking in” knowledge about what type of features matter, we
greatly simplify the network.

ࠄࠆ



POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

Most common approach is max-pooling.

ࠅࠆ



POOLING AND DOWNSAMPLING

• Reduces number of variables.

• Helps “smooth” result of
convolutional filters.

• Improves shift-invariance.

ࠆࠆ



OVERALL NETWORK ARCHITECTURE

Each layer contains a Dࠂ tensor of variables. Last few layers
are standard fully connected layers.

ࠇࠆ



UNDERSTANDING LAYERS

What type of convolutional filters do we learn from gradient descent?
Lots of edge detectors in the first layer!

Other layers are harder to understand... but roughly hidden variables
later in the network encode for “higher level features”:

ࠈࠆ



UNDERSTANDING LAYERS

How can we know?

Go through dataset and find the inputs that most “excite” a
given neuron h. I.e. for which |h(x)| is largest.

߿ࠇ



UNDERSTANDING LAYERS

How can we know?

Alternative approach: Solve the optimization problem
maxx |h(x)| e.g. using gradient descent.

ࠀࠇ



UNDERSTANDING LAYERS

Early work had some interesting results.

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.

ࠁࠇ



UNDERSTANDING LAYERS

There has been a lot of work on improving these methods by
regularization. I.e. solve maxx |h(x)|+ g(x) where g constrains x to
look more like a “natural image”.

If you are interested in learning more on these techniques, there is a
great Distill article at:
https://distill.pub/2017/feature-visualization/.

ࠂࠇ

https://distill.pub/2017/feature-visualization/


UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

ࠃࠇ



UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

General obervation: Depth more important than width. Alexnet ࠁࠀ߿ࠁ
had ࠇ layers, modern convolutional nets can have .s߿߿ࠀ

ࠄࠇ



TRICKS OF THE TRADE

Beyond techinques discussed for general neural nets (back-prop,
batch gradient descent, adaptive learning rates) training deep
networks requires a lot of “tricks”.

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Residual connections (accelerate training, allow for more depth
– s߿߿ࠀ of layers).

• Data augmentation.

And deep networks require lots of training data and lots of time.

ࠅࠇ



BATCH NORMALIZATION

Start with any neural network architecture:

For input x,

z̄ = wTx+ b
z = s(z̄)

where w, b, and s are weights, bias, and non-linearity. ࠆࠇ



BATCH NORMALIZATION

z̄ is a function of the input x. We can write it as z̄(x). Consider
the mean and standard deviation of the hidden variable over
our entire dataset xࠀ . . . , xn:

µ =
ࠀ
n

n∑

j=ࠀ

z̄(xj)

σࠁ =
ࠀ
n

n∑

j=ࠀ

(z̄(xj)− µ)ࠁ

Just as normalization (mean centering, scaling to unit variance)
is sometimes used for input features, batch-norm applies
normalization to learned features.

ࠇࠇ



BATCH NORMALIZATION

Can add a batch normalization layer after any layer:

ū =
z̄− µ

σ

u = s(ū).

Has the effect of mean-centering/normalizing z̄. Typically we actualy
allow u = s(γ · ū+ c) for learned parameters γ and c.

ࠈࠇ



BATCH NORMALIZATION

Proposed in :ࠄࠀ߿ࠁ “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, Ioffe, Szegedy.

Doesn’t change the expressive power of the network, but allows for
significant convergence acceleration. It is not yet well understood
why batch normalizition speeds up training.

߿ࠈ



DATA AUGMENTATION

Great general tool to know about. Main idea:

• More training data typically leads to a more accurate model.

• Artificially enlarge training data with simple transformations.

Take training images and randomly shift, flip, rotate, skew, darken,
lighten, shift colors, etc. to create new training images. Final
classifier will be more robust to these transformations.

ࠀࠈ



DEEP LEARNING TRICKS

Need to take a full course on neural networks/deep learning to
learn more! State-of-the-art techniques are constantly

evolving.

ࠁࠈ



DEEPER AND DEEPER, BIGGER AND BIGGER

After AlexNet ࠇ) layers, ߿ࠅ million parameters) achieved start of
the art performance on ImageNet, progress proceeded rapidly:

ࠂࠈ



GENERALIZATION FOR NEURAL NETWORKS

Even with weight sharing, convolution, etc. modern neural
networks typically have s߿߿ࠀ of millions or billions of
parameters. And we don’t train them with regularization.
Intuitively we might expect them to overfit to training data.

ࠃࠈ



GENERALIZATION FOR NEURAL NETWORKS

In fact, we now know that modern neural nets can easily
overfit to training data. This work showed that we can fit large
vision data sets with random class labels to essentially perfect
accuracy.

But we don’t always see a large gap between training and test
error. Don’t take this to mean overfitting isn’t a problem when
using neural nets! It’s just not always a problem.

ࠄࠈ



GENERALIZATION FOR NEURAL NETWORKS

We even see this lack of overfitting for MNIST data. See
keras_demo_mnist.ipynb that I posted on the website:

ࠅࠈ



GENERALIZATION FOR NEURAL NETWORKS

One growing realization is that this phenomena doesn’t only apply to
neural networks – it can also be true for fitting
highly-overparameterized polynomials.

The choice of training algo (e.g. gradient descent) seems important. ࠆࠈ



DOUBLE DESCENT

We sometimes see a “double descent curve” for these models. Test
error is worst for “just barely” overparameterized models, but gets
better with lots of overparameterization.

We don’t usually see this same curve for neural networks.

ࠇࠈ



OVERFITTING IN NEURAL NETS

Take away: Modern neural network overfit, but still seem fairly
robust. Perform well on any new test data we throw that them.

Or do they?

ࠈࠈ



ADVERSARIAL EXAMPLES
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ADVERSARIAL EXAMPLES

Main discovery: It is possible to find imperceptibly small
perturbations of input images that will fool deep neural
networks. This seems to be a universal phenomenon.

Important: Random perturbations do not work!

߿߿ࠀ



ADVERSARIAL EXAMPLES

How to find “good” perturbations:

Fix model fθ , input x, correct label y. Consider the loss ℓ(θ, x, y).

Solve the optimization problem:

max
δ,∥δ∥≤ϵ

ℓ(θ, x+ δ, y)

Can be solved using gradient descent! We just need to
compute the derivative of the loss with respect to the image
pixels. Backprop can do this easily.

ࠀ߿ࠀ



ADVERSARIAL EXAMPLES

We will post a lab where you can find your own adversarial
examples for a model called Resnetࠇࠀ. The entire model +
weights are available pretrained through PyTorch, so we do not
need to train it ourselves.

ࠁ߿ࠀ


