CS-GY 6923: Lecture 10

Finish SVMs, Neural Nets Introduction, Back
propagation

NYU Tandon School of Engineering, Prof. Christopher Musco

SUPPORT VECTOR MACHINES

Goal: Find a separating hyperplane for linearly separable
classification problem.

Ideally, choose the hyperplane that maximizes margin.

OPTIMIZATION FORMULATION

Original problem: arg maxg {miniey.,_,n y,»-<x,-,ﬁ>]

Equivalent formulation:

mﬁin 18113 subject to yi - (x;,8) > 1foralli.

Under this formulation m = m.

- Can be solved using a constrained optimization method.
- Can be combined with any non-linear kernel.

- Classification only requires computing kernel similarity
with the support vectors.

CLASSIFICATION

- When using a kernel like k(x;,x;) = e~ %=%ll5, classification
for a new points Xney Only requires computing kernel
similarity with the support vectors. Logistic regression
requires similarity with all training points. 4

HARD-MARGIN SVM

Hard-margin SVMs have a few other critical issues in practice:

e *
N *

° *

g * *

° *

. * &

g * *

g * v

0 1 2 3
X1

Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If Kis full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel. 5

HARD-MARGIN SVM

Another critical issue in practice:

° * *
T s » *
*
T T T T T
1 0 1 2 3 4 0 1 2 3
X1 X1

Hard-margin SVM classifiers are not robust.

SOFT-MARGIN SVM

Solution: Allow the classifier to make some “mistakes”! A
mistake can either be a misclassification, or simply a point
allowed to be “inside” the margin.

Hard margin objective:

m,C_i’n 18113 subject to yi - (x;,8) > 1forall i.

Soft margin objective:

n
mﬁin IBI3+C> ¢ subjectto y;-(x;,8) >1—¢ foralli.
s

where ¢; > 0 is a non-negative “slack variable”.

€i/|182 is is the magnitude of the “error” (distance past the
margin) we allow x; to travel. Recalling that margin is 1/(|3]|2,
€; > 1 corresponds to a misclassification. 7

SOFT-MARGIN SVM

Recall that A; = Y:%iB),

18Il

j1/IIBII

Soft margin objective:

n
min IBI5+CD e subjectto y;-(x;,B) >1—¢ foralli.
i=1

SOFT-MARGIN SVM

Recall that A; = Y:%iB),

18Il

N

/1Bl

Soft margin objective:

yi- (X;, B) S] €

— — for all /.
18l ~ 1Bl 1182

n
min 1813+ C> e subject to
=

SOFT-MARGIN SVM

/1Bl

Any x; with a non-zero ¢; is a support vector. As before, only
support vectors are needed for classification in the kernel
setting. Good exercise to prove yourself.

10

EFFECT OF C

Soft margin objective:

n
i IBI3+C> e

i=1

- Large C means penalties are punished more in objective
— smaller margin, less support vectors.

- Small C means penalties are punished less in objective
— larger margin, more support vectors.

When data is linearly separable, as C — oo we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.

n

EFFECT OF C

Example dataset:

12

EFFECT OF C

large C smaller C

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.

Typically the smaller C is, the more support vectors (above
image isn't a great example).

13

COMPARISON TO LOGISTIC REGRESSION

Some basic transformations of the soft-margin objective:

n
mﬂin IBI5+CD "€ subjectto y;-(x;,8) >1—¢ foralli.
=1

min 1815+ € max(0,1—y; - (x;, 8)).

=1

n
mﬁin AHBH% + Z maX(O71 — Vi <X[7/6>)'
i=1
These are all equivalent. A = 1/C is just another scaling
parameter. Moved from a constrained problem to a much
easier unconstrained optimization problem.

14

HINGE LOSS

Hinge-loss: max(0,1—y; - (x;, 3)). Recall thaty; € {-1,1}.

—
T/Q\35
g
N~
. 25
>
‘ 2
‘_"\15
o
e
o]
E 05
0
3 2 1 0 . 1 2 3
Yi - <I, >

Soft-margin SVM:

mﬁin Zmax(O,'] —Vi- <Xi713>) +)\HﬁH% : (1)
=

15

LOGISTIC LOSS

Recall the logistic loss for y; € {0, 1}:

Zy,log (%, 8))) + (1= y;) log(1 — h((x;, 8)))

| e_<xi7:3>
- _Zyi og (,I T e<x/‘ﬁ>> + (’I _yi) |Og 1+ o—(%.5)
Zylg (1 y)log [——
! 11 e—x.8) ! 1 4+ efXiB)

COMPARISON OF SVM TO LOGISTIC REGRESSION

Compare this to the logistic regression loss reformulated for
Vi € {_171})

! 1
Z — log (1 — e—Yf'<Xiﬂ>>

i=1

—— Hinge Loss
—— Logistic Regression Loss

COMPARISON TO LOGISTIC REGRESSION

So, in the end, the function minimized when finding 3 for the
standard soft-margin SVM is very similar to the objective
function minimized when finding 3 using logistic regression
with ¢, regularization.

yi - (&,)

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large
problems. Will explore more on Lab 5.

NEURAL NETWORKS

NEURAL NETWORKS

Key Concept

Approach until now:

- Choose good features or a good kernel.

- Use optimization to find best model given those features.
Neural network approach:

- Learn good features and a good model simultaneously.

19

NEURAL NETWORKS

The leading method in machine learning right now.

Focus of investment at universities, government research labs,
funding agencies, and large tech companies.

Studied since the 1940s/50s. Why the recent attention? More
on history of neural networks shortly.

20

SIMPLE MOTIVATING EXAMPLE

Classification when data is not linearly separable:

Could use feature transformations or a non-linear kernel.

Alternative approach: Divide the space up into regions using
multiple linear classifiers.

21

L
-
o
=
<
>
L
O
=
=
<
=
=
o
=
L
-
o
=
(%]

add a new —1,1 feature for every

’

For each linear classifier 3

x7] depending on the sign of (x, 8).

[XO7

example x

22

SIMPLE MOTIVATING EXAMPLE

2,87 [x Uy 1, =1, 41, -1

5,5 X2 up -1, +1,4+1, -1
. . ﬁ . = .

5.1 [x, Un 1,1, =1, —1

Question: After data transformation, how should we map each
new vector u; to a class label?

—1, =1, 41, -1 0

—1, 41,41, -1| 5 |1
. - |.

—1,—1,—1, —1 0

23

SIMPLE MOTIVATING EXAMPLE

Our machine learning algorithms needs to learn two things:

- The original linear functions which divide our data set into
regions (their slopes + intercepts).

- Another linear function which maps our new features to

an output class probability. 5y

POSSIBLE MODEL

Input: X =Xq,..., Xy

Model: f(x, ©):

!

-z € RV = Wpx + B,
- uy = sign(zy)

- Zp € R=Wpuy + By
© Up =1[zp > A

Parameters: © = [Wy € RN 3, ¢ R Wy € R™NW 55 € RY.

Wy, Wo are weight matrices and 34, B, are bias terms that
account for the intercepts of our linear functions.

25

POSSIBLE MODEL

Our model is function f which makes x to a class label up.!

non-linearity/

linear map activation function

o h =0

x)— —0 _.% —»Q§: linear map threshold function
®— — O — [—'87@—'@—’—'@
®&— —O0—0 — Woliy* b Zo flzg) Yo
3 - —0 — [_.9/ oYH™ Yo 0

X WX + by Zy g(z,) Uw

This is called a “multilayer perceptron”: one of the oldest types
of neural nets. Dates back to Frank Rosenblatt from 1958
- Number of input variables N, =

- Number of hidden variables Ny =
- Number of output variables Ng =

"For regression, would cut off at zo to get continuous output. 26

POSSIBLE MODEL

Our model is function f which maps x to a class label up.

non-linearity/

linear map activation function
—0O —0O —0 ,
®— —0O —m@—0O §‘. linear map sigmoid function
®— —>O—~—'87EEEEE—>O——E—»O
& — —0O0—0O0 — WU+ b Zy h(zy) Yo
§ — 0 — . O/ oYu™ Yo 0
X W, X + by Zy g(z,) Un

Training the model:

- Choose a loss function L(f(x, ©),).
- Find optimal parameters: ©* = argming Y7, L(f(X;, ©), V;)
using gradient descent.

27

FINAL MODEL

A more typical model uses smoother activation functions, aka
non-linearities, which are more amenable to computing gradients.

E.g. we might use the sigmoid function g(x) = H;,X.
linear map S'ng'd
—*O non- eaﬂ O) y
() — — 0O —0J —0 \ linear map nors'nlglmzlarlty
®— ~O—»E~O—’EI:I:I:D —O0—N—0
S—EEE SO TR DS waen % og@)
X W,X + by, Z g(z,) Uy

- Tune parameters by minimizing cross-entropy loss:
n n
D L%, ©), 1) = > —yilog(f(xi, ©)) — (1 —y;) log(1 — f(x;, ©))
i=1 i=1

- We will discuss soon how to compute gradients.
28

29

-function activation are binary,

08

depending on which side of a set of learned hyperplanes each

Features learned using step
point lies on.

=2
S
-
(S]
<
a4
-
<
Ll
Ll
o
=
<t
[}
(S

FEATURE EXTRACTION

Features learned using sigmoid activation are real valued in
[0,1]. Mimic binary features.

30

HYPERPARAMETERS

Things we can change in this basic classification network:

- More or less hidden variables.

- We could add more layers.

- Different non-linearity/activation function.
- Different loss function.

Sigmoid ' tanh ‘ ReLU 1
0(2) = 1= tanh(z) ’ » max(0,z)

31

TEST YOUR INTUITION

How many hidden variables (e.g. splitting hyperplanes) would
be needed to classify this dataset correctly?

o

https://playground.tensorflow.org/

32

https://playground.tensorflow.org/

NOTATION

Another common diagram for a 2-layered network:

hidden
layer

33

NOTATION

Neural network math:

f=ax+by+cz

W

34

NOTATION

How to interpret:

X

zy
Wy and Wy are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linear activation functions. 35

NOTATION

How to interpret:

X

zy
Wy and Wy are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected” layers.
Every variable in layer i is connected to every variable in layer i + 1. 36

ARCHITECTURE VISUALIZATION

Effective way of visualize “architecture” of a neural network:

A B
e 1<} o
e o
e o o
e L]
L o o o
o
o o o o
“ ~ L] o o
L o
L] L] L
c D
Q a P
Q e p
Q Q))
e e o
e e e o
]
o o L o
o L °
¢ ¢ ®
) ¢ °
d <] ®

Made by Leon Eyrich Jessen, Twitter: @jessenieon

Visualize number of variables, types of connections, number of
layers and their relative sizes.

These are all feedforward neural networks. No backwards (recurrent)
connections.

37

SOME HISTORY AND MOTIVATION

CONNECTION TO BIOLOGY

Simplified model of the brain:
Dendrites: Input electrical

A L[e current from other neurons.

£ FNM:I&J = H

(T Axon: Output electrical current
PRttt sn =2 : to other neurons.

ee—— |/ R <L @ e Synapse: Where these two

connect.

A neuron “fires” (outputs non-zero electric charge) if it receives
enough cumulative electrical input from all neurons connected to it.

A

®—T]

e
fire

wh

Output charge can be positive or negative (excitatory vs. inhibitory).
38

CONNECTION TO BIOLOGY

Inspired early work on neural networks:

- 1940s Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

- 1950s Frank Rosenblatt's single-layer Perceptron is one of
the first attempts to create an “artificial” neural networks.

- Continued work throughout the 1960s.

Main issue with neural network methods: They are hard to
train. Gradient descent converges very slowly. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. We have gotten a lot better
at resolving these issues though!

39

EARLY NEURAL NETWORK EXPLOSION

Around 1985 several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via (stochastic) gradient descent. Along with
increased computational power this lead to a resurgence of
interest in neural network models.

Backpropagation Applied to Handwritten Zip Code
Recognition

Y. LeCun

B. Boser

J. S. Denker

D. Henderson

R. E. Howard

W. Hubbard

L. D. Jackel

AT&T Bell Laboratories Holmdel, NJ 07733 USA

The ability of learning lize can be greatly d
by providing constraints from !he ‘task domain. This paper demon-
strates how such ints can be i dintoab

network through the architecture of the network. This appmach has
been successfully applied to the recognition of handwritten zip code
digits provided by the U.S. Postal Service. A single network learns the
entire recognition operation, going from the normalized image of the
character to the final classification.

Very good performance on problems like digit recognition. 40

NEURAL NETWORK DECLINE

From 1990s - 2010, kernel methods, SVMs, and probabilistic
methods began to dominate the literature in machine learning:

- Work well “out of the box".

- Relatively easy to understand theoretically.

- Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-1learning-according.html

41

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html

NEURAL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

% of ML papers with phrase “neural network”

0005 %8s 1990 1995 2000

You can see a major upward trend staring around 1985 (that's when Yann LeGun and several others.
independentl rediscovered backpropagation algorithm), peaking in 1992, and going downwards from then.

% of ML papers with phrase “support vector machine” % of ML papers with phrase “naive bayes”
asxied 1exed
39 14
2.5| 14
10
29
08
15
08
10
04
03 -
Ofbsa 99 1998 2000 2002 2004 Ofbss Tiosz 199 199 1998 2000 2002 2004

)

(1995 is when Vapnik and Cortez proposed the algorithm) If1 were to trust this, | would say that Naive Bayes research the hottest machine learning area right now

MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

Un sourire coite moins cher que X Un sourire coiite moins cher que
Télectricité, mais donne autant Télectricité, mais donne autant
de lumiére de lumiére

A smile costs less expensive than % | A smile costs less than electricity,
electricity, but gives as many light | but gives as much light

(-] © 0 ® 0 i

State-of-the-art results in game playing, image recognition,
content generation, natural language processing, machine
translation, many other areas.

43

2019 TURING AWARD WINNERS

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing”

Sixas

Googl gy A .
: oge(o ad
Yann LeCun Geoff Hinton Yoshua Bengio

What were these breakthroughs? What made training large neural
networks computationally feasible?

44

ALEXNET

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

I M ' G E N 14,197,122 images, 21841 synsets indexed
ie IN

Explore Download Challenges Publications Updates About
ILSVRC 2017

Notlogged in. Login I Signup
ILSVRC 2016
ILSVRC 2015
ImageNet is an image database organized according to [ESLEELEEt hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundrjikaaiEi isands of images. Currently we have
MGl vill become a useful resource for

an average of over five hundred images per node. We hq
researchers, educators, students and all of you who sha
Click here to learn more about ImageNet, Click here to jo

ILSVRC 2011 .
pn for pictures.

ILSVRC 2010 N
e geNet mailing list.

What do these images have in common? Find out!

Very general image classification task.
45

ALEXNET

All changed with AlexNet and the 2012 ImageNet Challenge...

team name |team members filename flat cost sioesl description
INEC: Yuangqing Lin, using sift and
Fengjun Lv, Shenghuo Zhu, Ibp feature with
Ming Yang, Timothee Cour, two non-linear

. Kai Yu UIUC: LiangLiang lcoding

NEC-UIUC Cao, Zhen Li, Min-Hsuan flat_opt.txt 0-28191]2.1144 representations
[Tsai, Xi Zhou, Thomas land stochastic
Huang Rutgers: Tong ISVM, optimized
|Zhang [for top-5 hit rate

2010 Results
Team name Filename Error (5 guesses) Description

test-preds-141-146.2009-131 Using extra training data
SuperVision P) 0.15315 from ImageNet Fall 2011
137-145-146.2011-145f.

release
test-preds-131-137-145-135- Using only supplied
SuperVision P 0.16422 g only Suppl
145f.txt training data
Weighted sum of scores
from each classifier with
I1SI pred_FVs_wLACs_weighted.txt 0.26172 SIFT+FV, LBP+FV,

GIST+FV, and
CSIFT+FV, respectively.

2012 Results 46

ALEXNET

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilyalcs.utoronto.ca hinton@cs.utoronto.ca

Abstract

‘We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

47

MODERN NEURAL NETWORKS

Why 2012?

- Clever ideas in changing neural network architecture and
training. E.g. ReLU non-linearities, dropout regularization,
batch normalization, data augmentation.

- Wide-spread access to GPU computing power.

48

GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

-+ 2007: Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used 60 million parameters. Could not
have been trained using CPUs alone (except maybe on a

government super computer).
49

TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

1. Stochastic gradient descent.

2. Backpropogation.

50

TRAINING NEURAL NETWORKS

Let f(8,x) be our neural network. A typical ¢-layer feed forward
model has the form:

Ge(We (... W3-go (Wo- g1 (Wix+84) +8,) +B5...) + Be) -

W; and 8; are the weight matrix and bias vector for layer i and
g; is the non-linearity (e.g. sigmoid). 8 = [Wo, By, ..., Wy, B,] is
a vector of all entries in these matrices.

Goal: Given training data (X1, V1), .., (Xn,¥n) minimize the loss

n
=> Ly, f(6,x))
i=1
where L is, e.g.,, binary cross-entropy (logistic) loss:
L (v, f(8,%)) = —yilog(f(0, X)) — (1 —y;) log(1 — f(8, X))

51

GRADIENT OF THE LOSS

Approach: minimize the loss by using gradient descent. Which
requires us to compute the gradient of the loss function, VL.
Note that this gradient has an entry for every value in

WOaﬁOa L 7W57ﬂ£-

As usual, our loss function has finite sum structure, so:

VL() = Z VL(y;, f(6, %))

So we can focus on computing:

VL(y;,f(8,x)))
for a single training example (x;,).

52

CHAIN RULE REVIEW

For a scalar function f(x), we write the derivative with respect
to x as:
d
f(x) = dj: = lim

t—0

fx+1t) - f(¥)
t

For a multivariate function f(x,y,z) wr write the partial
derivative with repect to x as:

daf

— = |im
dx t—0

f(X+t7y7Z) _f(X7y7Z)
t

53

CHAIN RULE REVIEW

Let y(x) be a function of x and let f(y) be a function of y. The
chain rule says that:

df dfdy

dx ~ dydx

where ¢ = y(x +t) — y(x).

As long as lim¢_o y(x +t) — y(x) = 0 then the first term equals
% The second term equals %.

54

MULTIVARIABLE CHAIN RULE

Let y(x), z(x), w(x) be functions of x and let f(y,z, w) be a
function of y, z, w.

df df dy df dz df dw

dx dy dx dz dx dw dx

Example: Let y(x) = x* and z(x) = x°. Let f(y,z) =y -z. Then:

5 (5 5)* (& &)

55

GRADIENT OF THE LOSS

Applying chain rule each partial derivative of the loss:

VL(Y,f(8,%)) = affjx) Vf(6.%)

Binary cross-entropy example:

L(y,f(6,x)) = —ylog(f(6,x)) — (1 —) log(1 - f(6,x))

56

GRADIENT OF THE LOSS

We have reduced our goal to computing Vf(8,x), where the
gradient is with respect to the parameters 6.

Backpropagation is an efficient way to compute Vf(8,x). It
derives its name because we compute gradient from back to

front: starting with the parameters closest to the output of the
57

neural net.

BACKPROP EXAMPLE

layer 0 layer 1 layer 2 layer 3

Notation for few slides:

- a,b,...,zarethe node names, and denote values at the nodes
after applying non-linearity.

- @,b,...,Z denote values before applying non-linearity.

- W is the weight of edge from node i to node j.
- 5(-) : R = R is the non-linear activation function.
- B is the bias for node j.

_ 58
Example: h = s(h) =s(c-Wep +d-Wyp+e-Wep + Br)

BACKPROP EXAMPLE

For any node j, let j denote the value obtained before applying
the non-linearity g.

layer 0 layer 1 layer 2 layer 3

Soifh=s(c-Wep+d-Wgp+e-Wep+ By) then we use h to
denote:

h=c-Wep+d-Wap+e Wep+ B

59

BACKPROP EXAMPLE

Goal: Compute the gradient Vf(8,x), which contains the partial
derivatives with respect to every parameter:

- 0z2/0p;

© 0z/OWs,, 02/0Wg 2, 02/OW), ,

- 0z2/0pf, 02/0p4, 02/0Bh

© 0z/OW, 5, 02/OWe g, 02/ OW,

© 0z/OWy 5, 02/OWy g, 02/OWqy

° 82/8\/\/070 82/8‘/\/0,(17 62/8‘/\/0@

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.

60

BACKPROP EXAMPLE

Step 1: Forward pass.

layer 0 layer 1 layer 2 layer 3

- Using current parameters, compute the output z by
moving from left to right.

- Store all intermediate results:
E7a7é7 C7d’e7]_c7g7lj)7f7g7h7z7z'

61

BACKPROP EXAMPLE

layer 0 layer 1 layer 2 layer 3

Step 1: Forward pass.

E:WG,C'a"'Wb,c'b"'ﬂc C:S(E)
d=Wag-a+Wpa-b+ By d = s(d)
e=Wqe- a+Wpe- b+ Be e:s(é)
F=Wesc+Was-d+Wes-e+f f=s(f)
Z=Wrz f+Wgz-9+Wh; f+ 5 z=5(2)

Question: What is runtime in terms of # of parameters P? 62

BACKPROP EXAMPLE

Step 2: Backward pass.

layer 0 layer 1 layer 2 layer 3

- Using current parameters and computed node values,
compute the partial derivatives of all parameters by

moving from right to left.

63

BACKPROP EXAMPLE

Step 2: Backward pass. Deepest layer.

0z 0z 0z .
0z 0z 0z)=
ow, ~awy, &S
oz 0z 0z _ 5(2)
oWy, Wy, oz 9
07 0z 0z — his(2)

OW,, OW,, 0z
64

BACKPROP EXAMPLE

Step 2: Backward pass.

Jz 0z 0z _

oo B e s'(2)
0z 8z oz o
og — dg 0z Wo..-5(2)
07 0z oz o
%—%'E—sz's(z)

Compute partial derivatives with respect to nodes, even though
these are not used in the gradient. 65

BACKPROP EXAMPLE

Step 2: Backward pass.

dJz 0z Of 0z =
of of of of Y
0z _ 02 09 _ 02 0
05" ag 05 o9 °
0z 0z 6h782

oh —oh h oh

And for “pre-nonlinearity” nodes.
66

BACKPROP EXAMPLE

Step 2: Backward pass. Next layer.

oz 0z Of Oz
— —_—— . —— = — . 1
loJor: of 86)‘ of
0z - % 8]_6 % c
OWes 8f MWer of
07 @ al_c _ @
MWys Of OWgr Of
0z oz of 0z

Wer o Woy OF ° 67

BACKPROP EXAMPLE

Step 2: Backward pass. Next layer. Use multivariate chain rule.

0z _0z Of 0z 83 0z oh
oc 9f Oc 93 Oc ph Oc
0z 0z 0z
_aijc.Wc’f—‘raig.WC’g—’—%.WC’h
0z 0z 0z 0z
ﬁ:ai]_c.Wd’f—'_aig.Wd’g—’_aiFl.Wd’h
0z 0z 0z 0z
Uieiaif..we’f+8ig.we’g+%.we’h

68

BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let v; be a vector containing the value of all nodes j in layer I.

f
V3 = [Z} vV, = |g
h

5
|
®© Qo

Let V; be a vector containing j for all nodes j in layer i.

<l
w
Il
| —
NI
<l
N
|
S 1 Q1 Y~

Note: v; = s(V;), where s is applied entrywise.

<
|
—hl Q1 Ol

69

BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let §; be a vector containing 9z/9j for all nodes j in layer i.

0z/0f 0z/0c
5 = M 8, = |9z/dg & = |9z/0d
0z/0h 0z/0e

Let &; be a vector containing 82/6] for all nodes j in layer i.

9z/df 0z/d¢c
By = [az/az] 5, = |02/05 3, = |az/0d
0z/0h b2/ 98

Note: &; = s'(V;) x &; where x denotes entrywise multiplication.

70

BACKPROP LINEAR ALGEBRA

Let W; be a matrix containing all the weights for edges between layer

iand layer i+ 1.

layer 0 layer1 layer2 layer 3
Wae Wpc Wer Wayp Wey
Wo= [Waqg Wpa| Wi= |Weg Wig Weg| Wo= [Wf,z Woz Wh,

Wae Wb,e Wc,h Wd,h We,h

Ul

BACKPROP LINEAR ALGEBRA

Claim 1: Node derivative computation is matrix multiplication.

8 =W/dj

What is the computational complexity if W; € Rf*m?

72

BACKPROP LINEAR ALGEBRA

Let A; be a matrix contain the derivatives for all weights for edges
between layer i and layer i + 1.

A, = [az/awﬁz 02)0W,, 0z/OWh,

82/8WCJ¢ 82/8Wd7f 82/8We_f
0z/OWc g 0z/OWq g 0z/0Wegq
82/0W57h aZ/ade 02/8Weﬁh

e
I

73

BACKPROP LINEAR ALGEBRA

Claim 2: Weight derivative computation is an outer-product between
the (i + 1)t derivative vector and the i" value vector.

T
A = V,‘(S,'_H.

What is the computational complexity of computing the derivatives
for a single weight matrix W; € RF*m?

T4

BACKPROPAGATION

Takeaways:

- Backpropagation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

- Total computation cost is linear in the number of
parameters of the network to compute f(0,x) and thus
VL(y,f(8,x)) for a single training example X, y.

- SGD can be run in O(P) time per iteration for a network

with P parameters.

- Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.

75

CONVERGENCE

Least squares regression, logistic regression, SVMs, even all of
these with kernels lead to convex losses.

convex loss cross-entropy loss for
neural net

Neural networks very much do not...

76

CONVERGENCE

But SGD still performs remarkably well in practice. Understanding
this phenomenon is still an open research question in machine
learning and optimization. Current hypotheses include:

- Initialization seems important (random uniform vs. random
Gaussian vs. Xavier initialization vs. He initialization vs. etc.)

- Randomization helps in escaping local minima.

- Many local minima are global minima?

- SGD finds “good” local minima?

77

AUTODIFF

Issue: Backpropagation + SGD is fast, but tedious to implement.

Typical to use automatic differentiation, which can compute
the gradient of pretty much any function you can code up.

def loss(W, b):
preds = predict(W, b, inputs)
label_probs = preds = targets + (1 - preds)
return -np.sum(jnp.log(label_probs))

from jax import grad

W_grad, b_grad = grad(loss, (0, 1))(W, b)
print('W_grad’, W_grad)

print('b_grad’, b_grad)

78

LIBRARIES

May mature low-level libraries that handle neural network
representation, autodiff, have built in optimizers (SGD, ADAM,
etc.), etc.

O PyTorch : |~\

Tensor

79

LIBRARIES

Higher-level libraries like Keras make it even easy to work with
this software. Tools for easily defining and building neural
networks with specific structure, tracking training, etc.

80

LIBRARIES

Define:

model = Sequential()
model.add(Dense(units=nh, input_shape=(nin,), activation='sigmoid', name='hidden'))
model.add(Dense(units=nout, activation='softmax', name='output'))

Compile:

opt = optimizers.Adam(lr=0.001)

model.compile(optimizer=opt,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

Train:

hist = model.fit(Xtr, ytr, epochs=30, batch_size=100, validation_data=(Xts,yts))

We will release two demos on working with Keras:
keras_demo_synthetic.ipynb and
keras_demo_mnist.ipynb

81

