
CS-GY 6923: Lecture 10
Finish SVMs, Neural Nets Introduction, Back
propagation

NYU Tandon School of Engineering, Prof. Christopher Musco

1

SUPPORT VECTOR MACHINES

Goal: Find a separating hyperplane for linearly separable
classification problem.

Ideally, choose the hyperplane that maximizes margin.

2

OPTIMIZATION FORMULATION

Original problem: argmaxβ

[
mini∈1,...,n

yi·⟨xi,β⟩
∥β∥2

]
.

Equivalent formulation:

min
β

∥β∥22 subject to yi · ⟨xi,β⟩ ≥ 1 for all i.

Under this formulation m = 1
∥β∥2 .

• Can be solved using a constrained optimization method.
• Can be combined with any non-linear kernel.
• Classification only requires computing kernel similarity
with the support vectors.

3

CLASSIFICATION

• When using a kernel like k(xi, xj) = e−∥xi−xj∥22 , classification
for a new points xnew only requires computing kernel
similarity with the support vectors. Logistic regression
requires similarity with all training points. 4

HARD-MARGIN SVM

Hard-margin SVMs have a few other critical issues in practice:

Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If K is full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel. 5

HARD-MARGIN SVM

Another critical issue in practice:

Hard-margin SVM classifiers are not robust.

6

SOFT-MARGIN SVM

Solution: Allow the classifier to make some “mistakes”! A
mistake can either be a misclassification, or simply a point
allowed to be “inside” the margin.

Hard margin objective:

min
β

∥β∥22 subject to yi · ⟨xi,β⟩ ≥ 1 for all i.

Soft margin objective:

min
β

∥β∥22 + C
n∑
i=1

ϵi subject to yi · ⟨xi,β⟩ ≥ 1− ϵi for all i.

where ϵi ≥ 0 is a non-negative “slack variable”.

ϵi/∥β∥2 is is the magnitude of the “error” (distance past the
margin) we allow xi to travel. Recalling that margin is 1/∥β∥2,
ϵi ≥ 1 corresponds to a misclassification.

C ≥ 0 is a non-negative tuning parameter.

7

SOFT-MARGIN SVM

Recall that ∆i =
yi·⟨xi,β⟩
∥β∥2 .

Soft margin objective:

min
β

∥β∥22 + C
n∑
i=1

ϵi subject to yi · ⟨xi,β⟩ ≥ 1− ϵi for all i.

8

SOFT-MARGIN SVM

Recall that ∆i =
yi·⟨xi,β⟩
∥β∥2 .

Soft margin objective:

min
β

∥β∥22 + C
n∑
i=1

ϵi subject to yi · ⟨xi,β⟩
∥β∥2

≥ 1
∥β∥2

− ϵi
∥β∥2

for all i.

9

SOFT-MARGIN SVM

Any xi with a non-zero ϵi is a support vector. As before, only
support vectors are needed for classification in the kernel
setting. Good exercise to prove yourself.

10

EFFECT OF C

Soft margin objective:

min
β

∥β∥22 + C
n∑
i=1

ϵi.

• Large C means penalties are punished more in objective
=⇒ smaller margin, less support vectors.

• Small C means penalties are punished less in objective
=⇒ larger margin, more support vectors.

When data is linearly separable, as C → ∞ we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.

11

EFFECT OF C

Example dataset:

12

EFFECT OF C

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.

Typically the smaller C is, the more support vectors (above
image isn’t a great example).

13

COMPARISON TO LOGISTIC REGRESSION

Some basic transformations of the soft-margin objective:

min
β

∥β∥22 + C
n∑
i=1

ϵi subject to yi · ⟨xi,β⟩ ≥ 1− ϵi for all i.

min
β

∥β∥22 + C
n∑
i=1

max(0, 1− yi · ⟨xi,β⟩).

min
β

λ∥β∥22 +
n∑
i=1

max(0, 1− yi · ⟨xi,β⟩).

These are all equivalent. λ = 1/C is just another scaling
parameter. Moved from a constrained problem to a much

easier unconstrained optimization problem.

14

HINGE LOSS

Hinge-loss: max(0, 1− yi · ⟨xi,β⟩). Recall that yi ∈ {−1, 1}.

Soft-margin SVM:

min
β

[n∑
i=1

max(0, 1− yi · ⟨xi,β⟩) + λ∥β∥22

]
. (1)

15

LOGISTIC LOSS

Recall the logistic loss for yi ∈ {0, 1}:

L(β) = −
n∑
i=1

yi log(h(⟨xi,β⟩)) + (1− yi) log(1− h(⟨xi,β⟩))

= −
n∑
i=1

yi log
(

1
1+ e−⟨xi,β⟩

)
+ (1− yi) log

(
e−⟨xi,β⟩

1+ e−⟨xi,β⟩

)

= −
n∑
i=1

yi log
(

1
1+ e−⟨xi,β⟩

)
+ (1− yi) log

(
1

1+ e⟨xi,β⟩

)

16

COMPARISON OF SVM TO LOGISTIC REGRESSION

Compare this to the logistic regression loss reformulated for
yi ∈ {−1, 1}):

n∑
i=1

− log

(
1

1− e−yi·⟨xi,β⟩

)

17

COMPARISON TO LOGISTIC REGRESSION

So, in the end, the function minimized when finding β for the
standard soft-margin SVM is very similar to the objective
function minimized when finding β using logistic regression
with ℓ2 regularization.

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large
problems. Will explore more on Lab 5.

18

NEURAL NETWORKS

18

NEURAL NETWORKS

Key Concept

Approach until now:

• Choose good features or a good kernel.
• Use optimization to find best model given those features.

Neural network approach:

• Learn good features and a good model simultaneously.

19

NEURAL NETWORKS

The leading method in machine learning right now.

Focus of investment at universities, government research labs,
funding agencies, and large tech companies.

Studied since the 1940s/50s. Why the recent attention? More
on history of neural networks shortly.

20

SIMPLE MOTIVATING EXAMPLE

Classification when data is not linearly separable:

Could use feature transformations or a non-linear kernel.

Alternative approach: Divide the space up into regions using
multiple linear classifiers.

21

SIMPLE MOTIVATING EXAMPLE

For each linear classifier β, add a new −1, 1 feature for every
example x = [x0, x1] depending on the sign of ⟨x,β⟩.

22

SIMPLE MOTIVATING EXAMPLE

.2, .8,
.5, .5
...

.5, 1

x1
x2
...
xn

 =⇒

u1
u2
...
un

 =

−1,−1,+1,−1
−1,+1,+1,−1

...
−1,−1,−1,−1

Question: After data transformation, how should we map each
new vector ui to a class label?

−1,−1,+1,−1
−1,+1,+1,−1

...
−1,−1,−1,−1

 ?−→

0
1
...
0

23

SIMPLE MOTIVATING EXAMPLE

Our machine learning algorithms needs to learn two things:

• The original linear functions which divide our data set into
regions (their slopes + intercepts).

• Another linear function which maps our new features to
an output class probability.

24

POSSIBLE MODEL

Input: x = x1, . . . , xNI

Model: f(x,Θ):

• zH ∈ RNH = WHx+ βh.
• uH = sign(zH)
• zO ∈ R = WOuH + βO

• uO = 1[zO > λ]

Parameters: Θ = [WH ∈ RNH×NI ,βH ∈ RNH ,WO ∈ R1×NH , βO ∈ R].

WH, WO are weight matrices and βH, βO are bias terms that
account for the intercepts of our linear functions.

25

POSSIBLE MODEL

Our model is function f which makes x to a class label uO.1

This is called a “multilayer perceptron”: one of the oldest types
of neural nets. Dates back to Frank Rosenblatt from 1958
• Number of input variables NI =

• Number of hidden variables NH =

• Number of output variables NO =
1For regression, would cut off at zO to get continuous output. 26

POSSIBLE MODEL

Our model is function f which maps x to a class label uO.

Training the model:

• Choose a loss function L(f(x,Θ), y).
• Find optimal parameters: Θ∗ = argminΘ

∑n
i=1 L(f(xi,Θ), yi)

using gradient descent.
27

FINAL MODEL

A more typical model uses smoother activation functions, aka
non-linearities, which are more amenable to computing gradients.
E.g. we might use the sigmoid function g(x) = 1

1+e−x .

• Tune parameters by minimizing cross-entropy loss:
n∑
i=1

L(f(xi,Θ), yi) =
n∑
i=1

−yi log(f(xi,Θ))− (1− yi) log(1− f(xi,Θ))

• We will discuss soon how to compute gradients.
28

FEATURE EXTRACTION

Features learned using step-function activation are binary,
depending on which side of a set of learned hyperplanes each
point lies on.

29

FEATURE EXTRACTION

Features learned using sigmoid activation are real valued in
[0, 1]. Mimic binary features.

30

HYPERPARAMETERS

Things we can change in this basic classification network:

• More or less hidden variables.
• We could add more layers.
• Different non-linearity/activation function.
• Different loss function.

31

TEST YOUR INTUITION

How many hidden variables (e.g. splitting hyperplanes) would
be needed to classify this dataset correctly?

https://playground.tensorflow.org/

32

https://playground.tensorflow.org/

NOTATION

Another common diagram for a 2-layered network:

33

NOTATION

Neural network math:

34

NOTATION

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linear activation functions. 35

NOTATION

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected” layers.
Every variable in layer i is connected to every variable in layer i+ 1. 36

ARCHITECTURE VISUALIZATION

Effective way of visualize “architecture” of a neural network:

Visualize number of variables, types of connections, number of
layers and their relative sizes.

These are all feedforward neural networks. No backwards (recurrent)
connections.

37

SOME HISTORY AND MOTIVATION

37

CONNECTION TO BIOLOGY

Simplified model of the brain:
Dendrites: Input electrical
current from other neurons.
Axon: Output electrical current
to other neurons.
Synapse: Where these two
connect.

A neuron “fires” (outputs non-zero electric charge) if it receives
enough cumulative electrical input from all neurons connected to it.

Output charge can be positive or negative (excitatory vs. inhibitory).
38

CONNECTION TO BIOLOGY

Inspired early work on neural networks:

• 1940s Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

• 1950s Frank Rosenblatt’s single-layer Perceptron is one of
the first attempts to create an “artificial” neural networks.

• Continued work throughout the 1960s.

Main issue with neural network methods: They are hard to
train. Gradient descent converges very slowly. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. We have gotten a lot better
at resolving these issues though!

39

EARLY NEURAL NETWORK EXPLOSION

Around 1985 several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via (stochastic) gradient descent. Along with
increased computational power this lead to a resurgence of
interest in neural network models.

Very good performance on problems like digit recognition. 40

NEURAL NETWORK DECLINE

From 1990s - 2010, kernel methods, SVMs, and probabilistic
methods began to dominate the literature in machine learning:

• Work well “out of the box”.
• Relatively easy to understand theoretically.
• Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-learning-according.html

41

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html

NEURAL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

42

MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

State-of-the-art results in game playing, image recognition,
content generation, natural language processing, machine
translation, many other areas.

43

2019 TURING AWARD WINNERS

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing.”

What were these breakthroughs? What made training large neural
networks computationally feasible?

44

ALEXNET

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

Very general image classification task.
45

ALEXNET

All changed with AlexNet and the 2012 ImageNet Challenge...

2010 Results

2012 Results 46

ALEXNET

47

MODERN NEURAL NETWORKS

Why 2012?

• Clever ideas in changing neural network architecture and
training. E.g. ReLU non-linearities, dropout regularization,
batch normalization, data augmentation.

• Wide-spread access to GPU computing power.

48

GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

• 2007: Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used 60 million parameters. Could not
have been trained using CPUs alone (except maybe on a
government super computer).

49

TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

1. Stochastic gradient descent.
2. Backpropogation.

50

TRAINING NEURAL NETWORKS

Let f(θ, x) be our neural network. A typical ℓ-layer feed forward
model has the form:

gℓ (Wℓ (. . .W3 · g2 (W2 · g1 (W1x+ β1) + β2) + β3 . . .) + βℓ) .

Wi and βi are the weight matrix and bias vector for layer i and
gi is the non-linearity (e.g. sigmoid). θ = [W0,β0, . . . ,Wℓ,βℓ] is
a vector of all entries in these matrices.

Goal: Given training data (x1, y1), . . . , (xn, yn) minimize the loss

L(θ) =
n∑
i=1

L (yi, f(θ, xi)) ,

where L is, e.g., binary cross-entropy (logistic) loss:

L (yi, f(θ, xi)) = −yi log(f(θ, xi))− (1− yi) log(1− f(θ, xi)).

51

GRADIENT OF THE LOSS

Approach: minimize the loss by using gradient descent. Which
requires us to compute the gradient of the loss function, ∇L.
Note that this gradient has an entry for every value in
W0,β0, . . . ,Wℓ,βℓ.

As usual, our loss function has finite sum structure, so:

∇L(θ) =
n∑
i=1

∇L (yi, f(θ, xi))

So we can focus on computing:

∇L (yi, f(θ, xi))

for a single training example (xi, yi).

52

CHAIN RULE REVIEW

For a scalar function f(x), we write the derivative with respect
to x as:

f′(x) = df
dx = lim

t→0

f(x+ t)− f(x)
t

For a multivariate function f(x, y, z) wr write the partial
derivative with repect to x as:

df
dx = lim

t→0

f(x+ t, y, z)− f(x, y, z)
t

53

CHAIN RULE REVIEW

Let y(x) be a function of x and let f(y) be a function of y. The
chain rule says that:

df
dx =

df
dy

dy
dx

df
dx = lim

t→0

f(y(x+ t))− f(y(x))
t

= lim
t→0

f(y(x+ t))− f(y(x))
y(x+ t)− y(x) · y(x+ t)− y(x)

t

= lim
t→0

f(y(x) + c)− f(y(x))
c · y(x+ t)− y(x)

t
where c = y(x+ t)− y(x).

As long as limt→0 y(x+ t)− y(x) = 0 then the first term equals
df
dy . The second term equals dy

dx .
54

MULTIVARIABLE CHAIN RULE

Let y(x), z(x),w(x) be functions of x and let f(y, z,w) be a
function of y, z,w.

df
dx =

df
dy · dydx +

df
dz ·

dz
dx +

df
dw · dwdx

Example: Let y(x) = x3 and z(x) = x2. Let f(y, z) = y · z. Then:

df
dx =

(
df
dy · dydx

)
+

(
df
dz ·

dz
dx

)
=

55

GRADIENT OF THE LOSS

Applying chain rule each partial derivative of the loss:

∇L (y, f(θ, x)) = ∂L
∂f(θ, x) · ∇f(θ, x)

Binary cross-entropy example:

L (y, f(θ, x)) = −y log(f(θ, x))− (1− y) log(1− f(θ, x))

56

GRADIENT OF THE LOSS

We have reduced our goal to computing ∇f(θ, x), where the
gradient is with respect to the parameters θ.

Backpropagation is an efficient way to compute ∇f(θ, x). It
derives its name because we compute gradient from back to
front: starting with the parameters closest to the output of the
neural net. 57

BACKPROP EXAMPLE

Notation for few slides:
• a,b, . . . , z are the node names, and denote values at the nodes
after applying non-linearity.

• ā, b̄, . . . , z̄ denote values before applying non-linearity.

• Wi,j is the weight of edge from node i to node j.

• s(·) : R → R is the non-linear activation function.

• βj is the bias for node j.

Example: h = s(h̄) = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh)
58

BACKPROP EXAMPLE

For any node j, let j̄ denote the value obtained before applying
the non-linearity g.

So if h = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh) then we use h̄ to
denote:

h̄ = c ·Wc,h + d ·Wd,h + e ·We,h + βh

59

BACKPROP EXAMPLE

Goal: Compute the gradient ∇f(θ, x), which contains the partial
derivatives with respect to every parameter:

• ∂z/∂βz
• ∂z/∂Wf,z, ∂z/∂Wg,z, ∂z/∂Wh,z

• ∂z/∂βf, ∂z/∂βg, ∂z/∂βh
• ∂z/∂Wc,f, ∂z/∂Wc,g, ∂z/∂Wc,h

• ∂z/∂Wd,f, ∂z/∂Wd,g, ∂z/∂Wd,h

•
...

• ∂z/∂Wa,c, ∂z/∂Wa,d, ∂z/∂Wa,e

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.

60

BACKPROP EXAMPLE

Step 1: Forward pass.

• Using current parameters, compute the output z by
moving from left to right.

• Store all intermediate results:

c̄, d̄, ē, c,d, e, f̄, ḡ, h̄, f,g,h, z̄, z.

61

BACKPROP EXAMPLE

Step 1: Forward pass.

c̄ = Wa,c · a+Wb,c · b+ βc c = s(c̄)
d̄ = Wa,d · a+Wb,d · b+ βd d = s(d̄)
ē = Wa,e · a+Wb,e · b+ βe e = s(ē)
f̄ = Wc,f · c+Wd,f · d+We,f · e+ βf f = s(̄f)
...
z̄ = Wf,z · f+Wg,z · g+Wh,z · f+ βz z = s(z̄)

Question: What is runtime in terms of # of parameters P? 62

BACKPROP EXAMPLE

Step 2: Backward pass.

• Using current parameters and computed node values,
compute the partial derivatives of all parameters by
moving from right to left.

63

BACKPROP EXAMPLE

Step 2: Backward pass. Deepest layer.

∂z
∂βz

=
∂z̄
∂βz

· ∂z
∂z̄ = 1 · s′(z̄)

∂z
∂Wf,z

=
∂z̄

∂Wf,z
· ∂z
∂z̄ = f · s′(z̄)

∂z
∂Wg,z

=
∂z̄

∂Wg,z
· ∂z
∂z̄ = g · s′(z̄)

∂z
∂Wh,z

=
∂z̄

∂Wh,z
· ∂z
∂z̄ = h · s′(z̄)

64

BACKPROP EXAMPLE

Step 2: Backward pass.

∂z
∂f =

∂z̄
∂f ·

∂z
∂z̄ = Wf,z · s′(z̄)

∂z
∂g =

∂z̄
∂g · ∂z

∂z̄ = Wg,z · s′(z̄)

∂z
∂h =

∂z̄
∂h · ∂z

∂z̄ = Wh,z · s′(z̄)

Compute partial derivatives with respect to nodes, even though
these are not used in the gradient. 65

BACKPROP EXAMPLE

Step 2: Backward pass.

∂z
∂ f̄

=
∂z
∂f ·

∂f
∂ f̄

=
∂z
∂f · s

′(̄f)

∂z
∂ḡ =

∂z
∂g · ∂g

∂ḡ =
∂z
∂g · s′(ḡ)

∂z
∂h̄

=
∂z
∂h · ∂h

∂h̄
=

∂z
∂h · s′(h̄)

And for “pre-nonlinearity” nodes.
66

BACKPROP EXAMPLE

Step 2: Backward pass. Next layer.

∂z
∂βf

=
∂z
∂ f̄

· ∂ f̄
∂βf

=
∂z
∂ f̄

· 1

∂z
∂Wc,f

=
∂z
∂ f̄

· ∂ f̄
∂Wc,f

=
∂z
∂ f̄

· c

∂z
∂Wd,f

=
∂z
∂ f̄

· ∂ f̄
∂Wd,f

=
∂z
∂ f̄

· d

∂z
∂We,f

=
∂z
∂ f̄

· ∂ f̄
∂We,f

=
∂z
∂ f̄

· e
67

BACKPROP EXAMPLE

Step 2: Backward pass. Next layer. Use multivariate chain rule.

∂z
∂c =

∂z
∂ f̄

· ∂ f̄
∂c +

∂z
∂ḡ · ∂ḡ

∂c +
∂z
∂h̄

· ∂h̄
∂c

=
∂z
∂ f̄

·Wc,f +
∂z
∂ḡ ·Wc,g +

∂z
∂h̄

·Wc,h

∂z
∂d =

∂z
∂ f̄

·Wd,f +
∂z
∂ḡ ·Wd,g +

∂z
∂h̄

·Wd,h

∂z
∂e =

∂z
∂ f̄

·We,f +
∂z
∂ḡ ·We,g +

∂z
∂h̄

·We,h
68

BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let vi be a vector containing the value of all nodes j in layer i.

v3 =
[
z
]

v2 =

 fg
h

 v1 =

cd
e

Let v̄i be a vector containing j̄ for all nodes j in layer i.

v̄3 =
[
z̄
]

v̄2 =

 f̄ḡ
h̄

 v̄1 =

c̄d̄
f̄

Note: vi = s(v̄i), where s is applied entrywise.

69

BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let δi be a vector containing ∂z/∂j for all nodes j in layer i.

δ3 =
[
1
]

δ2 =

∂z/∂f∂z/∂g
∂z/∂h

 δ1 =

∂z/∂c∂z/∂d
∂z/∂e

Let δ̄i be a vector containing ∂z/∂ j̄ for all nodes j in layer i.

δ̄3 =
[
∂z/∂z̄

]
δ̄2 =

∂z/∂ f̄∂z/∂ḡ
∂z/∂h̄

 δ̄1 =

∂z/∂c̄∂z/∂d̄
∂z/∂ē

Note: δ̄i = s′(v̄i)× δi where × denotes entrywise multiplication.

70

BACKPROP LINEAR ALGEBRA

Let Wi be a matrix containing all the weights for edges between layer
i and layer i+ 1.

W0 =

Wa,c Wb,c
Wa,d Wb,d
Wa,e Wb,e

 W1 =

Wc,f Wd,f We,f
Wc,g Wd,g We,g

Wc,h Wd,h We,h

 W2 =
[
Wf,z Wg,z Wh,z

]

71

BACKPROP LINEAR ALGEBRA

Claim 1: Node derivative computation is matrix multiplication.

δi = WT
i δ̄i+1

What is the computational complexity if Wi ∈ Rk×m?

72

BACKPROP LINEAR ALGEBRA

Let ∆i be a matrix contain the derivatives for all weights for edges
between layer i and layer i+ 1.

∆2 =
[
∂z/∂Wf,z ∂z/∂Wg,z ∂z/∂Wh,z

]
∆1 =

∂z/∂Wc,f ∂z/∂Wd,f ∂z/∂We,f
∂z/∂Wc,g ∂z/∂Wd,g ∂z/∂We,g

∂z/∂Wc,h ∂z/∂Wd,h ∂z/∂We,h

∆0 = . . .

73

BACKPROP LINEAR ALGEBRA

Claim 2: Weight derivative computation is an outer-product between
the (i+ 1)st derivative vector and the ith value vector.

∆i = viδTi+1.

What is the computational complexity of computing the derivatives
for a single weight matrix Wi ∈ Rk×m?

74

BACKPROPAGATION

Takeaways:

• Backpropagation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

• Total computation cost is linear in the number of
parameters of the network to compute f(θ, x) and thus
∇L (y, f(θ, x)) for a single training example x, y.

• SGD can be run in O(P) time per iteration for a network
with P parameters.

• Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.

75

CONVERGENCE

Least squares regression, logistic regression, SVMs, even all of
these with kernels lead to convex losses.

Neural networks very much do not...

76

CONVERGENCE

But SGD still performs remarkably well in practice. Understanding
this phenomenon is still an open research question in machine
learning and optimization. Current hypotheses include:

• Initialization seems important (random uniform vs. random
Gaussian vs. Xavier initialization vs. He initialization vs. etc.)

• Randomization helps in escaping local minima.

• Many local minima are global minima?

• SGD finds “good” local minima?

77

AUTODIFF

Issue: Backpropagation + SGD is fast, but tedious to implement.

Typical to use automatic differentiation, which can compute
the gradient of pretty much any function you can code up.

def loss (W, b) :
preds = pred ic t (W, b , inputs)
label_probs = preds * t a r ge t s + (1 − preds) * (1 − t a r ge t s)
return −np . sum (jnp . log (label_probs))

from j a x import grad
W_grad , b_grad = grad (loss , (0 , 1)) (W, b)
pr in t (’ W_grad ’ , W_grad)
pr in t (’ b_grad ’ , b_grad)

78

LIBRARIES

May mature low-level libraries that handle neural network
representation, autodiff, have built in optimizers (SGD, ADAM,
etc.), etc.

79

LIBRARIES

Higher-level libraries like Keras make it even easy to work with
this software. Tools for easily defining and building neural
networks with specific structure, tracking training, etc.

80

LIBRARIES

Define:

Compile:

Train:

We will release two demos on working with Keras:
keras_demo_synthetic.ipynb and

keras_demo_mnist.ipynb

81

