
CS-GY 6923: Lecture 9
Neural Nets Introduction, Back propagation

NYU Tandon School of Engineering, Prof. Christopher Musco

1



NEURAL NETWORKS

Key Concept

Approach in prior classes:

• Choose good features or a good kernel.
• Use optimization to find best model given those features.

Neural network approach:

• Learn good features and a good model simultaneously.

2



NEURAL NETWORKS

The hot-topic in machine learning right now. With no sign of
slowing down.

Focus of investment at universities, government research labs,
funding agencies, and large tech companies.

Studied since the 1940s/50s. Why the recent attention? More
on history of neural networks shortly.

3



SIMPLE MOTIVATING EXAMPLE

Classification when data is not linearly separable:

Could use feature transformations or a non-linear kernel.

Alternative approach: Divide the space up into regions using
multiple linear classifiers.

4



SIMPLE MOTIVATING EXAMPLE

For each linear classifier β, add a new −1, 1 feature for every
example x = [x0, x1] depending on the sign of 〈x,β〉.

5



SIMPLE MOTIVATING EXAMPLE





.2, .8,
.5, .5
...

.5, 1









x1
x2
...
xn




=⇒





u1

u2
...
un




=





−1,−1,+1,−1
−1,+1,+1,−1

...
−1,−1,−1,−1





Question: After data transformation, how should we map each
new vector ui to a class label?





−1,−1,+1,−1
−1,+1,+1,−1

...
−1,−1,−1,−1




?−→





0
1
...
0





6



SIMPLE MOTIVATING EXAMPLE

Our machine learning algorithms needs to learn two things:

• The original linear functions which divide our data set into
regions (their slopes + intercepts).

• Another linear function which maps our new features to
an output class probability.

7



POSSIBLE MODEL

Input: x = x1, . . . , xNI

Model: f(x,Θ):

• zH ∈ RNH = WHx+ βh.
• uH = sign(zH)
• zO ∈ R = WOuH + βO

• uO = [zO > λ]

Parameters: Θ = [WH ∈ RNH×NI ,βH ∈ RNH ,WO ∈ R1×NH ,bO ∈ R].

WH, WO are weight matrices and βH, βO are bias terms that
account for the intercepts of our linear functions.

8



POSSIBLE MODEL

Our model is function f which makes x to a class label uO.1

This is called a “multilayer perceptron”: one of the oldest types
of neural nets. Dates back to Frank Rosenblatt from 1958
• Number of input variables NI =

• Number of hidden variables NH =

• Number of output variables NO =
1For regression, would cut off at zO to get continuous output. 9



POSSIBLE MODEL

Our model is function f which maps x to a class label uO.

Training the model:

• Choose a loss function L(f(x,Θ), y).
• Find optimal parameters: Θ∗ = argminΘ

∑n
i=1 L(f(xi,Θ), yi)

using gradient descent.
10



FINAL MODEL

A more typical model uses smoother activation functions, aka
non-linearities, which are more amenable to computing gradients.
E.g. we might use the sigmoid function g = 1

1+e−x .

• Use cross-entropy loss:

L(f(xi,Θ), yi) = −yi log(f(xi,Θ))− (1− yi) log(1− f(xi,Θ))

• We will discuss soon how to compute gradients.

11



FEATURE EXTRACTION

Features learned using step-function activation are binary,
depending on which side of a set of learned hyperplanes each
point lies on.

12



FEATURE EXTRACTION

Features learned using sigmoid activation are real valued in
[0, 1]. Mimic binary features.

13



HYPERPARAMETERS

Things we can change in this basic classification network:

• More or less hidden variables.
• We could add more layers.
• Different non-linearity/activation function.
• Different loss function.

14



TEST YOUR INTUITION

How many hidden variables (e.g. splitting hyperplanes) would
be needed to classify this dataset correctly?

https://playground.tensorflow.org/

15

https://playground.tensorflow.org/


TEST YOUR INTUITION

16



NOTATION

Another common diagram for a 2-layered network:

17



NOTATION

Neural network math:

18



NOTATION

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linear activation functions. 19



NOTATION

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected” layers.
Every variable in layer i is connected to every variable in layer i+ 1. 20



ARCHITECTURE VISUALIZATION

Effective way of visualize “architecture” of a neural network:

Visualize number of variables, types of connections, number of
layers and their relative sizes.

These are all feedforward neural networks. No backwards (recurrent)
connections.

21



SOME HISTORY AND MOTIVATION

21



CONNECTION TO BIOLOGY

Simplified model of the brain:
Dendrites: Input electrical
current from other neurons.
Axon: Output electrical current
to other neurons.
Synapse: Where these two
connect.

A neuron “fires” (outputs non-zero electric charge) if it receives
enough cumulative electrical input from all neurons connected to it.

Output charge can be positive or negative (excitatory vs. inhibitory).
22



CONNECTION TO BIOLOGY

Inspired early work on neural networks:

• 1940s Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

• 1950s Frank Rosenblatt’s Perceptron is one of the first
“artifical” neural networks.

• Continued work throughout the 1960s.

Main issue with neural network methods: They are hard to
train. Generally require a lot of computation power. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. We have gotten a lot better
at resolving these issues though!

23



EARLY NEURAL NETWORK EXPLOSION

Around 1985 several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via (stochastic) gradient descent. Along with
increased computational power this lead to a resurgence of
interest in neural network models.

Very good performance on problems like digit recognition. 24



NEURAL NETWORK DECLINE

From 1990s - 2010, kernel methods, SVMs, and probabilistic
methods began to dominate the literature in machine learning:

• Work well “out of the box”.
• Relatively easy to understand theoretically.
• Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-learning-according.html

25

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html


NEURAL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

26



MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

State-of-the-art results in game playing, image recognition,
content generation, natural language processing, machine
translation, many other areas.

27



2019 TURING AWARD WINNERS

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing.”

What were these breakthroughs? What made training large neural
networks computationally feasible?

28



ALEXNET

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

Very general image classification task.
29



ALEXNET

All changed with AlexNet and the 2012 ImageNet Challenge...

2010 Results

2012 Results 30



ALEXNET

31



MODERN NEURAL NETWORKS

Why 2012?

• Clever ideas in changing neural network architecture and
training. E.g. ReLU non-linearities, dropout regularization,
batch normalization, data augmentation.

• Wide-spread access to GPU computing power.

32



GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

• 2007: Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used 60 million parameters. Could not
have been trained using CPUs alone (except maybe on a
government super computer).

33



TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

1. Stochastic gradient descent.
2. Backpropogation.

34



TRAINING NEURAL NETWORKS

Let f(θ, x) be our neural network. A typical "-layer feed forward
model has the form:

g! (W! (. . .W3 · g2 (W2 · g1 (W1x+ β1) + β2) + β3 . . .) + β!) .

Wi and βi are the weight matrix and bias vector for layer i and
gi is the non-linearity (e.g. sigmoid). θ = [W0,β0, . . . ,W!,β!] is
a vector of all entries in these matrices.

Goal: Given training data (x1, y1), . . . , (xn, yn) minimize the loss

L(θ) =
n∑

i=1

L (yi, f(θ, xi))

Example: We might use the binary cross-entropy loss for
binary classification:

L (yi, f(θ, xi)) = −yi log(f(θ, xi))− (1− yi) log(1− f(θ, xi))
35



GRADIENT OF THE LOSS

Approach: minimize the loss by using gradient descent. Which
requires us to compute the gradient of the loss function, ∇L.
Note that this gradient has an entry for every value in
W0,β0, . . . ,W!,β!.

As usual, our loss function has finite sum structure, so:

∇L(θ) =
n∑

i=1

∇L (yi, f(θ, xi))

So we can focus on computing:

∇θL (yi, f(θ, xi))

for a single training example (xi, yi).

36



CHAIN RULE REVIEW

For a scalar function f(x), we write the derivative with respect
to x as:

f′(x) = df
dx

= lim
t→0

f(x+ t)− f(x)
t

For a multivariate function f(x, y, z) wr write the partial
derivative with repect to x as:

df
dx

= lim
t→0

f(x+ t, y, z)− f(x, y, z)
t

37



CHAIN RULE REVIEW

Let y(x) be a function of x and let f(y) be a function of y. The
chain rule says that:

df
dx

=
df
dy

dy
dx

df
dx

= lim
t→0

f(y(x+ t))− f(y(x))
t

= lim
t→0

f(y(x+ t))− f(y(x))
y(x+ t)− y(x)

· y(x+ t)− y(x)
t

= lim
t→0

f(y(x) + c)− f(y(x))
c

· y(x+ t)− y(x)
t

where c = y(x+ t)− y(x). As long as limt→0 y(x+ t)− y(x) = 0
then the first term equals df

dy . The second term equals dy
dx .

38



MULTIVARIABLE CHAIN RULE

Let y(x), z(x),w(x) be functions of x and let f(y, z,w) be a
function of y, z,w.

df
dx

=
df
dy

· dy
dx

+
df
dz

· dz
dx

+
df
dw

· dw
dx

Example: Let y(x) = x3 and z(x) = x2. Let f(y, z) = y · z. Then:

df
dx

=

(
df
dy

· dy
dx

)
+

(
df
dz

· dz
dx

)

=

39



GRADIENT OF THE LOSS

Applying chain rule each partial derivative of the loss:

∇θL (y, f(θ, x)) =
∂L

∂f(θ, x) ·∇θf(θ, x)

Binary cross-entropy example:

L (y, f(θ, x)) = −y log(f(θ, x))− (1− y) log(1− f(θ, x))

40



GRADIENT OF THE LOSS

We have reduced our goal to computing ∇θf(θ, x), where the
gradient is with respect to the parameters θ.

Back-propagation is an efficient way to compute ∇θf(θ, x). It
derives its name because we compute gradient from back to
front: starting with the parameters closest to the output of the
neural net. 41



BACKPROP EXAMPLE

Notation for few slides:
• a,b, . . . , z are the node names, and defnote values at the nodes
after applying non-linearity.

• ā, b̄, . . . , z̄ denote values before applying non-linearity.

• Wi,j is the weight of edge from node i to node j.

• s(·) : R → R is the non-linear activation function.

• βj is the bias for node j.

Example: h = s(h̄) = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh)
42



BACKPROP EXAMPLE

For any node j, let j̄ denote the value obtained before applying
the non-linearity g.

So if h = s(c ·Wc,h + d ·Wd,h + e ·We,h + βh) then we use h̄ to
denote:

h̄ = c ·Wc,h + d ·Wd,h + e ·We,h + βh

43



BACKPROP EXAMPLE

Goal: Compute the gradient ∇f(θ, x), which contains the partial
derivatives with respect to every parameter:

• ∂z/∂βz
• ∂z/∂Wf,z, ∂z/∂Wg,z, ∂z/∂Wh,z

• ∂z/∂βf, ∂z/∂βg, ∂z/∂βh
• ∂z/∂Wc,f, ∂z/∂Wc,g, ∂z/∂Wc,h

• ∂z/∂Wd,f, ∂z/∂Wd,g, ∂z/∂Wd,h

•
...

• ∂z/∂Wa,c, ∂z/∂Wa,d, ∂z/∂Wa,e

Two steps: Forward pass to compute function value.
Backwards pass to compute gradients.

44



BACKPROP EXAMPLE

Step 1: Forward pass.

• Using current parameters, compute the output z by
moving from left to right.

• Store all intermediate results:

c̄, d̄, ē, c,d, e, f̄, ḡ, h̄, f,g,h, z̄, z.

45



BACKPROP EXAMPLE

Step 1: Forward pass.

c̄ = Wa,c · a+Wb, c · b+ βc c = s(c̄)
d̄ = Wa,d · a+Wb,d · b+ βd d = s(d̄)
ē = Wa,e · a+Wb, e · b+ βe e = s(ē)
f̄ = Wc,f · c+Wd, f · d+We, f · e+ βf f = s(̄f)
...
z̄ = Wf,z · f+Wg, z · g+Wh, z · f+ βz z = s(z̄)

Question: What is runtime in terms of # of parameters P? 46



BACKPROP EXAMPLE

Step 2: Backward pass.

• Using current parameters and computed node values,
compute the partial derivatives of all parameters by
moving from right to left.

47



BACKPROP EXAMPLE

Step 2: Backward pass. Deepest layer.

∂z
∂βz

=
∂z̄
∂βz

· ∂z
∂z̄

= 1 · s′(z̄)

∂z
∂Wf,z

=
∂z̄

∂Wf,z
· ∂z
∂z̄

= f · s′(z̄)

∂z
∂Wg,z

=
∂z̄

∂Wg,z
· ∂z
∂z̄

= g · s′(z̄)

∂z
∂Wh,z

=
∂z̄

∂Wh,z
· ∂z
∂z̄

= h · s′(z̄)

48



BACKPROP EXAMPLE

Step 2: Backward pass.

∂z
∂f

=
∂z̄
∂f

· ∂z
∂z̄

= Wf,z · s′(z̄)

∂z
∂g

=
∂z̄
∂g

· ∂z
∂z̄

= Wg,z · s′(z̄)

∂z
∂h

=
∂z̄
∂h

· ∂z
∂z̄

= Wh,z · s′(z̄)

Compute partial derivs with respect to nodes, even though these
are not used in the gradient. 49



BACKPROP EXAMPLE

Step 2: Backward pass.

∂z
∂ f̄

=
∂z
∂f

· ∂f
∂ f̄

=
∂z
∂f

· s′(̄f)

∂z
∂ḡ

=
∂z
∂g

· ∂g
∂ḡ

=
∂z
∂g

· s′(ḡ)

∂z
∂h̄

=
∂z
∂h

· ∂h
∂h̄

=
∂z
∂h

· s′(h̄)

And for “pre-nonlinearity” nodes.
50



BACKPROP EXAMPLE

Step 2: Backward pass. Next layer.

∂z
∂βf

=
∂z
∂ f̄

· ∂ f̄
∂βf

=
∂z
∂ f̄

· 1

∂z
∂Wc,f

=
∂z
∂ f̄

· ∂ f̄
∂Wc,f

=
∂z
∂ f̄

· c

∂z
∂Wd,f

=
∂z
∂ f̄

· ∂ f̄
∂Wd,f

=
∂z
∂ f̄

· d

∂z
∂We,f

=
∂z
∂ f̄

· ∂ f̄
∂We,f

=
∂z
∂ f̄

· e
51



BACKPROP EXAMPLE

Step 2: Backward pass. Next layer.

∂z
∂c

=
∂z
∂ f̄

· ∂ f̄
∂c

+
∂z
∂ḡ

· ∂ḡ
∂c

+
∂z
∂h̄

· ∂h̄
∂c

=
∂z
∂ f̄

·Wc,f +
∂z
∂ḡ

·Wc,g +
∂z
∂h̄

·Wc,h

∂z
∂d

=
∂z
∂ f̄

·Wd,f +
∂z
∂ḡ

·Wd,g +
∂z
∂h̄

·Wd,h

∂z
∂e

=
∂z
∂ f̄

·We,f +
∂z
∂ḡ

·We,g +
∂z
∂h̄

·We,h
52



BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let vi be a vector containing the value of all nodes j in layer i.

v3 =
[
z
]

v2 =




f
g
h



 v1 =




c
d
f





Let v̄i be a vector containing j̄ for all nodes j in layer i.

v̄3 =
[
z̄
]

v̄2 =




f̄
ḡ
h̄



 v̄1 =




c̄
d̄
f̄





Note: vi = s(v̄i), where s is applied entrywise.

53



BACKPROP LINEAR ALGEBRA

Linear algebraic view.

Let δi be a vector containing ∂z/∂j for all nodes j in layer i.

δ3 =
[
1
]

δ2 =




∂z/∂f
∂z/∂g
∂z/∂h



 δ1 =




∂z/∂c
∂z/∂d
∂z/∂e





Let δ̄i be a vector containing ∂z/∂ j̄ for all nodes j in layer i.

δ̄3 =
[
∂z/∂z̄

]
δ̄2 =




∂z/∂ f̄
∂z/∂ḡ
∂z/∂h̄



 δ̄1 =




∂z/∂c̄
∂z/∂d̄
∂z/∂ē





Note: δ̄i = s′(v̄i)× δi where × denotes entrywise multiplication.

54



BACKPROP LINEAR ALGEBRA

Let Wi be a matrix containing all the weights for edges between layer
i and layer i+ 1.

W2 =
[
Wf,z Wg,z Wh,z

]
W1 =




Wc,f Wd,f We,f

Wc,g Wd,g We,g

Wc,h Wd,h We,h



 W0 =




Wa,c Wb,c

Wa,d Wb,d

Wa,e Wb,e





55



BACKPROP LINEAR ALGEBRA

Claim 1: Node derivative computation is matrix multiplication.

δi = WT
i δ̄i+1

56



BACKPROP LINEAR ALGEBRA

Let ∆i be a matrix contain the derivatives for all weights for edges
between layer i and layer i+ 1.

∆2 =
[
∂z/∂Wf,z ∂z/∂Wg,z ∂z/∂Wh,z

]

∆1 =




∂z/∂Wc,f ∂z/∂Wd,f ∂z/∂We,f

∂z/∂Wc,g ∂z/∂Wd,g ∂z/∂We,g

∂z/∂Wc,h ∂z/∂Wd,h ∂z/∂We,h





∆0 = . . .

57



BACKPROP LINEAR ALGEBRA

Claim 2: Weight derivative computation is an outer-product.

∆i = viδTi+1.

58



BACKPROP EXAMPLE

Takeaways:

• Backpropogation can be used to compute derivatives for
all weights and biases for any feedforward neural network.

• Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.

59



BACKPROP

Backpropagation allows us to compute ∇L (yi, f(θ, xi)) for a
single training example (xi, yi). Computing entire gradient
requires computing:

∇L(θ) =
n∑

i=1

∇L (yi, f(θ, xi))

Computing the entire sum would be very expensive.
O ((time for backprop) · n) time.

35



STOCHASTIC GRADIENT DESCENT

SGD iteration:

• Initialize θ0 (typically randomly).
• For t = 1, . . . , T:

• Choose j uniformly at random.
• Compute stochastic gradient g = ∇Lj(θt).

• For neural networks this is done using backprop with
training example (xj, yj).

• Update θt+1 = θt − ηg

Move in direction of steepest descent in expectation.

37



CONVERGENCE

Least squares regression, logistic regression, SVMs, even all of
these with kernels lead to convex losses.

Neural networks very much do not...

39



CONVERGENCE

But SGD still performs remarkably well in practice. Understanding
this phenomenon is a major open research question in machine
learning and optimization.

• Initialization seems important (random uniform vs. random
Gaussian vs. Xavier initialization vs. He initialization vs. etc.)

• SGD finds “good” local minima?

40



STOCHASTIC GRADIENT DESCENT IN PRACTICE

We already discussed a few practical modifications of SGD:

• Using “mini-batch” gradients.
∑B

i=1∇Lji(θ).
• Shuffling then cycling through training data instead of
picking a training data point at random each time.

41



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Per-parameter adaptive learning rate.

Let g =




g1
...
gp



 be a stochastic or batch stochastic gradient. Our

typical parameter update looks like:

θt+1 = θt − ηg.

We’ve already seen a simple method for adaptively choosing
the learning rate/step size η. Worked well for convex functions.

42



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Per-parameter adaptive learning rate.

In practice, neural networks can often be optimized much
faster by using “adaptive gradient methods” like Adagrad,
Adadelta, RMSProp, and ADAM. These methods make updates
of the form:

θt+1 = θt −




η1 · g1

...
ηp · gp





So we have a separate learning rate for each entry in the
gradient (e.g. parameter in the model). And each η1, . . . , ηp is
chosen adaptively.

43



NEURAL NETWORK DEMOS

Two demos on neural networks:

• keras_demo_synthetic.ipynb
• keras_demo_mnist.ipynb

Please spend some time working through these!

44



NEURAL NETWORK SOFTWARE

Low-level libraries have built in optimizers (SGD and improvements)
and can automatically perform backpropagation for arbitrary
network structures. Also ptimize code for any available GPUs.

Keras has high level functions for defining and training a neural
network architecture. 46



NEURAL NETWORK SOFTWARE

Define model:

Compile model:

Train model:

47



CONVOLUTIONAL NEURAL NETWORKS (CNNS)

47


