
CS-GY 6923: Lecture 7
Learning Rates, Stochastic Gradient Descent,
Taste of Learning Theory, PAC learning

NYU Tandon School of Engineering, Prof. Christopher Musco
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FIRST ORDER OPTIMIZATION

First order oracle model: Given a function L to minimize (in
our case a loss function), assume we can:

• Function oracle: Evaluate L(β) for any β.
• Gradient oracle: Evaluate ∇L(β) for any β.
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GRADIENT DESCENT

Basic Gradient descent algorithm:

• Choose starting point β(0).
• For i = 1, . . . , T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(t).

η > 0 is a step-size parameter. Also called the learning rate.

We did not discuss how to set η in practice, but this is a very
important issue in optimization for machine learning.
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DIRECTIONAL DERIVATIVES

We have

lim
η→0

L(β − ηv)− L(β) = −η ·
(

∂L
∂β1

v1 +
∂L
∂β2

v2 + . . .+
∂L
∂βd

vd
)

= −η · ⟨∇L(β), v⟩.

If we set v = ∇L(β), then we make progress.

How to set η in practice?

• Too large, and the above claim doesn’t hold, so we don’t
make progress.

• Too small, and we converge slowly.

4



LEARNING RATE

Precision in choosing the learning rate η is not super
important, but we do need to get it to the right order of
magnitude.
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CONVERGENCE ANALYSIS FOR CONVEX FUNCTIONS

Assume:

• L is convex.
• Lipschitz function: for all β, ∥∇L(β)∥2 ≤ G.
• Starting radius: ∥β∗ − β(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point β(0). E.g. β(0) = 0.
• η = R

G
√
T

• For i = 0, . . . , T:
• β(i+1) = β(i) − η∇L(β(i))

• Return β̂ = argminβ(i) L(β).

This result tells us exactly how to set the learning rate η.
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SETTING LEARNING RATE

But...

• We don’t usually know R or G in advance. We might not
even know T.

• Even if we did, setting η = R
G
√
T tends to be a very

conservative in practice. The choice 100% leads to
convergence, but usually to fairly slow convergence.

• What if L is not convex?
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FIRST APPROACH: EXPONENTIAL GRID SEARCH

Just as in regularization, search over a grid of possible
parameters:

η = [2−5, 2−4, 2−3, . . . , 29, 210].

Can manually check if we are converging too slow or
undershooting by plotting the optimization curve.
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LEARNING RATE

Plot’s of loss vs. number of iterations for three difference
choices of step size.
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BACKTRACKING LINE SEARCH/ARMIJO RULE

Recall: If we set β(i+1) ← β(i) − η∇L(β(i)) then:

L(β(i+1)) ≈ L(β(i))− η
⟨
∇L(β(i)),∇L(β(i))

⟩
= L(β(i))− η∥∇L(β(i))∥22.

Approximation holds for small η. If it holds, maybe we could
get away with a larger η. If it doesn’t, we should probably

reduce η.

10



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

• Choose arbitrary starting point β.

• Choose starting step size η.

• Choose c < 1 (typically both c = 1/2)

• For i = 1, . . . , T:

• β(new) = β − η∇L(β)
• If L(β(new)) ≤ L(β)− c · η∇L(β)

• β ← β(new)

• η ← 2η
• Else

• η ← η/2

Always decreases objective value, works very well in practice.

11



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

Always decreases objective value, works very well in practice. We
will see this in a lab.
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COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 ∇L(β) = 2XT (Xβ − y)

• Runtime of closed form solution β∗ = (XTX)−1XTy:
• Runtime of one GD step:
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COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = −
n∑
i=1

yi log(h(βTxi)) + (1− yi) log(1− h(βTxi))

∇L(β) = XT (h(Xβ)− y)

• No closed form solution.
• Runtime of one GD step:
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COMPLEXITY OF GRADIENT DESCENT

Frequently the complexity is O(nd) if you have n data-points
and d parameters in your model. This will also be the case for
neural networks.

Not bad, but the dependence on n can be a lot! n might be on
the order of thousands, or millions, or trillions.
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TRAINING NEURAL NETWORKS

Stochastic Gradient Descent (SGD).

• Powerful randomized variant of gradient descent used to
train machine learning models when n is large and thus
computing a full gradient is expensive.

Applies to any loss with finite sum structure:

L(β) =
n∑
j=1

ℓ(β, xj, yj)
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STOCHASTIC GRADIENT DESCENT

Let Lj(β) denote ℓ(β, xj, yj).

Claim: If j ∈ 1, . . . ,n is chosen uniformly at random. Then:

E
[
n · ∇Lj(β)

]
= ∇L(β).

∇Lj(β) is called a stochastic gradient.
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STOCHASTIC GRADIENT DESCENT

SGD iteration:

• Initialize β(0).
• For i = 0, . . . , T− 1:

• Choose j uniformly at random from {1, 2, . . . ,n}.
• Compute stochastic gradient g = ∇Lj(β(i)).
• Update β(t+1) = β(t) − η · ng

Move in direction of steepest descent in expectation.

Cost of computing g is independent of n!
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COMPLEXITY OF STOCHASTIC GRADIENT DESCENT

Example: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 =
n∑
j=1

(yj − βTxj)2

• Runtime of one SGD step:
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Typical implementation: Shuffled Gradient Descent.

Instead of choosing j independently at random for each
iteration, randomly permute (shuffle) data and set j = 1, . . . ,n.
After every n iterations, reshuffle data and repeat.

• Relatively similar convergence behavior to standard SGD.
• Important term: one epoch denotes one pass over all
training examples: j = 1, . . . , j = n.

• Convergence rates for training ML models are often
discussed in terms of epochs instead of iterations.
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch size s,

E

[
n
s

s∑
i=1
∇Lji(β)

]
= ∇L(β).

if j1, . . . , js are chosen independently and uniformly at random
from 1, . . . ,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?
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MINI-BATCH GRADIENT DESCENT

• Overall faster convergence (fewer iterations needed).
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Mod. 2: Per-parameter adaptive learning rate.

Let g =

g1...
gp

 be a stochastic or batch stochastic gradient. Our

typical parameter update looks like:

β(t+1) = β(t) − ηg.

We’ve already seen a simple method for adaptively choosing
the learning rate/step size η.
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Mod. 2: Per-parameter adaptive learning rate.

In practice, ML lost functions can often be optimized much
faster by using “adaptive gradient methods” like Adagrad,
Adadelta, RMSProp, and ADAM. These methods make updates
of the form:

βt+1 = βt −

η1 · g1
...

ηd · gd


So we have a separate learning rate for each entry in the
gradient (e.g. parameter in the model). And each η1, . . . , ηp is
chosen adaptively.
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LEARNING THEORY
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THE FUNDAMENTAL CURVE OF ML

Key Observation: Due to overfitting, more complex models do
not always lead to lower test error.

The more complex a model is, the more training data we need
to ensure that we do not overfit. 27



EXAMPLE: POLYNOMIAL REGRESSION

If we want to learn a degree q polynomial model, we will
perfectly fit our training data if we have n ≤ q examples.

Need n > q samples to ensure good generalization. How much
more?
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EXAMPLE: LINEAR REGRESSION

If we want to fit a multivariate linear model with d features, we
will perfectly fit our training data if we have n ≤ d examples.

Need > d samples to ensure good generalization.

How much more?
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STATISTICAL LEARNING THEORY

Major goal in learning theory:

Formally characterize how much training data is required to
ensure good generalization (i.e., good test set performance)
when fitting models of varying complexity.
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STATISTICAL LEARNING MODEL

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

For today: We will only consider classification problems so
assume that y ∈ {0, 1}.
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SETUP

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Assume we want to fit our data with a function h (a
“hypothesis”) in some hypothesis class H. For input x,
h(x)→ {0, 1}.

You can think of h as a model, instantiated with a specific set
of parameters. I.e. h is the same as fθ .
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EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

H contains all functions of the form:

h(x) = 1[xTβ ≥ λ]

.
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EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

H contains all functions of the form:

h(x) = 1[xTβ ≥ λ]

.
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:

H contains all functions of the form:

h(x) = 1[l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2]
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:

H contains all functions of the form:

h(x) = 1[l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2]
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EXAMPLE HYPOTHESIS CLASS

Disjunctive Normal Form (DNF) formulas:

Assume x ∈ {0, 1}d is binary.

H contains functions of the form:

h(x) = (x1 ∧ x̄5 ∧ x10) ∨ (x̄3 ∧ x2) ∨ . . . ∨ (x̄1 ∧ x2 ∧ x10)

∧ = ”and”, ∨ = ”or”

k-DNF: Each conjunction has at most k variables.
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POPULATION AND EMPIRICAL ERROR

Same as “population risk” for the zero one loss:

• Population (“True”) Error:

Rpop(h) = Pr
(x,y)∼D

[h(x) ̸= y]

• Empirical Error: Given a set of samples
(x1, y1), . . . , (xm, ym) ∼ D,

Remp(h) =
1
m

m∑
i=1

1[h(xi) ̸= yi]

Goal is to find h ∈ H that minimizes population error.
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GENERALIZATION

Let (x1, y1), . . . , (xn, yn) ∼ D be our training set and let htrain be
the empirical error minimizer1:

htrain = argmin
h

1
n

n∑
i=1

1[h(xi) ̸= yi]

Let h∗ be the population error minimizer:

h∗ = argmin
h

Rpop(h) = argmin
h

Pr
(x,y)∼D

[h(x) ̸= y]

Goal: Ideally, for some small ϵ, Rpop(htrain)− Rpop(h∗) ≤ ϵ.

1Typically we do not actually compute htrain but rather some approximation
based on an easier loss to minimize, e.g. logistic loss.
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SIMPLIFICATION

Simplification for today: Assume we are in the realizable
setting, which means that Rpop(h∗) = 0. I.e. there is some
hypothesis in our class H that perfectly classifies the data.

Formally, for any (x, y) such that PrD[x, y] > 0, h∗(x) = y.

Extending to the case when Rpop(h∗) ̸= 0 is not hard, but the
math gets a little trickier. And intuition is roughly the same. 40



PAC LEARNING

Probably Approximately Correct (PAC) Learning (Valiant, 1984):

For a hypothesis class H, data distribution D, and training data
(x1, y1), . . . , (xn, yn), let htrain = argminh

1
n
∑n

i=1 1[h(xi) ̸= yi].

In the realizable setting, how many training samples n are
required so that, with probability 1− δ,

Rpop(htrain) ≤ ϵ?

The number of samples n will depend on ϵ, δ, and the
complexity of the hypothesis class H. Perhaps surprisingly, it
will not depend at all on D.

41



COMPLEXITY OF HYPOTHESIS CLASS

Many ways to measure complexity of a hypothesis class. Today
we will start with the simplest measure: the number of
hypotheses in the class, |H|.

Example: What is the number of hypothesis in the class of
3-DNF formulas on d dimensional inputs
x = [x1, . . . , xd] ∈ {0, 1}d?

h(x) = (x1 ∧ x̄5 ∧ x10) ∨ (x̄3 ∧ x2) ∨ . . . ∨ (x̄1 ∧ x2 ∧ x10)
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COMPLEXITY OF HYPOTHESIS CLASS

Caveat: Many hypothesis classes are infinitely sized. E.g. the
set of linear thresholds

h(x) = 1[xTβ ≥ λ]

But you could imagine approximating H by a finite hypothesis
class. E.g. take values in β, λ to lie on a finite grid of size C.
Then how many hypothesis are there?

Formally moving from finite to infinite sized hypothesis classes
is a huge area of learning theory (VC theory, Rademacher
complexity, etc.)
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MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data set (x1, y1), . . . , (xn, yn), and
htrain = argminh

1
n
∑n

i=1 1[h(xi) ̸= yi].

Theorem
If n ≥ 1

ϵ

(
log |H|+ log 1

δ

)
, then with probability 1− δ,

Rpop(htrain) ≤ ϵ.

Roughly how many training samples are needed to learn 3-DNF
formulas? To learn (discretized) linear threshold funtions?
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TOOLS

Two ingredients needed for proof:

1. For any ϵ ∈ [0, 1], (1− ϵ) ≤ e−ϵ.
2. Union bound. Basic but important inequality about

probabilities.
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ALGEBRAIC FACT

For any ϵ ∈ [0, 1], (1− ϵ) ≤ e−ϵ.

Raising both sides to 1/ϵ, we have the (1− ϵ)1/ϵ ≤ 1
e ≈ .37.

The specific constant here won’t be imporatnt.
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UNION BOUND

Lemma (Union Bound)
For any random events A1, . . . , Ak:

Pr[A1 or A2 or . . . or Ak] ≤ Pr[A1] + Pr[A2] + . . .+ Pr[Ak].

Proof by picture.

Sometimes written as Pr[A1 ∪ A2 ∪ . . . ∪ Ak].
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UNION BOUND

Union bound is not tight: What is the probability that a dice
roll is odd, or that it is ≤ 2?

Union bound is tight: What is the probability that a dice roll is
1, or that it is ≥ 4?
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MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data (x1, y1), . . . , (xn, yn), and
htrain = argminh

1
n
∑n

i=1 1[h(xi) ̸= yi].

Theorem
If n ≥ 1

ϵ

(
log |H|+ log 1

δ

)
, then with probability 1− δ,

Rpop(htrain) ≤ ϵ.
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PROOF

First observation: Note that because we are in the realizable
setting, we always select an htrain with Rtrain(htrain) = 0. There
is always at least one h ∈ H such that h(xi) = yi for all i.

Proof approach: Show that for any fixed hypothesis hbad with
Rpop(hbad) > ϵ, it is very unlikely that Rtrain(hbad) = 0. So with
high probability, we will not choose a bad hypothesis. 50



PROOF

Let hbad be a fixed hypothesis with Rpop(h) > ϵ. For (x, y) drawn
from D, what is the probability that hbad(x) = y?

What is the probability that for a training set
(x1, y1), . . . , (xn, yn) drawn from D that hbad(xi) = yi for all i? I.e.
that Rtrain(hbad) = 0.
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PROOF

Claim
For any fixed hypthesis h with Rpop(hbad) > ϵ, the probability
that Rtrain(h) = 0 can be bounded by:

Pr[Rtrain(hbad) = 0] < e−ϵn.

Set n ≥ 1
ϵ log(|H|/δ). Then we have that for any fixed hypthesis

hbad with Rpop(hbad) > ϵ,

Pr[Rtrain(hbad) = 0] < δ

H
.
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UNION BOUND APPLICATION

Let hbad1 , . . . ,hbadm be all hypthesis in H with Rpop(h) > ϵ.

Pr[Rtrain(hbad1 ) = 0 or . . . or Rtrain(hbadm ) = 0]
≤ Pr[Rtrain(hbad1 ) = 0] + . . .+ Pr[Rtrain(hbadm ) = 0]

< m · δ
H

How large can m be? Certainly no more than |H|!

So with probability 1− δ (high probability) no bad hypotheses
have 0 training error. Accordingly, it must be that when we
choose a hypothesis with 0 training error, we are choosing a
good one. I.e. one with Rpop(h) ≤ ϵ.
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THINGS WE DIDN’T COVER

• How to deal with the non-realizable setting? E.g. where
minh Rpop ≠ 0?

• How to deal with infinite hypothesis classes (most classes
in ML are)?

• How to find htrain = argminh
1
n
∑n

i=1 1[h(xi) ̸= yi] in a
computationally efficient way?
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TAKE AWAY

Important take-away as we start working with neural
networks and other more complex models:

• We expect the amount of training data required to learn a
model to scale logarithmically with the size of the model
class being fit, |H|.

• Typically, the size of H grows exponentially with the
number of parameters in the model.

• So overall, our training data size should exceed the
number of model parameters (and then some).

I.e., our experience from polynomial regression and linear
regression is somewhat universal.
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