

CS-GY :ࠂࠁ69 Lecture 5
Linear Classification, Logistic Regression,
Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

MOTIVATING PROBLEM

Breast Cancer Biopsy: Determine if a breast lump in a patient
is malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.
• Stain and examine cells under microscope.
• Based on certain characteristics (shape, size, cohesion)
determine if likely malignant or not).

ࠁ

-

O

O

MOTIVATING PROBLEM

Demo: demo_breast_cancer.ipynb

Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)

Features: ߿ࠀ numerical scores about cell characteristics (Clump
Thickness, Uniformity, Marginal Adhesion, etc.) ࠂ

-

O

i

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)

MOTIVATING PROBLEM

Data: (xࠀ, yࠀ), . . . , (xn, yn).

xi = ,ࠀ] ,ࠄ ࠃ . . . , [ࠁ contains score values.

Label yi ∈ ,߿} {ࠀ is ߿ if benign cells, ࠀ if malignant cells.

Goal: Based on scores (which would be collected manually, or
even learned on their own using an ML algorithm) predict if a
sample of cells is malignant or benign.

Approach:

• Naive Bayes Classifier can be extended to x with numerical
values (instead of binary values as seen before). Will see
on homework.

What are other classification algorithms people have heard of?

ࠃ

0 ¥ . - . -

I
- -

k-NEAREST NEIGHBOR METHOD

k-NN algorithm: a simple but powerful baseline for
classification.

Training data: (xࠀ, yࠀ), . . . , (xn, yn) where yࠀ, . . . , yn ∈ ,ࠀ} . . . , q}.

Classification algorithm:

Given new input xnew,

• Compute sim(xnew, xࠀ), . . . , sim(xnew, xn).ࠀ

• Let xjࠀ , . . . , xjk be the training data vectors with highest
similarity to xnew.

• Predict ynew as majority(yjࠀ , . . . , yjk).

,sim(xnewࠀ xi) is any chosen similarity function, like −ࠀ ‖xnew − xi‖ࠁ.

ࠄ

O
h - l , K - 5 , k i l o

•

' ÷
- -

- -

O O

= - - - -

-

k-NEAREST NEIGHBOR METHOD

• Smaller k, more complex classification function.
• Larger k, more robust to noisy labels.

Works remarkably well for many datasets.

ࠅ

.o÷§o
" →

,-

=

MNIST IMAGE DATA

Especially good for large datasets with lots of repetition. Works
well on MNIST for example:

≈ %ࠄࠈ Accuracy out-of-the-box.

Can be improved to %ࠄ.ࠈࠈ with a fancy similarity function!ࠁ

One issue is that prediction can be computationally intensive...
Weࠁ will revisit this when we talk about kernel methods. ࠆ

€ .

LINEAR CLASSIFICATION

ࠆ

BEGIN BY PLOTTING DATA

We pick two variables, Margin Adhesion and Size Uniformity
and plot a scatter plot. Points with label ࠀ (malignant) are
plotted in blue, those with label ࠁ (benign) are plotted in green.

Lots of overlapping points! Hard to get a sense of the data. ࠇ

o

PLOTTING WITH JITTER

Simple + Useful Trick: data jittering. Add tiny random noise
(using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for
training, testing, etc. ࠈ

⇐

BRAINSTORMING

Any ideas for possible classification rules for this data?

߿ࠀ

← i f 9÷÷÷
;

I
l

LINEAR CLASSIFIER

Given vector of predictors xi ∈ Rd (here d = (ࠁ find a parameter
vector β ∈ Rd and threshold λ.

• Predict yi = ߿ if 〈xi,β〉 ≤ λ.
• Predict yi = ࠀ if 〈xi,β〉 > λ

Line has equation 〈x,β〉 = λ. ࠀࠀ

t

O

× .

°

''it:÷÷÷÷.

ta i s1¥76
I..-
* . . ,

u; i

L 'O

LINEAR CLASSIFIER

As long as we append a ࠀ onto each data vector xi (i.e. a
column of ones onto the data matrix X) like we did for linear

regression, an equivalent function is:

• Predict yi = ߿ if 〈xi,β〉 ≤ .߿
• Predict yi = ࠀ if 〈xi,β〉 > ߿

Line has equation 〈x,β〉 = .߿
ࠁࠀ

i÷÷÷÷÷
÷÷:

X I .B z = #
t

Tete points

-

LINEAR CLASSIFICATION

Standard approach for binary classification of real-valued data:

• Find parameter vector β.
• For input data vector x, predict ߿ if βTx > λ and ࠀ βTx ≤ λ

for some threshold λ.ࠂ

Canࠂ always assume λ = ߿ if x has an intercept term. ࠂࠀ

4 ,3 7 ?A

J o
1 I O o

o
§ "
OO

O

−߿ ࠀ LOSS

Question: How do we find a good linear classifier
automatically?

Loss minimization approach (first attempt):

• Modelࠃ:

fβ(x) = [〈x,β〉 > [߿

• Loss function: −߿“ ࠀ Loss”

L(β) =
n∑

i=ࠀ

|fβ(xi)− yi|

ࠃ [event] is the indicator function: it evaluates to ࠀ if the argument inside is
true, ߿ if false.

ࠃࠀ

n t r a i n i ng
date points

= a -

,

MinL(B)
- -

- "

−߿ ࠀ LOSS

Problem with −߿ ࠀ loss:

• The loss function L(β) is not differentiable because fβ(x)
is discontinuous.

• Impossible to take the gradient, very hard to minimize loss
to find optimal β.

• Non-convex function (will make more sense next lecture).
ࠄࠀ

r

I

#

LINEAR CLASSIFIER VIA SQUARE LOSS

Loss minimization approach (second attempt):

• Model:

fβ(x) = [〈x,β〉 > [ࠁ/ࠀ

• Loss function: “Square Loss”

L(β) =
n∑

i=ࠀ

(〈x,β〉 − yi)ࠁ

Intuitively tries to make 〈x,β〉 close to ߿ for examples in class
,߿ close to ࠀ for examples in class .ࠀ

ࠅࠀ

-
- -o¥ i

⇒

LINEAR CLASSIFIER VIA SQUARE LOSS

We can solve for β by just solving a least squares multiple
linear regression problem.

Do you see any issues here?

ࠆࠀ

"
'

'¥' i .

LINEAR CLASSIFIER VIA SQUARE LOSS

Problem with square loss:

• Loss increases if 〈x,β〉 > ࠀ even if correct label is .ࠀ Or if
〈x,β〉 < ߿ even if correct label is .߿

• Intuitively we don’t want to “punish” these cases.

ࠇࠀ

LOGISTIC REGRESSION

Let hβ(x) be the logistic function:

hβ(x) =
ࠀ

+ࠀ e−〈β,x〉

ࠈࠀ

- -

€ 0 t

o

h (CB,x >)
L xB)e c o

a .* o o .

" "

= ¥20,47

O O

O
= CB,×7

LOGISTIC REGRESSION

Loss minimization approach (this works!):

• Model: Let hβ(x) = ࠀ
e−〈β,x〉+ࠀ

fβ(x) = [hβ(x) > [ࠁ/ࠀ
= [〈x,β〉 > [߿

• Loss function: “Logistic loss” aka “binary cross-entropy
loss”

L(β) = −
n∑

i=ࠀ

yi log(hβ(x)) + −ࠀ) yi) log(ࠀ− hβ(x))

߿ࠁ

- -±÷±
- ↳ C.cool)

= 1 / 1 / 1 ' i

yie
9 '

¥
(Xi,b)>7 0

j i f f
Al i ,B) < s o

↳ n o theyadded t o l o s s

LOGISTIC LOSS

Logistic Loss:
L(β) = −

∑n
i=ࠀ yi log(hβ(x)) + −ࠀ) yi) log(ࠀ− hβ(x))

ࠀࠁ

h i i

:
← o o o o

O oO o
800000

(I

LOGISTIC LOSS

Logistic Loss:
L(β) = −

∑n
i=ࠀ yi log(hβ(x)) + −ࠀ) yi) log(ࠀ− hβ(x))

ࠁࠁ

i

i

LOGISTIC REGRESSION

Loss minimization approach:

• Given training data (xࠀ, yࠀ), . . . , (xn, yn) where xi ∈ Rd and
yi ∈ ,߿} .{ࠀ

• Minimize “Logistic loss” aka “binary cross-entropy loss”

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

• Above h(z) is the logistic/sigmoid function: h(z) = ࠀ
e−z+ࠀ

Predict yi = ࠀ if βTxi ≥ ,߿ predict ߿ otherwise.

ࠂࠁ

- 0

LOGISTIC REGRESSION

Let h(z) be the logistic/sigmoid function: h(z) = ࠀ
e−z+ࠀ

Can think of this function as mapping xTβ to a probability that
the true label is .ࠀ If xTβ (߿ then the probability is close to ,ࠀ
if xTβ) ߿ then the probability is close to .߿

ࠃࠁ

• ¥ 7 ex ts

a

GREAT QUESTION

Why not minimize:

L(β) =
n∑

i=ࠀ

(
yi − h(xTβ

ࠁ(
?

Answer: This is actually a pretty reasonable thing to do. An
important issue however is that the loss here is not convex,
which makes it hard to find the β that minimizes the loss.

Log-loss on the other hand is convex. More on this later.

ࠄࠁ

)

LOGISTIC LOSS

• Convex function in β, can be minimized using gradient
descent.

• Works well in practice.
• Good Bayesian motivation (I will post some notes on
website).

• Easily combined with non-linear data transformations.

Fit using logistic regression/log loss. ࠅࠁ

⇐ =

-

LX,B ?

NON-LINEAR TRANSFORMATIONS

How would we learn a classifier for this data using logisitic
regression?

This data is not linearly separable or even approximately
linearly separable.

ࠆࠁ

× , §>
" '' t h i s r -

X ,

NON-LINEAR TRANSFORMATIONS

Transform each x = [xࠀ, xࠁ] to x = ,ࠀ] xࠀ, xࠁ, xࠀࠁ , xࠁࠁ, xࠀxࠁ]

• Predict class ࠀ if xࠀࠁ + xࠁࠁ < λ.
• Predict class ߿ if xࠀࠁ + xࠁࠁ ≥ λ.

This is a linear classifier on our transformed data set. Logisitic
regression might learn β = ,߿] ,߿ ,߿ ,ࠀ ,ࠀ .[߿ ࠇࠁ

-

- I -
B : f-Rio,O , l ,l , o]

@ ¥#¥¥=o
X .' t X , '= O

- r

NON-LINEAR TRANSFORMATIONS

View as mapping data to a higher dimensional space, where it
is linearly separable.

Lots more on this in future lecture!

ࠈࠁ

|x i t x :

ERROR IN CLASSIFICATION

Once we have a classification algorithm, how do we judge its
performance?

• Simplest answer: Error rate = fraction of data examples
misclassified in test set.

• What are some issues with this approach?

Think back to motivating problem of breast cancer detection.

߿ࠂ

-

-

ERROR IN CLASSIFICATION

• Precision: Fraction of
positively labeled
examples (label (ࠀ which
are correct.

• Recall: Fraction of true
positives that we labeled
correctly with label .ࠀ

Question: Which should we
optimize for medical diagnosis?

ࠀࠂ

label 1 = c o v e r @

r - Oo
r -

ERROR IN CLASSIFICATION

Possible logistic regression workflow:

• Learn "β and compute h!β("xi) =
ࠀ

e−〈!xi,!β〉+ࠀ
for all "xi.

• Predict yi = ߿ if h!β("xi) ≤ λ, yi = ࠀ if h!β("xi) > λ.
• Default value of λ is .ࠁ/ࠀ Increasing λ improves precision.
Decreasing λ improves recall.

ࠁࠂ

=

L X ,B > > O

' n
' i

,

O 4,3=7s o

i .
'

.

' l '
,

\ ,

i .

ERROR IN CLASSIFICATION

Possible logistic regression workflow:

• Learn "β and compute h!β("xi) =
ࠀ

e−〈!xi,!β〉+ࠀ
for all "xi.

• Predict yi = ߿ if h!β("xi) ≤ λ, yi = ࠀ if h!β("xi) > λ.
• Default value of λ is .ࠁ/ࠀ Increasing λ improves precision.
Decreasing λ improves recall.

This is very heuristic. There are other methods for handling
“class imbalance” which can often lead to good overall error,
but poor precision or recall. Techniques include weighting the
loss function to care more about false negatives, or
subsampling the larger class.

ࠂࠂ

-

MULTI-CLASS

What about when y ∈ ,ࠀ} . . . , q} instead of y ∈ ,߿} {ࠀ

Two common options for reducing multi-class problems to
binary problems:

• One-vs.-all (most common, also called one-vs.-rest)
• One-vs.-one (slower, but can be more effective)

ࠃࠂ

- - -

= -
-

ONE VS. REST

• For q classes train q classifiers. Obtain parameters β(ࠀ), . . . ,βq.

• Assign y to class i if βT
i x ≥ .߿ Could be ambiguous!

• Better: Assign y to class i with maximum value of h(βT
i x).

ࠄࠂ

0
O n e

u s .
a l l

§,
'
" '

⇐÷ .

i ÷ ⇐

fab?
-

m m
h (LB"',x7)

ONE VS. REST

• For q classes train q(q−ࠀ)
ࠁ classifiers.

• Assign y to class which i which wins in the most number of
head-to-head comparisons.

ࠅࠂ

(g)
Tue

¥ 4 ,
(E)r o a d

"¥81,
0; d '¥'re.

Et
qq

ONE VS. ONE

Hard case for one-vs.-all.

• One-vs.-one would be a better choice here.
• Also tends to work better when there is class in balance.

But one-vs.-one can be super expensive! E.g when q = ߿߿ࠀ or
q = .߿߿߿ࠀ

ࠆࠂ

-

a : *
-

→ 1 0 0• o

I o o o o - o

MULTICLASS LOGISTIC REGRESSION

More common modern alternative: If we have q classes, train
a single model with q parameter vectors β(ࠀ), . . . ,β(q), and
predict class i = argmaxi〈β(i), x〉.

Same idea as one-vs.-rest, but we treat [β(ࠀ), . . . ,β(q)] as a
single length qd parameter vector which we to optimize to
minimize a single joint loss function. We do not train the
parameter vectors separately.

What’s a good loss function?

ࠇࠂ

y>
lengthd

- -

-

- -

MULTICLASS LOGISTIC REGRESSION

Softmax function:

〈β(ࠀ), x〉

...
〈β(ࠀ), x〉

 softmax−−−−→

e〈β(ࠀ),x〉/
∑q

i=ࠀ e
〈β(i),x〉

...
e〈β(q),x〉/

∑q
i=ࠀ e

〈β(i),x〉

Softmax takes in a vector of numbers and converts it to a
vector of probabilities:

[
߿ࠀ− ࠃ ࠀ ߿ ࠄ−

]
→

[
߿߿. ࠃࠈ. ࠃ߿. ࠁ߿. ߿߿.−

]

ࠈࠂ

O

- ,

e
↳ % ,

y

→
length co

- a

- 0 - - 1

MULTICLASS LOGISTIC REGRESSION

Multi-class cross-entropy:

L(βࠀ, . . . ,βq) = −
∑

i:yi=ࠀ

log
e〈β

〈xi,(ࠀ)
∑q

j=ࠀ e〈β
(j),xi〉

− . . .−
∑

i:yi=q

log
e〈β

(q,xi〉
∑q

j=ࠀ e〈β
(j),xi〉

= −
n∑

i=ࠀ

q∑

ࠀ=#
[yi = $] · log e〈β(#),xi〉

∑q
j=ࠀ e〈β

(j),xi〉

Binary cross-entropy:

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

= −
∑

i:yi=ࠀ

log(h(βTxi))−
∑

i:yi=߿

log(ࠀ− h(βTxi))

Not exactly the same... but can show equivalent if you set
β(߿) = β and β(ࠀ) = −β.

߿ࠃ

- -÷±o÷i÷=÷,

o ÷ ÷
- - -

ERROR IN (MULTICLASS) CLASSIFICATION

Confusion matrix for k classes:

• Entry i, j is the fraction of class i items classified as class j.
• Useful to see whole matrix to visualize where errors occur.

ࠀࠃ

Oi;D

I O O

T O O

O O Z O

g O 2

OPTIMIZATION

ࠀࠃ

LOGISTIC REGRESSION

Goal: Minimize the logistic loss:

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

I.e. find β∗ = argmin L(β). How should we do this?

ࠁࠃ

LOGISTIC REGRESSION GRADIENT

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

Let X ∈ Rd×n be our data matrix with xࠀ, . . . , xn ∈ Rd as rows.
Let y = [yࠀ, . . . , yn]. A calculation gives (see notes on webpage):

∇L(β) = XT (h(Xβ)− y)

where h(Xβ) = ࠀ
e−Xβ+ࠀ . Here all operations are entrywise. I.e in

Python you would compute:

ࠂࠃ

LOGISTIC REGRESSION GRADIENT

To find β minimizing L(β) we typically start by finding a β

where:

∇L(β) = XT (h(Xβ)− y) = ߿

• In contrast to what we saw when minimizing the squared
loss for linear regression, there’s no simple closed form
expression for such a β!

• This is the typical situation when minimizing loss in
machine learning: linear regression was a lucky exception.

• Main question: How do we minimize a loss function L(β)
when we can’t explicitly compute where it’s gradient is ?߿

ࠃࠃ

q

MINIMIZING LOSS FUNCTIONS

Always an option: Brute-force search. Test our many possible
values for β and just see which gives the smallest value of
L(β).

• As we saw on Lab ,ࠀ this actually works okay for
low-dimensional problems (e.g. when β has ࠀ or ࠁ entries).

• Problem: Super computationally expensive in
high-dimension. For β ∈ Rd, run time grows as:

ࠄࠃ

MINIMIZING LOSS FUNCTIONS

Much Better idea. Some sort of guided search for a good of β.

• Start with some β(߿), and at each step try to change β

slightly to reduce L(β).
• Hopefully find an approximate minimizer for L(β) much
more quickly than brute-force search.

• Concrete goal: Find β with

L(β) < min
β

L(β) + ε

for some small error term ε.

ࠅࠃ

GRADIENT DESCENT

Gradient descent: A greedy search algorithm for minimizing
functions of multiple variables (including loss functions) that
often works amazingly well.

The single most important computational tool in machine
learning. And it’s remarkable simple + easy to implement.

ࠆࠃ

OPTIMIZATION ALGORITHMS

Just one method in a huge class of algorithms for numerical
optimization. All of these methods are important in ML.

ࠇࠃ

FIRST ORDER OPTIMIZATION

First order oracle model: Given a function L to minimize,
assume we can:

• Function oracle: Evaluate L(β) for any β.
• Gradient oracle: Evaluate ∇L(β) for any β.

These are very general assumptions. Gradient descent will not
use any other information about the loss function L when
trying to find a β which minimizes L.

ࠈࠃ

GRADIENT DESCENT

Basic Gradient descent algorithm:

• Choose starting point β(߿).
• For i = ,ࠀ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(t).

η > ߿ is a step-size parameter. Also called the learning rate.

Why does this method work?

First observation: if we actually reach the minimizer β∗ then
we stop.

߿ࠄ

INTUITION

Consider a dimensional-ࠀ loss function. I.e. where β is just a
single value. Our update step is β(i+ࠀ) = β(i) − ηL′(β(i))

ࠀࠄ

GRADIENT DESCENT IN Dࠀ

Mathematical way of thinking about it:

By definition, L′(β) = limη→߿
L(β+t)−L(β)

t . So for small values of
t, we expect that:

L(β + t)− L(β) ≈ t · L′(β).

We want L(β + t) to be smaller than L(β), so we want t · L′(β) to
be negative.

This can be achieved by choosing t = −η · L′(β).

β(i+ࠀ) = β(i) − ηL′(β(i))

ࠁࠄ

DIRECTIONAL DERIVATIVES

For high dimensional functions (β ∈ Rd), our update involves a
vector v ∈ Rd. At each step:

β ← β + v.

Question: When v is small, what’s an approximation for
L(β + v)− L(β)?

L(β + v)− L(β) ≈

ࠂࠄ

DIRECTIONAL DERIVATIVES

We have

L(β + v)− L(β) ≈ ∂L
∂βࠀ

vࠀ +
∂L
∂βࠁ

vࠁ + . . .+
∂L
∂βd

vd

= 〈∇L(β), v〉.

How should we choose v so that L(β + v) < L(β)?

,Formallyࠃ you might remember that we can define the directional
derivative of a multivariate function: DvL(β) = limt→߿

L(β+tv)−L(β)
t .

ࠃࠄ

STEEPEST DESCENT

Claim (Gradient descent = Steepest descentࠄ)
−∇L(β)
‖∇L(β)‖ࠁ = argminv,‖v‖ࠀ=ࠁ〈∇L(β), v〉

Recall: For two vectors a,b,

〈a,b〉 = ‖a‖ࠁ‖b‖ࠁ · cos(θ)

Weࠄ could have restricted v using a different norm. E.g. ‖v‖ࠀ ≤ ࠀ or
‖v‖∞ = .ࠀ These choices lead to variants of generalized steepest descent..

ࠄࠄ

VISUALIZING IN Dࠁ

ࠅࠄ

STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)
−∇L(β)
‖∇L(β)‖ࠁ = argminv,‖v‖ࠀ=ࠁ〈∇L(β), v〉

ࠆࠄ

GRADIENT DESCENT

Basic Gradient descent (GD) algorithm:

• Choose starting point β(߿).
• For i = ,ࠀ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(t).

• Theoretical questions: Does gradient descent always
converge to the minimum of the loss function L? Can you
prove how quickly?

• Practical questions: How to choose η? Any other
modifications needed for good practical performance?

ࠇࠄ

BASIC CLAIM

• For sufficiently small η, every step of GD either
.ࠀ Decreases the function value.
.ࠁ Get’s stuck because the gradient term equals ߿

Claim
For sufficiently small η and a sufficiently large number of
iterations T, gradient descent will converge to a local
minimum or stationary point of the loss function β̃

∗. I.e. with

∇L(β̃∗
) = .߿

ࠈࠄ

BASIC CLAIM

You can have stationary points that are not minima (local
maxima, saddle points). In practice, always converge to local
minimum.

Very unlikely to land precisely on another stationary point and
get stuck. Non-minimal stationary points are “unstable”.

߿ࠅ

CONVEX FUNCTION

For a broad class of functions, GD converges to global minima.

Definition (Convex)
A function L is convex iff for any βࠀ,βࠁ,λ ∈ ,߿] :[ࠀ

−ࠀ) λ) · L (βࠀ) + λ · L(βࠁ) ≥ L −ࠀ)) λ) · βࠀ + λ · βࠁ)

ࠀࠅ

CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex. ࠁࠅ

CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.

ࠂࠅ

CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex.
ࠃࠅ

CONVERGENCE OF GRADIENT DESCENT

What functions are convex?

• Least squares loss for linear regression.
• ࠀ$ loss for linear regression.
• Either of these with and ࠀ$ or ࠁ$ regularization penalty.
• Logistic regression! Logistic regression with regularization.
• Many other models in machine leaning.

ࠄࠅ

NON-CONVEX

What functions in machine learning are not convex? Loss
functions involving neural networks, matrix completion
problems, mixture models, many more.

Vary in how “bad” the non-convexity is. For example, some
matrix factorization problems are non-convex but still only
have global minima.

ࠅࠅ

CONVEXITY WARM UP

Prove that L(β) = βࠁ is convex.

To show: For any βࠀ,βࠁ,λ ∈ ,߿] ,[ࠀ
λL(βࠀ) + −ࠀ) λ)L(βࠁ) ≥ L(λ · βࠀ + −ࠀ) λ) · βࠁ)

ࠆࠅ

CONVEXITY WARM UP

Prove that L(β) = βࠁ is convex.

To show: For any βࠀ,βࠁ,λ ∈ ,߿] ,[ࠀ
λL(βࠀ) + −ࠀ) λ)L(βࠁ) ≥ L(λ · βࠀ + −ࠀ) λ) · βࠁ)

ࠇࠅ

CONVEXITY OF LEAST SQUARES REGRESSION LOSS

Prove that L(β) = ‖Xβ − y‖ࠁࠁ is convex. For now just consider
λ = ࠀ

ࠁ case. The general λ case is similar, but messier.

Usefulࠄ identity: (a+ b)ࠁ ≤ ࠁa)ࠁ + bࠁ)

ࠈࠅ

CONVEXITY OF LEAST SQUARES REGRESSION LOSS

Prove that L(β) = ‖Xβ − y‖ࠁࠁ is convex. I.e. that:

‖X(λβࠀ + −ࠀ) λ)βࠀ)− y‖ࠁࠁ ≤ λ‖Xβࠀ − y‖ࠁࠁ + −ࠀ) λ)‖Xβࠁ − y‖ࠁࠁ

߿ࠆ

RATE OF CONVERGENCE FOR CONVEX FUNCTIONS

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on L(β).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Next class: A canonical gradient descent analysis that every
computer scientist should know.

ࠀࠆ

