
CS-GY 6923: Lecture 4
Continue on Bayesian Perspective, Modeling
Language

NYU Tandon School of Engineering, Prof. Christopher Musco
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COURSE LOGISTICS

• First written problem set due this evening.
• I will release solutions and go over them in office hours.

• Second lab was due on Monday, but I forgot it was
presidents day. We will push that deadline until Tuesday.

• We will release a new lab today on language modeling.
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PROBABILISTIC MODELING

In a Bayesian or Probabilistic approach to machine learning we
always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

• The model guides how we make predictions.
• The model typically has unknown parameters θ⃗ and we try
to find the most reasonable parameters based on
observed data (more on this later in lecture).
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SPAM PREDICTION
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EMAIL MODEL

Include each word in an email with some fixed probability.
That probability will differ depending on whether or not it is a
spam or regular email.

Not Spam

pwon,0 = .02
p$,0 = .05

pstudent,0 = .06

Spam

pwon,1 = .1
p$,1 = .2

pstudent,1 = .01
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PROBABILISTIC MODEL FOR EMAIL

Probabilistic model for (bag-of-words, label) pair (x, y):

• Set y = 0 (not spam) with probability p0 and y = 1 (spam)
with probability p1 = 1− p0.

• p0 is probability an email is not spam (e.g. 99%).
• p1 is probability an email is spam (e.g. 1%).

• If y = 0, for each i, set xi = 1 with prob. pi0.
• If y = 1, for each i, set xi = 1 with prob. pi1.

Unknown model parameters:
• p0,p1,
• p10,p20, . . .pd0, one for each of the d vocabulary words.
• p11,p21, . . .pd1, one for each of the d vocabulary words.
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PARAMETER ESTIMATION

Reasonable way to set parameters:

• Set p0 and p1 to the empirical fraction of not spam/spam
emails.

• For each word i, set pi0 to the empirical probability word i
appears in a non-spam email.

• For each word i, set pi1 to the empirical probability word i
appears in a spam email.
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DONE WITH MODELING
ON TO PREDICTION
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PROBABILITY REVIEW

• Probability: p(x) – the probability event x happens.
• Joint probability: p(x,y) – the probability that event x and
event y happen.

• Conditional Probability p(x | y) – the probability x
happens given that y happens.

p(x|y) =
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BAYES THEOREM/RULE

p(x|y) = p(y|x)p(x)
p(y)

Proof:
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CLASSIFICATION RULE

Given unlabeled input (w, ), choose the label y ∈ {0, 1}
which is most likely given the data. Recall w = [0, 0, 1, . . . , 1, 0].

Classification rule: maximum a posterior (MAP) estimate.

Step 1. Compute:

• p(y = 0 | w): prob. y = 0 given observed data vector w.
• p(y = 1 | w): prob. y = 1 given observed data vector w.

Step 2. Output: 0 or 1 depending on which probability is larger.

p(y = 0 | w) and p(y = 1 | w) are called posterior probabilities.
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EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

p(y = 0 | w) = p(w | y = 0)p(y = 0)
p(w) (1)

posterior = likelihood× prior
evidence (2)

• Prior: Probability in class 0 prior to seeing any data.
• Posterior: Probability in class 0 after seeing the data.
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EVALUATING THE POSTERIOR

Goal is to determine which is larger:

p(y = 0 | w) = p(w | y = 0)p(y = 0)
p(w) vs.

p(y = 1 | w) = p(w | y = 1)p(y = 1)
p(w)

• We can ignore the evidence p(w) since it is the same for
both sides!

• p(y = 0) and p(y = 1) already known (computed from
training data). These are our computed parameters p0, p1.

• p(w | y = 0) = ? p(w | y = 1) = ?
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EVALUATING THE POSTERIOR

Consider the example w = [0, 1, 1, 0, 0, 0, 1, 0].

Recall that, under our model, index i is 1 with probability pi0 if
we are not spam, and 1 with probability pi1 if we are spam .

p(w | y = 0) =

p(w | y = 1) =
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NAIVE BAYES

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

• p0 = p(y = 0),p1 = p(y = 1)
• For all i compute:

• pi0 = p(wi = 1 | y = 0) and (1− pi0) = p(wi = 0 | y = 0)
• pi1 = p(wi = 1 | y = 1) and (1− pi1) = p(wi = 0 | y = 1)

Prediction:
• For new input w:

• Compute p(w | y = 0) =
∏

i p(wi | y = 0)
• Compute p(w | y = 1) =

∏
i p(wi | y = 1)

• Return

argmax [p (w | y = 0) · p (y = 0) ,p (w | y = 1) · p (y = 1)] .
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OTHER APPLICATIONS OF
THE BAYESIAN PERSPECTIVE

14



BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

y = ⟨x,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.

Pr(η = z) ∼

The symbol ∼ means “is proportional to”. 15



GAUSSIAN DISTRIBUTION REFRESHER

Names for same thing: Normal distribution, Gaussian
distribution, bell curve.

Parameterized by mean µ and variance σ2.

η is a continuous random variable, so it has a probability
density function p(η) with

∫∞
−∞ p(η)dη = 1

p(η) = 1
σ
√
2π

e−
1
2 (

η−µ
σ

)2
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GAUSSIAN DISTRIBUTION REFRESHER

The important thing to remember is that the the PDF falls off
exponentially as we move further from the mean.

The normalizing constant in front 1/2, etc. don’t matter so
much.
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QUICK CHECK

Example: Linear Regression.

Probabilistic model:

y = ⟨x,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.
The noise is independent for different inputs x1, . . . , xn.
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BAYESIAN REGRESSION

How should be select β for our model?

Also use a Bayesian approach!

First thought: choose β to maximize:

posterior = Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) =

likelihood× prior
evidence .

But in this case, we don’t have a prior – no values of β are
inherently more likely than others.

Choose β to maximize just the likelihood:
Pr(X, y | β)Pr(β)

Pr(X, y) =
likelihood× prior

evidence .

This is called the maximum likelihood estimate.
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FIXED DESIGN LINEAR REGRESSION

Often we think of X as fixed and deterministic, and only y is
generated at random in the model. This is called the fixed
design setting. Can also consider a randomized design setting,
but it is slightly more complicated.

In the fixed design setting our task of maximizing Pr(X, y | β)
simplifies to maximizing

max
β

Pr(y | β)
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MAXIMUM LIKELIHOOD ESTIMATE

Data:

X =


— x1 —
— x2 —

...
— xn —

 y =


y1
y2
...
yn


Model: yi = ⟨xi,β⟩+ ηi where p(ηi = z) ∼ e−z2/2σ2 and η1, . . . , ηn
are independent.

Pr(y | β) ∼
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LOG LIKELIHOOD

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) = argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

= argmax
β

log

( n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

)

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2.
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MAXIMUM LIKELIHOOD ESTIMATOR

Conclusion: Choose β to minimize:

n∑
i=1

(yi − ⟨xi,β⟩)2 = ∥y− Xβ∥22.

This is a completely different justification for squared loss!

Minimizing the ℓ2 loss is “optimal” when you assume your data
follows a linear model with i.i.d. Gaussian noise.
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BAYESIAN REGRESSION

If we had modeled our noise η as Laplace noise, we would
have found that minimizing ∥y− Xβ∥1 was optimal.

Pr(η = z) ∼

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ℓ1 loss.
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BAYESIAN REGULARIZATION

We can add another layer of probabilistic modeling by also
assuming β is random and comes from some distribution,
which encodes our prior belief on what the parameters are.

Return to Maximum a posteriori (MAP estimation):

Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) .

Assume values in β = [β1, . . . , βd] come from some distribution.

• Common model: Each βi drawn from N(0, γ2), i.e. normally
distributed, independent.

• Encodes a belief that we are unlikely to see models with
very large coefficients.
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BAYESIAN REGULARIZATION

Goal: choose β to maximize:

Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) .

• We can still ignore the “evidence” term Pr(X, y) since it is a
constant that does not depend on β.

• Pr(β) = Pr(β1) · Pr(β2) · . . . · Pr(βd)
• If each βi drawn from N(0, γ2), Pr(β) ∼
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BAYESIAN REGULARIZATION

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) · Pr(β)

= argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2 ·
n∏
i=1

e−(βi)
2/2γ2

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2 +
d∑
i=1

−(βi)
2/2γ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2 +
σ2

γ2

d∑
i=1

(βi)
2

Choose β to minimize ∥y− Xβ∥22 + σ2

γ2 ∥β∥22.

Completely different justification for ridge regularization!
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BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min ∥y− Xβ∥22 + λ∥β∥1?
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MODELING LANGUAGE
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GENERATIVE ML

Key idea behind generative ML: Build a very good probabilistic
model for your data. Use that model to generate realistic
looking new data.
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GENERATIVE ML

Key idea behind generative ML: Build a very good probabilistic
model for your data. Use that model to generate realistic
looking new data.

Email example from out model: Keeps retaining in astro
associated to no garden superconducting whistleblower on
effusion eigenvalue jobs worker for car shortlist villa
depictions fitness the easter veto devices expressed secondary
user metal this administrative the do of to struct coffee online
cde the open through requirement stamps you job g thus drop
stations.

30



LANGUAGE MODELING

How do we go from this to something more like what modern
models can produce?
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LANGUAGE MODELING

How do we go from jumbled words to something more like
what modern models can produce?
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LANGUAGE MODELING

How do we go from jumbled words to something more like
what modern models can produce?
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AUTOGRESSIVE MODELS

Main issue: Our model lacks context!

The color of the dress is .
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AUTOGRESSIVE MODELS

Main issue: Our model lacks context!

The color of the dress is .
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AUTOGRESSIVE MODELS

Key idea: Distribution that a word is chosen from should
depend on previous words in the sentence/paragraph.

Consider generating a sentence with words x1, x2, . . . , xn.

• Initialize the first word x1 of the sentence (e.g. at random).
• Choose x2 based on x1.
• Choose x3 based on x1, x2, . . .

Concretely, set xi = w with probability:

P(xi = w | xi−1, xi−2, . . . , x1).
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AUTOGRESSIVE MODELS

Autoregressive model’s generate text in order.

• How most humans write sentences, emails, short text.
• How the latest modern language models write text (e.g.
the GPT family of models.)

This is not the only approach to generative modeling, but it is
one that works fairly well in practice, especially for text.

Can also be used e.g. for images, but no longer state of the art.
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LIMITED LOOKBACK

Key idea: Distribution that a word is chosen from should
depend on previous k words in the sentence/paragraph. k is a
parameter that controls model complexity.

Consider generating a sentence with words x1, x2, . . . , xn.

• Initialize the first k word x1, . . . , xk of the sentence (e.g. at
random).

• Choose xk+1 based on x1, . . . , xk.
• Choose xk+2 based on x2, . . . , xk+1.
• Choose xk+3 based on x3, . . . , xk+2.
• . . .

Set xi = w with probability:

P(xi = w | xi−1, xi−2, . . . , xi−k).
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LIMITED LOOKBACK

Set xi = w with probability:

P(xi = w | xi−1, xi−2, . . . , xi−k).

This probability can be tractably estimate from our data!

It is exactly the same as the probability of observing the
k+ 1-gram [xi−1, xi−2, . . . , xi−k,w].

Training:

• For corpus of text, collect all k+ 1-grams and record their
frequency.

Prediction:

• At step i, sample from the subset of k+ 1 grams starting
with [xi−1, xi−2, . . . , xi−k], with probability proportional to
their frequency. 39



EXAMPLE

The color of the dress is .

• Reasonable completions for k = 2:

• Reasonable completions for k = 5:
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LAB 3

Ph.D. student in my group, Raphael Meyer created a really cool
lab to experiment with this approach.

Significantly more challenging than Labs 1 + 2, so we will give
more time to complete.
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LAB 3

• Train model on free books from Project Gutenberg.

• Evaluate effect of changing k. Tradeoff between better
performance and more “copying” from the course text.

Virtue itself of vice must pardon beg, Yea, curb and woo for
leave to do him good, She shall undo her credit with the judge,
or own great place, Could fetch your brother from the angry
law; do no stain to your own souls so blind That you will clear
yourself from all suspense.
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LAB 3

• Train model on free books from Project Gutenberg.

• Evaluate effect of changing k. Tradeoff between better
performance and more “copying” from the source text.

During this time, Madame Morrel had told her all,—‘Giovanni,’
said she, ‘you should have brought this child with you; we
would have replaced the parents it has lost, have called it
Benedetto, and then, in a loyal duel, and not in Arabia, and in
France eternal friendships are as rare as the custom of doing
when saying “Yes.” “Good; he accepts,” said Monte Cristo.
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