
CS-GY 6923: Lecture 3
Regularization + Bayesian Perspective

NYU Tandon School of Engineering, Prof. Christopher Musco
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LAST CLASS + LAB

Model selection:

• Train models f(1)θ1 , . . . , f(q)θq independently on training
data to find optimal parameters θ∗

1 , . . . , θ
∗
q.

• Check loss Ltest(f1,θ∗
1 ), . . . , Ltest(fq,θ∗

q) on test data.
• Select mode with lowest test lost.

Can we used for arbitrary sets of models. Often used when you
are not sure how “complex” your model should be for the data,
and want to find the sweet spot between a good fit, and not
overfitting.
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LAST CLASS + LAB

Underfit, overfit, just right. 3



COMMENT ON NUMERICAL ISSUES

In the lab we had you use numpy.polynomial.polynomial.
Last class, however, we discussed how we could use multiple
linear regression instead. If our point to fit at are
x1, . . . , xn ∈ [−1, 1], would construct the data matrix:

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


Then find polynomial coefficents as β = (XTX)−1XTy.
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COMMENT ON NUMERICAL ISSUES

Degree 3 Degree 22
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COMMENT ON NUMERICAL ISSUES

Degree 23 Degree 30
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COMMENT ON NUMERICAL ISSUES

• Your computer can easily deal with both very large and
very small numbers. Underflow and overflow are
extremely unlikely to be issues in floating point arithmetic.

• The issue is when you compute using numbers of very
differing magnitude.
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COMMENT ON NUMERICAL ISSUES

Recall that we chose each xi ∈ [−1, 1] uniformly at random.

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


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REGULARIZATION
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OVER-PARAMETERIZED MODELS

In the model selection examples we discussed last class, we
had full control over the complexity of the model: could range
from underfitting to overfitting.

In practice, you often don’t have this freedom. Even the most
basic model might lead to overfitting.
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OVER-PARAMETERIZED MODELS

Example: Linear regression model where d ≥ n.

Can (almost) always find β so that Xβ = y exactly.
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HIGH DIMENSIONAL LINEAR MODELS

Claim: For almost all sets of n, length n vectors x(1), . . . , x(n), we
can write any vector y as a linear combination of these vectors.

I.e., can find some coefficients so that
β1x(1) + . . .+ βqx(q) = Xβ = y.
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ZERO TRAIN LOSS

• We will discuss some models later in the class where zero
training loss is not necessarily a bad sign: k-nearest
neighbors, some neural nets.

• Typically however if will be a sign of overfitting, as in the
polynomial regression example.
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FEATURE SELECTION

Select some subset of ≪ n features to use in model:

Filter method: Compute some metric for each feature, and
select features with highest score.

• Example: compute loss or R2 value when each feature in X
is used in single variate regression.

Any potential limitations of this approach?
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FEATURE SELECTION

Exhaustive approach: Pick best subset of q features. Train
(d
q
)

models.
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FEATURE SELECTION

Faster approach: Greedily select q features.

Stepwise Regression:

• Forward: Step 1: pick single feature that gives lowest loss.
Step k: pick feature that when combined with previous
k− 1 chosen features gives lowest loss.

• Backward: Start with all of the features. Greedily eliminate
those which have least impact on model performance.

Feature selection deserves more than two slides, but we won’t
go into too much more detail!

15



ALTERNATIVE APPROACH

Regularization: Discourage overfitting by adding a
regularization penalty to the loss minimization problem.

min
β

[L(β) + Reg(β)] .

Example: Least squares regression. L(β) = ∥Xβ − y∥22.

• Ridge regression (ℓ2): Reg(β) = λ∥β∥22
• LASSO (least absolute shrinkage and selection operator)
(ℓ1): Reg(β) = λ∥β∥1

• Elastic net: Reg(β) = λ1∥β∥1 + λ2∥β∥22

Note that argminβ [L(β)+Reg(β)] ̸= argminβ [L(β)]
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RIDGE REGULARIZATION: PERSPECTIVE 1

Ridge regression: minβ
(
∥Xβ − y∥22 + λ∥β∥22

)
.

• As λ → ∞, we expect ∥β∥22 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• By choosing different values of λ we have models of
varying accuracy/complexity.
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RIDGE REGULARIZATION:PERSPECTIVE 2

Ridge regression: minβ
(
∥Xβ − y∥22 + λ∥β∥22

)
.

• As λ → ∞, we expect ∥β∥22 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Feature selection methods attempt to set many
coordinates in β to 0. Ridge regularizations encourages
coordinates to be close to zero.
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RIDGE REGULARIZATION

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• As λ → ∞, we expect ∥β∥22 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Feature selection methods attempt to set many
coordinates in β to 0. Ridge regularizations encourages
coordinates to be small.
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POLYNOMIAL EXAMPLES

Fit degree 20 polynomial with varying leves of regularization.

Underfit, overfit, just right.
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RIDGE REGULARIZATION

How do we minimize: LR(β) = ∥Xβ − y∥22 + λ∥β∥22?
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LASSO REGULARIZATION

Lasso regularization: minβ ∥Xβ − y∥22 + λ∥β∥1.

• As λ → ∞, we expect ∥β∥1 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Typically encourages subset of βi’s to go to zero, in
contrast to ridge regularization.

Ridge regularization Lasso Regularization
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LASSO REGULARIZATION

Pros:

• Simpler, more interpretable model.
• More intuitive reduction in model order.

Cons:

• No closed form solution because ∥β∥1 is not
differentiable.

• Can be solved with iterative methods, but generally not as
quickly as ridge regression.
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REGULARIZATION

Notes:

• Model selection/cross validation used to choose optimal
scaling λ on λ∥β∥22 or λ∥β∥1.

• Often grid search for best parameters is performed in “log
space”. E.g. consider [λ1, . . . , λq] = 1.5[−4,−3,−2,−1,−0,1,2,3,4].

• Regularization methods are not invariant to data scaling.
Typically when using regularization we mean center and
scale columns to have unit variance.
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THE BAYESIAN/PROBABILISTIC MODELING PERSPECTIVE
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CLASSIFICATION SETUP

• Data Examples: x1, . . . , xn ∈ Rd

• Target: y1, . . . , yn ∈ {0, 2, . . . , q− 1} when there are q
classes.

• Binary Classification: q = 2, so each yi ∈ {0, 1}.
• Multi-class Classification: q > 2. 1

1Note that there is also multi-label classification where each data example
may belong to more than one class.
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CLASSIFICATION EXAMPLES

• Medical diagnosis from MRI: 2 classes.
• MNIST digits: 10 classes.
• Full Optical Character Regonition: 100s of classes.
• ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.
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CLASSIFICATION

Classification can (and often is) solved using the same
loss-minimization framework we saw for regression.

We won’t see that today! We’re going to use classification as a
window into another way of thinking about machine learning.

Will give new an interesting justifications for tools like
regularization. Will also give us an approach for generative ML.

Rest of Today: ML from a Probabilistic Modeling/Bayesian
Perspective.
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PROBABILISTIC MODELING

In a Bayesian or Probabilistic approach to machine learning we
always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

• The model guides how we make predictions.
• The model typically has unknown parameters θ⃗ and we try
to find the most reasonable parameters based on
observed data (more on this later in lecture).

28



PROBABILISTIC MODELING

Typically we try to keep things simple!
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PROBABILISTIC MODELING

Exercise: Come up with a probabilistic model for the following
data set (x1, y1), . . . , (xn, yn).

• For n NYC apartments: each xi is the size of the apartment
in square feet. Each yi is the monthly rent in dollars.

What are the unknown parameters of your model. What would
be a guess for their values? How would you confirm or refine

this guess using data?
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PROBABILISTIC MODELING

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n NYC apartments: each xi is the size of the
apartment in square feet. Each yi is the monthly rent in dollars.

Model:
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PROBABILISTIC MODELING

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n students: each
xi ∈ {Fresh., Soph., Jun., Sen.} indicating class year. Each
yi ∈ {0, 1} with zero indicating the student has not taken
machine learning, one indicating they have.

Model:
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NAIVE BAYES CLASSIFIER

Goal:

• Build a probabilistic model for a binary classification
problem.

• Estimate parameters of the model.
• From the model derive a classification rule for future
predictions (the Naive Bayes Classifier).
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SPAM PREDICTION

Both target labels and data vectors are binary.
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EMAIL MODEL

Let’s create a model that generates spam and non-spam
emails. Observation: Since bag-of-words features don’t care
about word order, our model does not need to either.

• Common approach. Assign a probability pi ∈ [0, 1] to word
i. Set xi = 1 with probability pi, xi = 0 with probability
1− pi.

pthe = pcalendar = ptoothbrush =
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EMAIL MODEL
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EMAIL MODEL

How can we make this model richer when we take spam into
account?

• Different words tend to be more or less frequent in spam
or regular emails.

Not Spam

pwon =

p$ =
pstudent =

Spam

pwon =

p$ =
pstudent =
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PROBABILISTIC MODEL FOR EMAIL

Probabilistic model for (bag-of-words, label) pair (x, y):
• Set y = 0 with probability p0, y = 1 with probability
p1 = 1− p0.

• p0 is probability an email is not spam (e.g. 99%).
• p1 is probability an email is spam (e.g. 1%).

• If y = 0, for each i, set xi = 1 with prob. pi0.
• If y = 1, for each i, set xi = 1 with prob. pi1.

Unknown model parameters:
• p0,p1,
• p10,p20, . . .pd0, one for each of the d vocabulary words.
• p11,p21, . . .pd1, one for each of the d vocabulary words.

How would you estimate these parameters?
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PARAMETER ESTIMATION

Reasonable way to set parameters:

• Set p0 and p1 to the empirical fraction of not spam/spam
emails.

• For each word i, set pi0 to the empirical probability word i
appears in a non-spam email.

• For each word i, set pi1 to the empirical probability word i
appears in a spam email.

Estimating these parameters from previous data examples is
the only “training” we will do.
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DONE WITH MODELING
ON TO PREDICTION
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PROBABILITY REVIEW

• Probability: p(x) – the probability event x happens.
• Joint probability: p(x,y) – the probability that event x and
event y happen.

• Conditional Probability p(x | y) – the probability x
happens given that y happens.

p(x|y) =
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BAYES THEOREM/RULE

p(x|y) = p(y|x)p(x)
p(y)

Proof:
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CLASSIFICATION RULE

Given unlabeled input (w, ), choose the label y ∈ {0, 1}
which is most likely given the data. Recall w = [0, 0, 1, . . . , 1, 0].

Classification rule: maximum a posterior (MAP) estimate.

Step 1. Compute:

• p(y = 0 | w): prob. y = 0 given observed data vector w.
• p(y = 1 | w): prob. y = 1 given observed data vector w.

Step 2. Output: 0 or 1 depending on which probability is larger.

p(y = 0 | w) and p(y = 1 | w) are called posterior probabilities.
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EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

p(y = 0 | w) = p(w | y = 0)p(y = 0)
p(w) (1)

posterior = likelihood× prior
evidence (2)

• Prior: Probability in class 0 prior to seeing any data.
• Posterior: Probability in class 0 after seeing the data.
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EVALUATING THE POSTERIOR

Goal is to determine which is larger:

p(y = 0 | w) = p(w | y = 0)p(y = 0)
p(w) vs.

p(y = 1 | w) = p(w | y = 1)p(y = 1)
p(w)

• We can ignore the evidence p(w) since it is the same for
both sides!

• p(y = 0) and p(y = 1) already known (computed from
training data). These are our computed parameters p0, p1.

• p(w | y = 0) = ? p(w | y = 1) = ?
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EVALUATING THE POSTERIOR

Consider the example w = [0, 1, 1, 0, 0, 0, 1, 0].

Recall that, under our model, index i is 1 with probability pi0 if
we are not spam, and 1 with probability pi1 if we are spam .

p(w | y = 0) =

p(w | y = 1) =
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NAIVE BAYES

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

• p0 = p(y = 0),p1 = p(y = 1)
• For all i compute:

• pi0 = p(xi = 1 | y = 0) and (1− pi0) = p(xi = 0 | y = 0)
• pi1 = p(xi = 1 | y = 1) and (1− pi1) = p(xi = 0 | y = 1)

Prediction:
• For new input w:

• Compute p(w | y = 0) =
∏

i p(wi | y = 0)
• Compute p(w | y = 1) =

∏
i p(wi | y = 1)

• Return

argmax [p (w | y = 0) · p (y = 0) ,p (w | y = 1) · p (y = 1)] .
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OTHER APPLICATIONS OF
THE BAYESIAN PERSPECTIVE
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BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

y = ⟨x,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.

Pr(η = z) ∼

The symbol ∼ means “is proportional to”. 47



GAUSSIAN DISTRIBUTION REFRESHER

Names for same thing: Normal distribution, Gaussian
distribution, bell curve.

Parameterized by mean µ and variance σ2.

η is a continuous random variable, so it has a probability
density function p(η) with

∫∞
−∞ p(η)dη = 1

p(η) = 1
σ
√
2π

e−
1
2 (

η−µ
σ

)2
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GAUSSIAN DISTRIBUTION REFRESHER

The important thing to remember is that the the PDF falls off
exponentially as we move further from the mean.

The normalizing constant in front 1/2, etc. don’t matter so
much.
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QUICK CHECK

Example: Linear Regression.

Probabilistic model:

y = ⟨x,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.
The noise is independent for different inputs x1, . . . , xn.
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BAYESIAN REGRESSION

How should be select β for our model?

Also use a Bayesian approach!

Choose β to maximize:

posterior = Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) =

likelihood× prior
evidence .

In this case, we don’t have a prior – no values of β are
inherently more likely than others.

Choose β to maximize just the likelihood:
Pr(X, y | β)Pr(β)

Pr(X, y) =
likelihood× prior

evidence .

This is called the maximum likelihood estimate.
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FIXED DESIGN LINEAR REGRESSION

Often we think of X as fixed and deterministic, and only y is
generated at random in the model. This is called the fixed
design setting. Can also consider a randomized design setting,
but it is slightly more complicated.

In the fixed design setting our task of maximizing Pr(X, y | β)
simplifies to maximizing

max
β

Pr(y | β)
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MAXIMUM LIKELIHOOD ESTIMATE

Data:

X =


— x1 —
— x2 —

...
— xn —

 y =


y1
y2
...
yn


Model: yi = ⟨xi,β⟩+ ηi where p(ηi = z) ∼ e−z2/2σ2 and η1, . . . , ηn
are independent.

Pr(y | β) ∼
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LOG LIKELIHOOD

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) = argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

= argmax
β

log

( n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

)

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2.
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MAXIMUM LIKELIHOOD ESTIMATOR

Conclusion: Choose β to minimize:

n∑
i=1

(yi − ⟨xi,β⟩)2 = ∥y− Xβ∥22.

This is a completely different justification for squared loss!

Minimizing the ℓ2 loss is optimal in a certain sense when you
assume your data follows a linear model with i.i.d. Gaussian
noise.
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BAYESIAN REGRESSION

If we had modeled our noise η as Laplace noise, we would
have found that minimizing ∥y− Xβ∥1 was optimal.

Pr(η = z) ∼

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ℓ1 loss.
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BAYESIAN REGULARIZATION

We can add another layer of probabilistic modeling by also
assuming β is random and comes from some distribution,
which encodes our prior belief on what the parameters are.

Return to Maximum a posteriori (MAP estimation):

Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) .

Assume values in β = [β1, . . . , βd] come from some distribution.

• Common model: Each βi drawn from N(0, γ2), i.e. normally
distributed, independent.

• Encodes a belief that we are unlikely to see models with
very large coefficients.
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BAYESIAN REGULARIZATION

Goal: choose β to maximize:

Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) .

• We can still ignore the “evidence” term Pr(X, y) since it is a
constant that does not depend on β.

• Pr(β) = Pr(β1) · Pr(β2) · . . . · Pr(βd)
• Pr(β) ∼
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BAYESIAN REGULARIZATION

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) · Pr(β)

= argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2 ·
n∏
i=1

e−(βi)
2/2γ2

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2 +
d∑
i=1

−(βi)
2/2γ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2 +
σ2

γ2

d∑
i=1

(βi)
2/σ2.

Choose β to minimize ∥y− Xβ∥22 + σ2

γ2 ∥β∥22.

Completely different justification for ridge regularization!
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BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min ∥y− Xβ∥22 + λ∥β∥1?

60


