CS-GY 6923: Lecture 2
Multiple Linear Regression + Feature
Transformations + Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco



COURSE ADMIN

- First lab assignment lab1.ipynb due Monday, by
midnight.

- First written assignment will be released this weekend.

- TA's will start office hours next week — thanks for everyone
who filled out the poll.



REMINDER: SUPERVISED LEARNING

Training Dataset:

- Given input pairs (X1,¥1), - - ., (Xn, ¥n)-
- Each x; is an input data vector (the predictor).

- Each y; is a continuous output variable (the target).
Objective:

- Have the computer automatically find some function f(x)
such that f(x;) is close to y; for the input data.

Standard approach: Convert the supervised learning problem
to a multi-variable optimization problem.




EXAMPLE FROM LAST CLASS

Predict miles per gallon of a vehicle given information about
its engine/make/age/etc.
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SUPERVISED LEARNING DEFINITIONS

What are the three components needed to setup a supervised
learning problem?

- Model fg(x): Class of equations or programs which map input x
to predicted output. We want fg(x;) ~ y; for training inputs.

- Model Parameters 0 Vector of numbers. These are numerical
nobs which parametenze our class of models.

- Loss Function L(@): Measure of how well a model fits our data.

Typically some function offi(x/Q — Vi, fo(Xn) = Vn "‘i_’ HJX;)-U‘Y

Empirical Risk Minimization: Choose parameters 8 which minimize
= .
the Loss Function:

0" = argmin L(@
J%* g gl ()



SIMPLE LINEAR REGRESSION

Simple Linear Regression

- Model: ]Cgoﬂ1 (X) =Bo+pB-X

- Model Parameters: 3, 5

« Loss Function: L(Bo, 1) = 3.1, (Vi — f5,.8,(Xi))?

¥ &
Qb ] {)’\ Goal: Choose 3y, 51 to minimize
L(Bo, B1) = Y_itq lyi — Bo — Buxil*.

Simple closed form solution: 8 = aXy/af,Bo =y — 3. How did
we solve for this solution?



MULTIPLE LINEAR REGRESSION

Multiple Linear Regression Mo

Predict

|~ PiXin + BaXip + - . X
|
Data matrix:
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MULTIPLE LINEAR REGRESSION

Linear Least-Squares Regression.

. Model Parameters: 9% O,X; + b,
B =[Br, B2, - Bd]
- Model: Y - b x; #b,x"
fa(0) = (x.8) "

- Loss Function:



LINEAR ALGEBRAIC FORM OF LOSS FUNCTION
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LOSS MINIMIZATION

Machine learning goal: minimize the loss function
L(B) : RY = R.

Find possible optima by determining for which 8 = [51, .. ., B4]
all the gradient equals 0. I.e. when do we have:




GRADIENT

Loss function:
L(B) = lly — XBl3
Gradient:

,—2-X(y—XB8) = o

—_—

Can check that this is equal to 0 if 8 = (XX) ' XTy. There are

no other options, | inimum.
XTB_— 'XTX[é:O XT\O/ Xiyf((}(fx>'\‘x1v}
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SINGLE VARIABLE WARMUP

What is the derivative of: f(x) = x??

'W)d ea (f(xm) - §G) ig(x\)
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GRADIENT

Loss function: G o, "/ 2 YL@ -
X(_‘.) }_\&} (b\\u\x <
X L(B) = lly — XBlI3
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MULTIPLE LINEAR REGRESSION SOLUTION

Take away: simple form for the gradient means that multiple
linea regression models are easy and efficient to optimize.

* . 2 Ty~ yT.
B = argmin ly ~ X313 = (%) X'y

- Often the “go to” first regression method. Throw your data
in @ matrix and see what happens.

- Serve as the baS|s for much richer classes of models

bau “’14(‘0 7“5)1 + A IlX(‘)llQ - Z(D xfé X(‘ +/W
A

i oS c 2l xa) - g/la/
2 %0 (‘a —X@> = '
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ENCODING DATA AS A NUMERICAL MATRIX

It is not always immediately clear how to do this! One of the
first issue we run into is categorical data:

X1 = [42,4,104, hybrid, ford]
X, = [18, 8,307, gas, bmw]
X, = [31,4,150, gas, hond

e x©
x
x0T (- X8) ;”{ ne>” B
WO (516D MO 7/
- ' j X &
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ENCODING DATA AS A NUMERICAL MATRIX

Binary data is easy to deal with - pick one category to be 0,
one to be 1. The choice doesn't matter — it will not impact the
overall loss of the model

X1 = [42,4,104/hybrid)ford]
X, = [18, 8,307 gas {bmw]
X; = [31,4,150,gas,honda]

X1 = [42,4,104,1, ford]
x, = [18,8,307, 0, bmw]
Xy = [31,4,150, 0, honda]

16



DEALING WITH CATEGORICAL VARIABLES

What about a categorical predictor variable for car make with
more than 2 options: e.g. Ford, BMW, Honda. How would you

encode as a numerical column? m
[ ford |

ford
honda

bmw
honda
| ford |

17



ONE HOT ENCODING

Better approach: One Hot Encoding.

[ ford | 100
ford 7 0 0
honda 0 1 O

ﬁ
bmw 0 0 1
honda 0 1 O
| ford | |1 0 0]

- Create a separate feature for every category, which is 1
when the variable is in that category, zero otherwise.

- Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
18



TRANSFORMED LINEAR MODELS



EXAMPLE FROM LAST TIME

Instead of fitting the model mpg =~ By + B34 - horsepower, fit the
model mpg ~ By + 31 - 1/horsepower.

75 100 175 25 00050 00075 00100 00125 00150 00175 00200 00225
horsepower Uhorsepower

How would you know to make such a transformation?

Better approach: Choose a more flexible non-linear model
class.

19



TRANSFORMED LINEAR MODELS

Suppose we have singular var|ate data examples (x,y). We
could fit the non-linear odel:

yz@+@x+@x2+&x3.

(i (j (% G, % 1l #° N L'(%>
S\ & Q«.\\ 6 .

Claim: This can be done using an algorithm for multivariate
regression! No need to compute another gradient or write
good to optimize fo, ..., 5. 20



TRANSFORMED LINEAR MODELS

(90 - Crego)

@:

What is the output of Xg?

X & ®
Transform into a multiple linear regression problem:

1
1
1

X1
X2
X3

Xn

b, Bt b, 1,7
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TRANSFORMED LINEAR MODELS

More generally, have each column j is generated by a different
basis function ¢;(x). Could have:

400 ) M/
© ¢j(x) =sin(x
A VAY,
9i(x) =(os(10%)
G =1x_ NV

When might you want to include sins and cosines?

22



TRANSFORMED LINEAR MODELS

When might you want to include sins and cosines?

Time series data:

Monthly milk production: pounds per cow. Jan 62 - Dec 75

— data

There is usually not much harm in including irrelevant variable
transformation.

23



MULTINOMIAL MODEL

Transformations can also be for multivariate data.

Example: Multinomial model.

e —

- Given a dataset with target y and predictors x, z.

- Forinputs (x1,21), ..., (xn,2n) construct the data matrix:

1
X <X1 ) Zwﬁ\ X1Zs Xz,

T X X2 V4 22 X272

1 s & Zn 7& Sk
- Captures non-linear interaction between x and z.

24



MULTINOMIAL MODEL

We use these a lot in my work to fit models for physical
phenomenon over low-dimensional surfaces:

driving frequency, w

112 14 16 18 2

spring co.

22 24 26 28 12 15 18
nstant, k time , ¢

25



MODEL SELECTION

T o 12200

Remainder of lecture: Learn about model selection, test/train
paradigm, and cross-validation through a simple example.

| have a Python demo working through this example.
\/\
o'l - 3wl
s
= e B 'i ‘,1 - Q \(
\()1\5 ‘ El \-A]U‘ 'cf.«‘a a’ ’
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FITTING A POLYNOMIAL

Simple experiment:

- Randomly select data points xq,...,x, € [-1,1].
- Choose a degree 3 polynomial p(x).

- Create some fake data: y; = p(x;) + n where n is a random
number (e.g random Gaussian).

— True (dtrue=3) °
3| e Data

D

-100 -075 -050 -025 000 025 050 075 100

27



FITTING A POLYNOMIAL

Simple experiment:

- Use multiple linear regression to fit a degree 3 polynomial.
0

— True (dtrue=3)
251 — Est(d=3)
e Data .

0
-100 -075 -050 -025 000 025 050 075 100

28



FITTING A POLYNOMIAL

What if we fit a higher degree polynomial?

- Fit degree 5 polynomial under squared loss.

- Fit degree 10 polynomial under squared loss.

= Est (d=5) = Est (d=10)
25 e Data 25 e Data

29



FITTING A POLYNOMIAL

Even higher?

+ Fit degree 40 polynomial under squared loss.

w— Est (d=10)
25 e Data

20
15
>~ 10 -
05
00
-05
-10
-10 -05

00 05 10
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MODEL SELECTION

The more complex our model class (i.e. the higher degree we
allow) the better our loss:

025

020

015

Loss

010

005

0 5 10 15 220 25 330 33 4
Polynomial degree (model complexity)
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MODEL SELECTION

Conside RIS andL: [X,z] € R"™*4t! with one additional
column appended on.

PP X0 Xb*y 2.0 L Ko*
Claim:

min (X3 —y||3
ﬁ RA+1

< min X8 —yl3-
ﬁ\i//,

P
(el oot oo pyd bised side - o

(,DU—‘Q “«p w?%"\ Souwe (5\ QRLL\ )rk—(\A—
~ \l S
—_— o

'—xva“
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MODEL SELECTION

The more complex our model class the better our loss:

025

020

015

Loss

010

0.05

0 5 0 15 20 25 30 3 4
Polynomial degree (model complexity)

So training loss alone is not usually a goo } model
selection. Small loss does not impl

Generalization: How well do we do on new data.

33



MODEL SELECTION

Problem: Loss alone is not informative for choosing model.

For more complex models, we get smaller loss on the training
data, but don't expect to perform well on “new” data:

3 T
— Est (d=40) .
2= Data o
p
1 .

: D

-10 -05 00 05 10
x

In other words, the model does not generalize.

34



MODEL SELECTION

Solution: Directly test model on “new data”.@

—— Train Loss

04 Resample Loss
2 0 O O

2 4 6 8 10 12 14
Polynomial degree (model complexity)

e——— =

- Loss continues to decrease as model complexity grows.
- Performance on new data “turns around” once our model
gets too complex. Minimized around degree 4.

35



TRAIN-TEST PARADIGM

More reasonable approach: Evaluate model on fresh test data
which was not used during training.

Test/train split:
-

- Given data set (X, y), split into two sets (Xirain, Yirain) and
(Xtest, Ytest)-

+ Train g models f, ..., 49 by finding parameters which
minimize the loss on (Xrain, Yirain)-

- Evaluate loss of each trained model on (Xtest, Viest)-
Sometimes you will see the term validation set instead of test set.

Sometimes there will be both: use validation set for choosing the
model, and test set for getting a final performance measure.

36



TRAIN-TEST PARADIGM

05

04

03

02

Loss

01

0.0

—e— Train Loss

Resampte Loss
e

O

©

T T
2 4

T
6

T T T
10 12 14

Polynomial degree (model complexity)

- Train loss continues to decrease as model complexity

grows.

- Test loss “turns around” once our model gets too complex.

Minimized around degree 3 — 4.
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GENERALIZATION ERROR

If the test loss remains low, we say that the model generalizes.
Test lost is often called generalization error.

38



TRAIN-TEST PARADIGM

Typical train-test split: 90-70% / 10-30%. Trade-off between
between optimization of model parameters and better
estimate of model performance.

39



K-FOLD CROSS VALIDATION
~—~  —

Training Training

[roma | [ otz | [ otz | [ Fosts | [ Fomis |
=

rainin, ) Training raining Training -
£
% Training Test rainin, Training Training '::u:
© =
B bl
o ﬁ Training =
(=) g
o B
J H
&

m) Training Training

raining Training
Training Training Test

- Randomly divide data in K parts.
- Typical choice:i(;S or K=10.
- Use K — 1 parts for training, 1 for test.
- For each model, compute test loss Lt for each “fold”,
- Choose model with best average loss.
- Retrain best model on entire dataset.

Training

Training

Is there any disadvantage to choosing K larger?
40



THE FUNDAMENTAL CURVE OF ML

The above trend is fairly representative of what we tend to see

across the board:

1

09

08
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06

gos

04

03

02

01

0
0 o1 02 03 05 0607 08 09 1
model complExT
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TRAIN-TEST INTUITION

Is “test error” the end goal though? Don’t we care about
T “future” error?
e e

( Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?

42



STATISTICAL LEARNING MODEL

Statistical Learning Model:

- Assume each data example Is randomly drawn from some

distribution (x,y) ~

E.g. Xq,...,Xg are Gaussian random variables with parameters
H1,015 - -5 gy Og-

This is not (really) a simplifying assumption! The distribution

could be arbitrarily complicated.
43



RISK

Statistical Learning Model: ,g(x/@)\:ﬁs(})

- Assume each data example is randomly drawn from some

distribution (x,y) ~ J (I(k o) J> \?(

- Define the Risk of a model /parameters Ly
== 7.

R(f,6) = Exy~p [L (f(X,6), )]

here L is our loss function (e.g. L(zy) =|z—ylor
L(z,y) = (z—Vy)?

. L 1
Goal: Find model f € {f,...,f9} and parameter vector 6 to

minimize the R(f, ).

——

4



RISK

14 (;RE@} 933 - B, Eﬁ/i *P;g - ATy

- (Population) Risk:

—_—

R(f,0) = Exy)~p [L(f(,0),Y)]



EMPIRICAL RISK

—

For any fixed mod@nd parameter
E [Relf, 6)] < R(f, 0).

Only true if f and @ are chosen without looking at the data
used to compute the empirical risk.

46



MODEL SELECTION

+ Train g models (f(", 05),..., (f9, 7).

- For each model, compute empirical risk Re(f), 8%) using
test data.

- Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, Re(f1, %) is an unbiased estimate of the true risk

R(f1),07) for every i. Can use it to distinguish between models.

47



MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,

books) as numerical data. The ultimate example of 1-hot
encoding.

This|is|alsentence.

AP RT T T T T T AL T T T T T T T T T T T T T T T T T T T T T (AT T T T T T T

a aardvark
= aafcyvdi

z00 zyzzyva

bag-of-words
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MODEL SELECTION EXAMPLE

bag-of-words models and

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot

encoding.
This[is|alsentencel
G T T T T T T T AT T T T T T LT LT T T T T T T A T T T T T[]
“a sentence” “isa” “this is”

bi-grams

49



MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

Thislis alsentence)

\II\III\IIII1III\I\III\IIIlIII\II\I\IIllllll\IIII\

“is a sentence”

tri-grams
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MODEL SELECTION EXAMPLE

Models of increasing order:

- Model f(g?: spam filter that looks at single words.
: Modelfg): spam filter that looks at bi-grams.
* Model f&): spam filter that looks at tri-grams.

“Iinterest” “low interest” “low interest loan”
Increased length of n-gram means more expressive power.

Will also be relevant in our first generative ML lab!

51



MODEL SELECTION EXAMPLE

Electrocorticography ECoG (upcoming lab):

- Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

Sensory area Motor area
Surgical opening

Electrocorticography

+ Predict hand motion based on ECoG measurements.
- Model order: predict movement at time t using brain

signals at time t,t —1,...,t — g for varying values of q.
52



AUTOREGRESSIVE MODEL

Predicting time t based on a linear function of the signals at
time t,t —1,...,t — g is not the same as fitting a line to the

time series. It's much more expressive.

X ¥
| s
6 ')_‘i; Lo ?® F‘as;senger,ﬂ:> > 2 \
/ ’]/P/ = . [
700 : -
600 ¢ S
§ s0 /
£ 400
2 300 ‘
200
100
u] T T T T
@ o — o ™ = 0 [2a} [ W a2} o \D o6
c [= (= c (= [= (= [= [ c c c
© © © © © © © © © (© © ©
S S 5 5 S5 5 5 5 5 S5 505
Month

Predecessor of modern

“recurrent neural networks”.
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MODEL SELECTION LAB TIP

Electrocorticography ECoG lab:

Sensory area Motor area
Surgical opening

Electrocorticography

First lab where computation actually matters (solving
regression problems with ~ 40k examples, ~ 1500 features)

Makes sense to test and debug code using a subset of the data.

54



ADAPTIVE DATA ANALYSIS

Slight caveat: This is typically not how machine learning or
scientific discovery works in practice!

Typical workflow:

- Train a class of models.
-+ Test.

- Adjust class of models.
-+ Test.

- Adjust class of models.
- Cont...

Final model implicitly depends on test set because
performance on the test set guided how we changed our
model.
55



ADAPTIVE DATA ANALYSIS

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

11 Active Competitions

$1,000,000
1595 teams
Google QUEST Q&A Labeling $25,000
\\\\\\\\\\\\\\\ ted understanding of complex question answer content 1,559 teams
.
#  Real or Not? NLP with Disaster Tweets $10000
Predct ich Teesar about rs disaster ad whichons re 2657 teams
1] .
v
£ .“ Bengali.Al Handwritten Grapheme Classification $10,000
% Gassty tn componentsof randwriten Sl 1194 teams
o i .

Kaggle (various competitions)

I M A G E [ E T 14,197,122 images, 21841 synsets indexed
N L

Explore Download Challenges Publications Updates About

Not logged in. Login | Signup

Imagenet (image classification and categorization)



ADAPTIVE DATA ANALYSIS

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research. Related to
the problem of “p-value hacking” in science.

REPORT

The reusable holdout: Preserving validity in adaptive
data analysis

Cynthia Dwork'”, Vitaly Feldman?”, Moritz Hardt®", Toniann Pitassi*”, Omer Reingold®", Aaron Roth®"

+ See all authors and affiliations

Science 07 Aug 2015
Vol. 349, Issue 6248, pp. 636-638
DOI: 10.1126/science.aaa9375

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht* Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley UC Berkeley UC Berkeley

Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been
the focus of intense research for almost a decade, raising the danger of overfitting to excessi
re-used test sets. By closely following the original d: reation processes, we test to what
extent current classification models generalize to new data. We evaluate a broad range of models
and find accuracy drops of 3% — 15% on CIFAR-10 and 11% — 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results 57
suggest that the accuracy drops are not caused by adaptivity, but by the models’ inability to
generalize to slightly “harder” images than those found in the original test sets.

12 Jun RO19,



IMAGENET DATASET

I M 'h G E r j E ‘i_ 14,197,122 images, 21841 synsets indexed
s Explore Download Challenges Publications Updates About
Notlagged n. Login| Signup

Collected by Fei-Fei Li's group at Stanford in 2006ish and
labeled using Amazon Mechanical Turk.
d 2y s @ W% B
; 0 i I: 7Rl Mg F&M i\l
A PN o Qi B mT Ve

mammal placental — carnivore —= canine — dog —working dog— husky

” lea i T Inh R
=0 < m-ﬁ ik S ll
ol « I8 B Cad sl !

vehicle ~— craft — walercraft — sailingvessel —  sailboat — (rlmaran

We now have neural network models that can solve these
classification problems with > 95% accuracy. 58



ADAPTIVE DATA ANALYSIS

New test accuracy (%)

Interestingly, when comparing popular vision models on
“fresh” data, while performance dropped across the board, the

Do ImageNet Classifiers Generalized to ImageNet?

CIFAR-10

90
Original test accuracy (%)

=== |deal reproducibility

ImageNet

©
o

~
o

New test accuracy (top-1, %)
@
o

N
o

-}

=}

\
\

60 70 80
Original test accuracy (top-1, %)

Model accuracy

—— Linear fit

relative rank of model performance did not change
significantly.
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REGULARIZATION



OVER-PARAMETERIZED MODELS

In all the model selection examples we discussed we had full
control over the complexity of the model: could range from
underfitting to overfitting.

In practice, you often don’t have this freedom. Even the most
basic model might lead to overfitting.

60



OVER-PARAMETERIZED MODELS

Example: Linear regression model where d > n. Almost always
the case e.g. when using bag-of-words features.

d features
|

n examples

Can (almost) always find 3 so that X3 = y exactly.

61



HIGH DIMENSIONAL LINEAR MODELS

Claim: For almost all sets of n length n vectors x(, ..., x(M, we
can write any vectory as a linear combination of these vectors.

—
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FEATURE SELECTION

Select some subset of features to use in model:

—

X X

Filter method: Compute some metric for each feature, and
select features with highest score.

- Example: compute loss or R? value when each feature in X
is used in single variate regression.

63



FEATURE SELECTION

64



FEATURE SELECTION

Exhaustive approach: Pick best subset of g features.
Faster approach: Greedily select g features.

Stepwise Regression:

- Forward: Step 1: pick single feature that gives lowest loss.
Step k: pick feature that when combined with previous
k — 1 chosen features gives lowest l0ss.

- Backward: Start with all of the features. Greedily eliminate
those which have least impact on model performance.

Feature selection deserves more than two slides, but we won’t
go into too much more detail!

65



ALTERNATIVE APPROACH

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

mgin [L(@) + Reg(0)] .

Example: Least squares regression. L(3) = [|XB — y||3.

- Ridge regression (£,): Reg(8) = \||3]/3

- LASSO (least absolute shrinkage and selection operator)
(&1): Reg(B) = AlIBIIs

- Elastic net: Reg(B) = M|18|h + \2|18]13
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REGULARIZATION

W
m— Est (d=10)
e Data
©
-1.0 -05 00 05 10
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RIDGE REGULARIZATION

Ridge regression: ming [|[X8 — y||3 + A||8]|3.

-+ As X — oo, we expect ||B]2 — 0 and [|XB — y|I2 — lyll3.

- Feature selection methods attempt to set many
coordinates in @ to 0. Ridge regularizations encourages
coordinates to be small.

I Y — Income
” . -~ Limit
€ 8 . e Rating
Q RN
S o S Student
£ 8. -
S R

° .
3
S o e
-
c g A
E |
7]

<

g

8 T T T

1e-02 16400 16402 1404

A
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DUALITY WITH CONSTRAINED REGRESSION

Ridge regression: ming [|X3 — y|3 + A||B])5.
- Can be viewed as shrinking the size of our model class.
Relaxed version of ming, g2 [IX8 — yli3.

Claim: For any A, let 85 = argming X8 — y||2 + A||8])2. Then
there is some ¢(A) such that:

Bh = argmin |XB -yl
B:lIBlIZ<c(N)

Moreover, we have the for A’ > X, c()\') < ¢c(N).
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RIDGE REGULARIZATION

Ridge regression: ming X3 — y|I3 + || 3|3

- mi 2 ' i
ming.gj2<c IXB —y||5 won't hgve zero error solution for all
y, even when over-parameterized.

d features

n examples
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RIDGE REGULARIZATION

How do we minimize: Lg(B) = |IXB — |5 + Al|B5?

71



LASSO REGULARIZATION

- As X — oo, we expect ||B]l1 — 0 and [IXB —y|15 — [ly|3.

Lasso regularization: ming [|[X8 — y||3 + A||8]|+.

2

- Typically encourages subset of 3;'s to go to zero, in
contrast to ridge regularization.

Standardized Coefficients
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LASSO REGULARIZATION

Pros:

- Simpler, more interpretable model.
- More intuitive reduction in model order.

Cons:

- No closed form solution because ||3]1 is not
differentiable.

- Can be solved with iterative methods, but generally not as
quickly as ridge regression.
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REGULARIZATION

Notes:

- Model selection/cross validation used to choose optimal
scaling A on \||B]|2 or \||B]|1.

- Often grid search for best parameters is performed in “log
space”. Eg. consider [Aq,..., \g] = 1.5[7%737271:-0,12.3.4]

- Regularization methods are not invariant to data scaling.

Typically when using regularization we mean center and
scale columns to have unit variance.
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