
CS-GY 6923: Lecture 2
Multiple Linear Regression + Feature
Transformations + Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco
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COURSE ADMIN

• First lab assignment lab1.ipynb due Monday, by
midnight.

• First written assignment will be released this weekend.
• TA’s will start office hours next week – thanks for everyone
who filled out the poll.
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REMINDER: SUPERVISED LEARNING

Training Dataset:

• Given input pairs (x1, y1), . . . , (xn, yn).
• Each xi is an input data vector (the predictor).
• Each yi is a continuous output variable (the target).

Objective:

• Have the computer automatically find some function f(x)
such that f(xi) is close to yi for the input data.

Standard approach: Convert the supervised learning problem
to a multi-variable optimization problem.

3



EXAMPLE FROM LAST CLASS

Predict miles per gallon of a vehicle given information about
its engine/make/age/etc.
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SUPERVISED LEARNING DEFINITIONS

What are the three components needed to setup a supervised
learning problem?

• Model fθ(x): Class of equations or programs which map input x
to predicted output. We want fθ(xi) ≈ yi for training inputs.

• Model Parameters θ: Vector of numbers. These are numerical
nobs which parameterize our class of models.

• Loss Function L(θ): Measure of how well a model fits our data.
Typically some function of fθ(x1)− y1, . . . , fθ(xn)− yn

Empirical Risk Minimization: Choose parameters θ∗ which minimize
the Loss Function:

θ∗ = argmin
θ

L(θ)
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SIMPLE LINEAR REGRESSION

Simple Linear Regression

• Model: fβ0,β1(x) = β0 + β1 · x

• Model Parameters: β0, β1

• Loss Function: L(β0, β1) =
∑n

i=1(yi − fβ0,β1(xi))2

Goal: Choose β0, β1 to minimize
L(β0, β1) =

∑n
i=1 |yi − β0 − β1xi|2.

Simple closed form solution: β1 = σxy/σ
2
x ,β0 = ȳ− β1x̄. How did

we solve for this solution? 6



MULTIPLE LINEAR REGRESSION

Multiple Linear Regression Model:

Predict yi ≈ β1xi1 + β2xi2 + . . .+ βdxid

Data matrix:

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

 =


1 x12 . . . x1d
1 x22 . . . x2d
1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd


Linear algebraic form:

yi ∼ ⟨x,β⟩
y ∼ Xβ
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MULTIPLE LINEAR REGRESSION

Linear Least-Squares Regression.

• Model Parameters:

β = [β1, β2, . . . , βd]

• Model:

fβ(x) = ⟨x,β⟩

• Loss Function:

L(β) =
n∑
i=1

|yi − ⟨xi,β⟩|2

= ∥y− Xβ∥22

8



LINEAR ALGEBRAIC FORM OF LOSS FUNCTION
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LOSS MINIMIZATION

Machine learning goal: minimize the loss function
L(β) : Rd → R.

Find possible optima by determining for which β = [β1, . . . , βd]

all the gradient equals 0. I.e. when do we have:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
. . .

0


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GRADIENT

Loss function:

L(β) = ∥y− Xβ∥22

Gradient:

−2 · XT(y− Xβ)

Can check that this is equal to 0 if β =
(
XTX

)−1 XTy. There are
no other options, so this must be the minimum.
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SINGLE VARIABLE WARMUP

What is the derivative of: f(x) = x2?
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GRADIENT

Loss function:

L(β) = ∥y− Xβ∥22
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MULTIPLE LINEAR REGRESSION SOLUTION

Take away: simple form for the gradient means that multiple
linea regression models are easy and efficient to optimize.

β∗ = argmin
β

∥y− Xβ∥22 =
(
XTX

)−1 XTy

• Often the “go to” first regression method. Throw your data
in a matrix and see what happens.

• Serve as the basis for much richer classes of models.
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ENCODING DATA AS A NUMERICAL MATRIX

It is not always immediately clear how to do this! One of the
first issue we run into is categorical data:

x1 = [42, 4, 104,hybrid,ford]
x2 = [18, 8, 307,gas,bmw]
x2 = [31, 4, 150,gas,honda]
...
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ENCODING DATA AS A NUMERICAL MATRIX

Binary data is easy to deal with – pick one category to be 0,
one to be 1. The choice doesn’t matter – it will not impact the
overall loss of the model

x1 = [42, 4, 104,hybrid,ford]
x2 = [18, 8, 307,gas,bmw]
x2 = [31, 4, 150,gas,honda]
...

x1 = [42, 4, 104,1,ford]
x2 = [18, 8, 307,0,bmw]
x2 = [31, 4, 150,0,honda]
...
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DEALING WITH CATEGORICAL VARIABLES

What about a categorical predictor variable for car make with
more than 2 options: e.g. Ford, BMW, Honda. How would you
encode as a numerical column?

ford
ford
honda
bmw

honda
ford


→




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ONE HOT ENCODING

Better approach: One Hot Encoding.

ford
ford
honda
bmw
honda
ford


→



1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0


• Create a separate feature for every category, which is 1
when the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
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TRANSFORMED LINEAR MODELS
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EXAMPLE FROM LAST TIME

Instead of fitting the model mpg ≈ β0 + β1 · horsepower, fit the
model mpg ≈ β0 + β1 · 1/horsepower.

How would you know to make such a transformation?

Better approach: Choose a more flexible non-linear model
class.
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TRANSFORMED LINEAR MODELS

Suppose we have singular variate data examples (x, y). We
could fit the non-linear polynomial model:

y ≈ β0 + β1x+ β2x2 + β3x3.

Claim: This can be done using an algorithm for multivariate
regression! No need to compute another gradient or write
good to optimize β0, . . . , β3. 20



TRANSFORMED LINEAR MODELS

Transform into a multiple linear regression problem:

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


What is the output of Xβ?
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TRANSFORMED LINEAR MODELS

More generally, have each column j is generated by a different
basis function ϕj(x). Could have:

• ϕj(x) = xq

• ϕj(x) = sin(x)
• ϕj(x) = cos(10x)
• ϕj(x) = 1/x

When might you want to include sins and cosines?
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TRANSFORMED LINEAR MODELS

When might you want to include sins and cosines?

Time series data:

There is usually not much harm in including irrelevant variable
transformation.
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MULTINOMIAL MODEL

Transformations can also be for multivariate data.

Example: Multinomial model.

• Given a dataset with target y and predictors x, z.
• For inputs (x1, z1), . . . , (xn, zn) construct the data matrix:

1 x1 x21 z1 z21 x1z1
1 x2 x22 z2 z22 x2z2
...

...
...

1 xn x2n zn z2n xnzn


• Captures non-linear interaction between x and z.
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MULTINOMIAL MODEL

We use these a lot in my work to fit models for physical
phenomenon over low-dimensional surfaces:
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MODEL SELECTION

Remainder of lecture: Learn about model selection, test/train
paradigm, and cross-validation through a simple example.

I have a Python demo working through this example.
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FITTING A POLYNOMIAL

Simple experiment:

• Randomly select data points x1, . . . , xn ∈ [−1, 1].
• Choose a degree 3 polynomial p(x).
• Create some fake data: yi = p(xi) + η where η is a random
number (e.g random Gaussian).

27



FITTING A POLYNOMIAL

Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.
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FITTING A POLYNOMIAL

What if we fit a higher degree polynomial?

• Fit degree 5 polynomial under squared loss.
• Fit degree 10 polynomial under squared loss.
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FITTING A POLYNOMIAL

Even higher?

• Fit degree 40 polynomial under squared loss.
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MODEL SELECTION

The more complex our model class (i.e. the higher degree we
allow) the better our loss:
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MODEL SELECTION

Consider X ∈ Rn×d and X̄ = [X, z] ∈ Rn×d+1 with one additional
column appended on.

Claim:

min
β̄∈Rd+1

∥X̄β̄ − y∥22 ≤ min
β∈Rd

∥Xβ − y∥22.
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MODEL SELECTION

The more complex our model class the better our loss:

So training loss alone is not usually a good metric for model
selection. Small loss does not imply generalization.

Generalization: How well do we do on new data.
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MODEL SELECTION

Problem: Loss alone is not informative for choosing model.

For more complex models, we get smaller loss on the training
data, but don’t expect to perform well on “new” data:

In other words, the model does not generalize.
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MODEL SELECTION

Solution: Directly test model on “new data”.

• Loss continues to decrease as model complexity grows.
• Performance on new data “turns around” once our model
gets too complex. Minimized around degree 4.
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TRAIN-TEST PARADIGM

More reasonable approach: Evaluate model on fresh test data
which was not used during training.

Test/train split:

• Given data set (X, y), split into two sets (Xtrain, ytrain) and
(Xtest, ytest).

• Train q models f(1), . . . , f(q) by finding parameters which
minimize the loss on (Xtrain, ytrain).

• Evaluate loss of each trained model on (Xtest, ytest).

Sometimes you will see the term validation set instead of test set.
Sometimes there will be both: use validation set for choosing the

model, and test set for getting a final performance measure.
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TRAIN-TEST PARADIGM

• Train loss continues to decrease as model complexity
grows.

• Test loss “turns around” once our model gets too complex.
Minimized around degree 3− 4.
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GENERALIZATION ERROR

If the test loss remains low, we say that the model generalizes.
Test lost is often called generalization error.
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TRAIN-TEST PARADIGM

Typical train-test split: 90-70% / 10-30%. Trade-off between
between optimization of model parameters and better
estimate of model performance.
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K-FOLD CROSS VALIDATION

• Randomly divide data in K parts.
• Typical choice: K = 5 or K = 10.

• Use K− 1 parts for training, 1 for test.
• For each model, compute test loss Lts for each “fold”.
• Choose model with best average loss.
• Retrain best model on entire dataset.

Is there any disadvantage to choosing K larger?
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THE FUNDAMENTAL CURVE OF ML

The above trend is fairly representative of what we tend to see
across the board:
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TRAIN-TEST INTUITION

Is “test error” the end goal though? Don’t we care about
“future” error?

Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?
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STATISTICAL LEARNING MODEL

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

E.g. x1, . . . , xd are Gaussian random variables with parameters
µ1, σ1, . . . , µd, σd.

This is not (really) a simplifying assumption! The distribution
could be arbitrarily complicated.
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RISK

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Define the Risk of a model/parameters:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

here L is our loss function (e.g. L(z, y) = |z− y| or
L(z, y) = (z− y)2).

Goal: Find model f ∈ {f(1), . . . , f(q)} and parameter vector θ to
minimize the R(f,θ).
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RISK

• (Population) Risk:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

• Empirical Risk: Draw (x1, y1), . . . , (xn, yn) ∼ D

RE(f,θ) =
1
n

n∑
i=1

L (f(x,θ), y)
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EMPIRICAL RISK

For any fixed model f and parameters θ,

E [RE(f,θ)] = R(f,θ).

Only true if f and θ are chosen without looking at the data
used to compute the empirical risk.
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MODEL SELECTION

• Train q models (f(1),θ∗
1 ), . . . , (f(q),θ∗

q).
• For each model, compute empirical risk RE(f(i),θ∗

i ) using
test data.

• Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, RE(f(i),θ∗

i ) is an unbiased estimate of the true risk
R(f(i),θ∗

i ) for every i. Can use it to distinguish between models.
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bag-of-words
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bi-grams
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

tri-grams
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MODEL SELECTION EXAMPLE

Models of increasing order:

• Model f(1)θ1
: spam filter that looks at single words.

• Model f(2)θ2
: spam filter that looks at bi-grams.

• Model f(3)θ3
: spam filter that looks at tri-grams.

• . . .

“interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.

Will also be relevant in our first generative ML lab!
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MODEL SELECTION EXAMPLE

Electrocorticography ECoG (upcoming lab):

• Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

• Predict hand motion based on ECoG measurements.
• Model order: predict movement at time t using brain
signals at time t, t− 1, . . . , t− q for varying values of q.
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AUTOREGRESSIVE MODEL

Predicting time t based on a linear function of the signals at
time t, t− 1, . . . , t− q is not the same as fitting a line to the
time series. It’s much more expressive.

Predecessor of modern “recurrent neural networks”.
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MODEL SELECTION LAB TIP

Electrocorticography ECoG lab:

First lab where computation actually matters (solving
regression problems with ∼ 40k examples, ∼ 1500 features)

Makes sense to test and debug code using a subset of the data.
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ADAPTIVE DATA ANALYSIS

Slight caveat: This is typically not how machine learning or
scientific discovery works in practice!

Typical workflow:

• Train a class of models.
• Test.
• Adjust class of models.
• Test.
• Adjust class of models.
• Cont...

Final model implicitly depends on test set because
performance on the test set guided how we changed our
model.
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ADAPTIVE DATA ANALYSIS

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

Kaggle (various competitions)

Imagenet (image classification and categorization) 56



ADAPTIVE DATA ANALYSIS

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research. Related to

the problem of “p-value hacking” in science.
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IMAGENET DATASET

Collected by Fei-Fei Li’s group at Stanford in 2006ish and
labeled using Amazon Mechanical Turk.

We now have neural network models that can solve these
classification problems with > 95% accuracy. 58



ADAPTIVE DATA ANALYSIS

Do ImageNet Classifiers Generalized to ImageNet?

Interestingly, when comparing popular vision models on
“fresh” data, while performance dropped across the board, the
relative rank of model performance did not change
significantly.
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REGULARIZATION
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OVER-PARAMETERIZED MODELS

In all the model selection examples we discussed we had full
control over the complexity of the model: could range from
underfitting to overfitting.

In practice, you often don’t have this freedom. Even the most
basic model might lead to overfitting.
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OVER-PARAMETERIZED MODELS

Example: Linear regression model where d ≥ n. Almost always
the case e.g. when using bag-of-words features.

Can (almost) always find β so that Xβ = y exactly.
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HIGH DIMENSIONAL LINEAR MODELS

Claim: For almost all sets of n length n vectors x(1), . . . , x(n), we
can write any vector y as a linear combination of these vectors.
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FEATURE SELECTION

Select some subset of features to use in model:

Filter method: Compute some metric for each feature, and
select features with highest score.

• Example: compute loss or R2 value when each feature in X
is used in single variate regression.

Any potential limitations of this approach?
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FEATURE SELECTION
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FEATURE SELECTION

Exhaustive approach: Pick best subset of q features.

Faster approach: Greedily select q features.

Stepwise Regression:

• Forward: Step 1: pick single feature that gives lowest loss.
Step k: pick feature that when combined with previous
k− 1 chosen features gives lowest loss.

• Backward: Start with all of the features. Greedily eliminate
those which have least impact on model performance.

Feature selection deserves more than two slides, but we won’t
go into too much more detail!
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ALTERNATIVE APPROACH

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

min
θ

[L(θ) + Reg(θ)] .

Example: Least squares regression. L(β) = ∥Xβ − y∥22.

• Ridge regression (ℓ2): Reg(β) = λ∥β∥22
• LASSO (least absolute shrinkage and selection operator)
(ℓ1): Reg(β) = λ∥β∥1

• Elastic net: Reg(β) = λ1∥β∥1 + λ2∥β∥22
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REGULARIZATION
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RIDGE REGULARIZATION

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• As λ → ∞, we expect ∥β∥22 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Feature selection methods attempt to set many
coordinates in β to 0. Ridge regularizations encourages
coordinates to be small.

68



DUALITY WITH CONSTRAINED REGRESSION

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• Can be viewed as shrinking the size of our model class.
Relaxed version of minβ:∥β∥22<c ∥Xβ − y∥22.

Claim: For any λ, let β∗
λ = argminβ ∥Xβ − y∥22 + λ∥β∥22. Then

there is some c(λ) such that:

β∗
λ = argmin

β:∥β∥22<c(λ)
∥Xβ − y∥22.

Moreover, we have the for λ′ > λ, c(λ′) < c(λ).
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RIDGE REGULARIZATION

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• minβ:∥β∥22<c ∥Xβ − y∥22 won’t have zero error solution for all
y, even when over-parameterized.
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RIDGE REGULARIZATION

How do we minimize: LR(β) = ∥Xβ − y∥22 + λ∥β∥22?
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LASSO REGULARIZATION

Lasso regularization: minβ ∥Xβ − y∥22 + λ∥β∥1.

• As λ → ∞, we expect ∥β∥1 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Typically encourages subset of βi’s to go to zero, in
contrast to ridge regularization.
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LASSO REGULARIZATION

Pros:

• Simpler, more interpretable model.
• More intuitive reduction in model order.

Cons:

• No closed form solution because ∥β∥1 is not
differentiable.

• Can be solved with iterative methods, but generally not as
quickly as ridge regression.
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REGULARIZATION

Notes:

• Model selection/cross validation used to choose optimal
scaling λ on λ∥β∥22 or λ∥β∥1.

• Often grid search for best parameters is performed in “log
space”. E.g. consider [λ1, . . . , λq] = 1.5[−4,−3,−2,−1,−0,1,2,3,4].

• Regularization methods are not invariant to data scaling.
Typically when using regularization we mean center and
scale columns to have unit variance.
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