
CS-GY 6923: Lecture 13
Semantic Embeddings, Image Generation

NYU Tandon School of Engineering, Prof. Christopher Musco

1

AUTOENCODER

Recap: Goal of autoencoder models is to map input data to a close
approximation of the original that takes less space to represent.

2

PRINCIPAL COMPONENT ANALYSIS

PCA is the “linear regression” of autoencoders:

• Simplest possible model. One layer, no non-linearities.
• X̃ = XW1W2 where X ∈ Rn×d,W1 ∈ Rd×k,W2 ∈ Rk×d.
• Want to minimize minW1,W2 ∥X− XW1W2∥2F.

• Equivalent to low-rank approximation. Can be efficiently
and provable optimized using the SVD.

3

SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0. I.e. U and V are
orthogonal matrices. Can be computed in O(nd2) time (faster with
approximation algos).

4

PARRTIAL SINGULAR VALUE DECOMPOSITION

Can be computed in roughly O(ndk) time.

5

PRINCIPAL COMPONENT ANALYSIS

Eckart–Young–Mirsky Theorem: ~X = XVkVTk is the optimal
low-rank approximation to X. So W1 = Vk and W2 = VTk are
optimal autoencoder parameters.

6

PRINCIPAL COMPONENTS

MNIST principal components:

Principal components are a small set of vectors that can be
recombined to approximate rows in X̃.

7

PRINCIPAL COMPONENTS

MNIST principal components:

8

PCA PRESERVES GEOMETRY OF INPUT DATA

∥xi∥22 ≈ ∥zi∥22
⟨xi, xj⟩ ≈ ⟨zi, zj⟩

∥xi − xj∥22 ≈ ∥zi − zj∥22

9

LATENT SEMANTIC ANALYSIS

Word-document matrix:

For documents with a lot of shared words, ⟨xi, xj⟩ is a large
positive number. 10

DOCUMENT EMBEDDINGS

For similar documents, ⟨zi, zj⟩ should be large. I.e. zi and zj
point in the same direction.

11

FROM PCA TO SEMANTIC EMBEDDINGS

Simple but useful observation: The i, j entry of X̃ equals ⟨zi, yj⟩.

12

WORD EMBEDDINGS

• ⟨yi, za⟩ ≈ 1 when doca contains wordi.
• If wordi and wordj both appear in doca, then
⟨yi, za⟩ ≈ ⟨yj, za⟩ ≈ 1, so we expect ⟨yj, yj⟩ to be large.

If two words appear in the same document their, word vectors
tend to point more in the same direction.

13

WORD EMBEDDINGS

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors.
Dissimilar words to dissimilar vectors.

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near
synonyms. Or that “difficult” and “easy” are antonyms. 14

WORD EMBEDDINGS

For similar words, ⟨yi, yj⟩ should be large. I.e. yi and yj point in
the same direction.

15

WORD EMBEDDINGS: MOTIVATING PROBLEM

Review 1: Very small and handy for traveling or camping.
Excellent quality, operation, and appearance.

Review 2: So far this thing is great. Well designed, compact,
and easy to use. I’ll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
someone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

16

BAG-OF-WORDS FEATURES

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review 1: Very small and handy for traveling or camping. Excellent
quality, operation, and appearance.

[, , , , , , ,]

Review 2: So far this thing is great. Well designed, compact, and easy
to use. I’ll never use another can opener.

[, , , , , , ,]

Review 3: Not entirely sure this was worth $20. Mom couldn’t figure
out how to use it and it’s fairly difficult to turn for someone with
arthritis.

[, , , , , , ,] 17

SEMANTIC EMBEDDINGS

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are
near synonyms. Or that “difficult” and “easy” are antonyms.

This can be addressed by first mapping words to semantically
meaningful vectors. That mapping can be trained using a much large
corpus of text than the data set you are working with (e.g. Wikipedia,
Twitter, news data sets).

18

USING WORD EMBEDDINGS

How to go from word embeddings to features for a whole
sentence or chunk of text?

19

USING WORD EMBEDDINGS

A few simple options:
Feature vector x = 1

q
∑q

i=1 yq.

Feature vector x = [y1, y2, . . . , yq].

20

USING WORD EMBEDDINGS

To avoid issues with inconsistent sentence length, word
ordering, etc., can concatenate a fixed number of top principal
components of the matrix of word vectors:

There are much more complicated approaches that account for
word position in a sentence. Lots of pretrained libraries
available (e.g. Facebook’s InferSent). 21

WORD EMBEDDINGS

Another view on word embeddings from LSA:

We chose Z to equal XVk = UkΣk and Y = VTk.

Could have just as easily set Z = Uk and Y = ΣkVTk, so Z has
orthonormal columns.

22

WORD EMBEDDINGS

Another view on word embeddings from LSA:

• X ≈ ZY
• XTX ≈ YTZTZY = YTY
• So for wordi and wordj, ⟨yi, yj⟩ ≈ [XTX]i,j.

What does the i, j entry of XTX reprent?

23

WORD EMBEDDINGS

What does the i, j entry of XTX reprent?

24

WORD EMBEDDINGS

⟨yi, yj⟩ is larger if wordi and wordj appear in more documents
together (high value in word-word co-occurrence matrix, XTX).
Similarity of word embeddings mirrors similarity of word context.

General word embedding recipe:

1. Choose similarity metric k(wordi,wordj) which can be computed
for any pair of words.

2. Construct similarity matrix M ∈ Rn×n with Mi,j = k(wordi,wordj).

3. Find low rank approximation M ≈ YTY where Y ∈ Rk×n.

4. Columns of Y are word embedding vectors.

We expect that ⟨yi, yj⟩ will be larger for more similar words.

25

WORD EMBEDDINGS

How do current state-of-the-art methods differ from LSA?

• Similarity based on co-occurrence in smaller chunks of words.
E.g. in sentences or in any consecutive sequences of 3, 4, or 10
words.

• Usually transformed in non-linear way. E.g.
k(wordi,wordj) = p(i,j)

p(i)p(j) where p(i, j) is the frequency both i, j
appeared together, and p(i), p(j) is the frequency either one
appeared.

26

MODERN WORD EMBEDDINGS

Computing word similarities for “window size” 4:

27

MODERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

28

CAVEAT ABOUT FACTORIZATION

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite1 then the optimal low-rank
approximation does not have this form.

1I.e., k(wordi,wordj) is not a positive semidefinite kernel.

29

CAVEAT ABOUT FACTORIZATION

• For each word i we get a left and right embedding vector
wi and yi. It’s reasonable to just use one or the other.

• If ⟨yi, yj⟩ is large and positive, we expect that yi and yj have
similar similarity scores with other words, so they typically
are still related words.

• Another option is to use as your features for a word the
concatenation [wi, yi]

30

EASIEST WAY TO USE WORD EMBEDDINGS

Lots of pre-trained word vectors are available online:

• Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

• Compilation of many sources:
https://github.com/3Top/word2vec-api

31

https://nlp.stanford.edu/projects/glove/
https://github.com/3Top/word2vec-api

WORD EMBEDDINGS MATH

Lots of cool demos for what can be done with these
embeddings. E.g. “vector math” to solve analogies.

32

FORWARD LOOKING APPLICATION: UNSUPERVISED TRANSLATION

• Train word-embeddings for languages separately. Obtain lowish
dimensional point clouds of words.

• Perform rotation/alignment to match up these point clouds.

• Equivalent words should land on top of each other.

No needs for labeled training data like translated pairs of sentences!

33

FORWARD LOOKING APPLICATION: UNSUPERVISED TRANSLATION

Why not monkey or whale language?

Earth Species Project (www.earthspecies.org), CETI Project
(www.projectceti.org)

34

www.earthspecies.org
www.projectceti.org

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

35

NODE EMBEDDINGS

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

36

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).

37

BIMODAL EMBEDDINGS

We can also create embeddings that represent different types
of data. OpenAI’s clip architecture:

Goal: Train embedding architectures so that ⟨Ti, Ij⟩ are similar
if image and sentence are similar. 38

CLIP TRAINING

What do we use as ground truth similarities during training?
Sample a batch of sentence/image pairs and just use identity
matrix.

This is called contrastive learning. Train unmatched text/image
pairs to have nearly orthogonal embedding vectors.

39

CLIP FOR ZERO-SHOT LEARNING

2021 result: 76% accuracy on ImageNet image classification
challenge with no labeled training data.

40

IMAGE SYNTHESIS

40

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

41

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option 2: Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

42

AUTOENCODERS FOR DATA GENERATION

Autoencoder approach to generative ML: Feed random inputs
into decode to produce random realistic outputs.

Main issue: most random inputs words will “miss” and produce
garbage results.

43

AUTOENCODERS FOR DATA GENERATION

Variational auto-encoders attempt to resolve this issue.

44

VARIATIONAL AUTOENCODERS

Variational auto-encoders attempt to resolve this issue. Basic
ideas:

• Add noise during training.
• Add penalty term so that distribution of code vectors
generated looks like mean 0, variance 1 Gaussian.

45

GENERATIVE ADVERSARIAL NETWORKS

Variation AE’s give very good results, but tends to produce
images with immediately recognizable flaws (e.g. soft edges,
high-frequency artifacts).

46

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Lots of efforts to hand-design regularizers that penalize
images that don’t look realisitic to the human eye.

Main idea behind GANs: Use machine learning to
automatically encourage realistic looking images.

min
θ

L(θ) + P(θ)

47

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Let x1, . . . , xn be real images and let z1, . . . , zm be random code
vectors. The goal of the discriminator is to output a number between
[0, 1] which is close to 0 if the image is fake, close to 1 if it’s real.

Train weights of discriminator Dθ to minimize:

min
θ

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi)) 48

GENERATIVE ADVERSARIAL NETWORKS (GANS)

Goal of the generator Gθ′ is the opposite. We want to maximize:
max
θ′

m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called an “adversarial loss function”. D is playing the role of
the adversary.

49

GENERATIVE ADVERSARIAL NETWORKS (GANS)

θ∗,θ′∗ solve min
θ

max
θ′

n∑
i=1

− log (Dθ(xi)) +
m∑
i=1

− log (1− Dθ(Gθ′(zi))

This is called a minimax optimization problem. Really tricky to
solve in practice.

• Repeatedly play: Fix one of θ∗ or θ′∗, train the other to
convergence, repeat.

• Simultaneous gradient descent: Run a single gradient
descent step for each of θ∗,θ′∗ and update D and G
accordingly. Difficult to balance learning rates.

• Lots of tricks (e.g. slight different loss functions) can help.

50

GENERATIVE ADVERSARIAL NETWORKS (GANS)

State of the art until a few years ago.

51

DIFFUSION

Auto-encoder/GAN approach: Input noise, map directly to
image.

Diffusion: Slowly move from noise to image.

52

DIFFUSION

Teal created a demo for generating digits by training on MNIST.

53

SEMANTIC EMBEDDINGS + DIFFUSION

Text to image synthetsis: Dall-E, Imagen, Stable Diffusion

”A chair that looks like an avocado”
54

