CS-GY 6923: Lecture 12
Autoencoders, Principal Component Analysis

NYU Tandon School of Engineering, Prof. Christopher Musco



TRANSFER LEARNING

( State-of-the-art supervised learning models like neural
networks learn very good features.

But they require lots and lots of data. Imagenet has 14 million
#nlabeled images. I\/\Et_ly of everyday objects.




ONE-SHOT LEARNING

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

Ny, y‘/

quaffle bludger snitch

Example: Classify images of different Quidditch balls.



ONE-SHOT LEARNING

Real example: Classify images of insects for use in agricultural
applications in new localities.

Zero-Shot Insect Detection via Weak Language Supervision

Benjamin Feuer,' Ameya Joshi,! Minsu Cho,' Kewal Jani,' Shivani Chiranjeevi, > Zi Kang Deng, 3
Aditya Balu, > Asheesh K. Smgh 2 Soumik Sarkar, 2 Nirav Merchant, 3 Arti Singh, 2
Baskar Ganapathysubr 2 Chi y Hegde !
! New York University

2 Jowa State University
3 University of Arizona

Aedes Vexans

Daphnis Neril

Creatonotos Gangis

Hypena Deceptalis ~ Pyralis Farinalis




ONE-SHOT LEARNING

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

ol

Major question in ML: How? Can we design ML algorithms
which can do the same? 7/



TRANSFER LEARNING

Transfer knowledge from one task we already know how to
solve to another.

For example, we have learned from past experience that balls
used in sports have consistent shapes, calors, and sizes. These
features can be used to distinguish balls of different type.



FEATURE LEARNING

Examples of possible high-level features a human would learn:

roundness
—_—

size relative

Features

to human

hand 2 7 5 1
-
yellowish

color 1 .1 0 .9

-



FEATURE LEARNING

If these features are highly informative (i.e. lead to highly
separable data) few training examples are needed to learn.

yellowish color

roundness

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.



TRANSFER LEARNING

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

(9 convolution+RY
max pooling

X ERM Z ERK VER

Even if we can't put into words what each feature in z means...



TRANSFER LEARNING

This is now a common technique in computer vision:
1. Download network trained on large image classification dataset
« (e.g. Imagenet).

\2. Extract features z for any new image x by running it through the
network up until layer before last.

\3. Use these features in a simpler machine learning algorithm that

requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
github.com/thatbrguy/Object-Detection-Quidditch


github.com/thatbrguy/Object-Detection-Quidditch

UNSUPERVISED FEATURE LEARNING

Transfer learning: Lots of labeled data for one problem makes
up for little labeled data for another.

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from ﬁmlabeled
data)is one of the central problems in unsupervised learning.

I



SUPERVISED VS. UNSUPERVISED LEARNING

- Supervised learning: All input data examples come with
’@_rg/ets/labels. What machines have been really good at
for the past 8 years.

| Unsupervised learning: No input data examples come
with ta.rgets/labels. Intere;tmg problems to solvg include
clustering, anomaly detection, semantic embedding, etc.

- Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human
babies are really good at, and we have recently made
machines a lot better at.

12



AUTOENCODER

Simple but clever idea: If we have inputs@, . ,xn\>€ RY but
few or no targets yy, ..., yn, just make the inputs the targets.

- Let fo : RY — RY be our model.
* Let Lg be a loss function. E.g. squared loss:

Lo(X) =[x — fo(X)I3.

- Train model: 8" = ming Y~ Lo(x).

If fo is @ model that incorporates feature learning, then these
features can be used for supervised tasks.

fo is called an(autoencoder)lt maps input space to input
space (e.g. images to images, french to french, PDE solutions to
PDE solutions).

13



AUTOENCODER

Poo Mewesh

Two examples of autoencoder architectures:

Output layer

14



AUTOENCODER

Important property of autoencoders: no matter the architecture,
there must always be a bottleneck with fewer parameters than the
input. The bottleneck ensures information is “distilled” from
low-Level features to high-level features.¢ g OU_Q‘LJ_(“

15



AUTOENCODER

Separately name the mapping from input to bottleneck and from
bottleneck to output.

Encoder: e : RY — RF Decoder: d : RY — RF

= d(ef))

Input layer Hidden layers Output layer

) 7

A V2 \ V4

J

\

Often symmetric, but does not have to be. e



AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

(O]

TER )

https://www.biorxiv.org/content/10 /214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 17


https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as supervised
methods for feature extraction, but they require no labeled
data.’

There are a lot of cool applications of autoencoders beyond

feature learning!

(- Learned data compression)
( Denoising and in-painting.
( Data/image synthesis)

"Recent progress on self-supervised learning achieves the best of both
worlds - state-of-the-art feature learning with no labeled data.

18



AUTOENCODERS FOR DATA COMPRESSION

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Encode e Decode d

Given input x, we can completely recover f(x) from z = gQ().@
typically has many fewer dimensions than x and for a typical

image f(x) will closely approximate x. 1



AUTOENCODERS FOR IMAGE COMPRESSION

The best lossy compression algorithms are tailor made for specific
types of data:

- JPEG 2000 for images

- s o e
- MP3 for digital audio.
- MPEG-4 for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.

k ﬂNYU e

20



AUTOENCODERS FOR IMAGE COMPRESSION

With enough input data, autoencoders can be trained to find this
structure on their own.

o x

JPEG 2000, 6037 bytes (0171 bipx), PSNR: 23.47 dB, MS-SSIM: 0.9036

“End-to-end optimized image compression”. Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than

“hand-tuned” algorithms like JPEG. 2!



AUTOENCODERS FOR IMAGE CORRECTION

Encoder

Decoder

Compressed
representation

Denoised image

Image denoising

Train autoencoder on uncorrupted images (unsupervised). Pass
corrupted image x through autoencoder and return f(x) as repaired
result.

22



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Why does this work?
éQ’)ﬁ 1B ’!-)

5 sy PN
K _ i lelo¥
('1«{ NTZ O 5(/(

%
i &
- ¥

\Y’ b{q(

Consider 128 x 128 x 3 images with pixels values | m 255)

How many p055|ble |mages are there?

If z holds kvalues in 0,.1,.2,..., 1, how many unigue images w
can be output by the autoencoder function f?
23



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

ppace of “natural”
images J

For a good (accurate, small bottleneck) autoencoder, S will
closely approximate Z. Both will be much smaller than A.

24



AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Space of “natural”
images J

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

25



AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

- Option 1: Draw each pixel value in x uniformly at random.

Draws a random image from A.

- Option 2: Draw x randomly from S, the space of images
representable by the autoencoder.

<

How do we randomly select an image from S§?

26



AUTOENCODERS FOR DATA GENERATION

How do we randomly select an image x from S?

compressed
representation

Randomly select code z, then set x = d(z).

%L ots of details to think about here. In reality, people use[“variational
autoencoders”)(\/AEs), which are a natural modification of AEs.

27



AUTOENCODERS FOR DATA GENERATION DEMO

Teal created a demo for the "Fashion MNIST” data set:

Latent Space Dimension 2

N B A <t s s s s 0V Y
LD P W e e e o

28

Latent Space Dimension 1



PRINCIPAL COMPONENT ANALYSIS



PRINCIPAL COMPONENT ANALYSIS

Rest of lecture: Deeper dive into understanding a simple, but
powerful autoencoder architecture. Specifically we will view
principal component analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often
the go-to baseline method for feature extraction and
dimensionality reduction.

Very important outside machine learning as well.

29



PRINCIPAL COMPONENT ANALYSIS

Consider the simplest possible autoencoder:

- One hidden layer. No non-linearity. No biases.
- Latent space of dimension k_¢

- Weight matrices are Wy € R%*% and W, € RF*9.

b

30



PRINCIPAL COMPONENT ANALYSIS

Given input x € RY, what is f(x) expressed in linear algebraic

terms? (0 s Mxic ) = (“‘__‘:)
S S N— ;
{—1—\ f—l—\
X w, = f(x)
w, decoder

(00 (xx&) 5 (1= &)

encoder
__/

f(X)T = XTW1 W2

31



PRINCIPAL COMPONENT ANALYSIS

d K ){
e JERUTINIE A
[ 4
LN
encoder . LD
l (c \ 6 .
|
K [ |
Z |/—W— | = ‘ f(x)
. ———
k

decoder k/
5

Encoder: e(x) = x"W;. Decoder: d(z) = zW,

Pr‘lv\(--‘ j\b\ (bq‘ Péu\'(— S

32



PRINCIPAL COMPONENT ANALYSIS

A
9 X Wy v (e

Given training data set xqJ. .., Xp, let X denote our data matrix.
Let X = XW;Ws. (axd Jdxk ) S ()
g
G580
< fix) D
= X
f(x,)

33




FROBENIUS NORM

T
“HHP =] 53' HI )
Natural squared autoencoder loss: Minimize L(X, X) where:

Z\le — fxi)|3

11/———

n d
=> > (il -

Goal: Find W4y, W, to minimize the Frobenius norm loss
IX — X||2 = ||X — XW;Wo|[2 (sum of squared entries).

34



LOW-RANK APPROXIMATION

Rank in linear algebra:
-

( The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

- The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

- Column rank = row rank = rank.
—_— .
d .
[ 1
( ) D
z
S T
- B

—

Xisa . It only has rank k for k < d. .



LOW-RANK APPROXIMATION

S PR A CR O P G V|

Principal component analysis is the task of finding W4, W5,
which amounts to finding a rank k matrix X which
approximates the data matrix X as closely as possible.

Finding the best Wy and W, is a non-convex problem. We could
try running an iterative method like gradient descent anyway.

But there is also a direct algorithm!
——

36



SINGULAR VALUE DECOMPOSITION

Any matrix X can be written: C(%J) k*/(

d left singular vectors  singular values right singular vectors
g,
o O
X = 1] 3 VT
R
/ T ) Og-
n Oy
“
X=2Z 6 L,
V=1

WhereU'U=1,VIV=1l,and oy >0, >...04> 0. l.e. Uand V are
orthogonal matrices.

(This is called the singular value decomposition)

Can be computed irlO(nd?) kime (faster with approximation algos). .



ORTHOGONAL MATRICES

Let us,...,u, € R" denote the columns of U. l.e. the left
singular vectors of X.

U’ Uu = .~

Jul} =<y = 00X oy, = W'o):,
"4

38



SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values  right singular vectors

0,

0y va

n bo p oo ﬁ

(Eckart—Young—Mirsky Theorem) Forany k < d,éh = U,?Zkvlis

the optimal k rank approximation to X:

Xp= argmin ||X—X|Z
~  Xwithrank <k
39



SINGULAR VALUE DECOMPOSITION

LD‘: VK LO,»: Uv\.r

H T~ K= Xwo.
¢ &

Claim: X, = UV}, = XV,V].

X
Ve 2w = L2V &“;’:;5

/

1 Vik
\Y {u,e, u,(,,...uuéjk B {u,s,...u“:x

'\'D P(\-/L—.'
Vu éuV\:‘ X\J\(\Jé_

\Ek \\—m :é‘%, sz: Vs (O)Q

So for a model with k hidden variables, we obtain an optimal
autoencoder by setting Wy = Vi, W = V] f(X) = XV,V]. »



PRINCIPAL COMPONENT ANALYSIS

d
|

VT

k principal
components

—Q

n loading
vectors

Usually x’s columns (features) are mean centered and
normalized to variance 1 before computing principal

components. “



SINGULAR VALUE DECOMPOSITION

Computing the SVD.

- Full SVD:
U,S,V = scipy.linalg.svd(X).

Runs in O(nd?) time.

- Just the top k components:
u,s,Vv = scipy.sparse.linalg.§_v_d_§_(x,L).

Runs in roughly O(ndR) time.

—_—

42



CONNECTION TO EIGENDECOMPOSITION

Recall that for a matrix M € RP*P q is an eigenvector of M if
Ag = Mg for any scalar . T

- U’s columns (the left singular yectors) are the (nxd >(é ‘ﬁ‘«)
‘

orthonormal eigenvectors o ((:1 X9

- V's columns (the right singular vectors) are the
orthonormal eigenvectors o‘

< o2 = \(XXT) = \(XTX)

Exercise: Verify this directly. This means you can use any
(symmetric) eigensolver for computing the SVD.

43



PCA APPLICATIONS

Like any autoencoder, PCA can be used for: 3(
G

. 4
. _Feature extraction Q-,é(\/

- Denoising and rectification \f), §<

=

il

- Data generatio
- Compression
SOMMIE S5 O]

- Visualization
otelllzeia,

denoising

v:3e

synthetic data generation

44
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LOW RANK APPROXIMATION

Error vs. R is dictated by X's singular values. The singular

values are often called the spectrum of X. X% » Uy {(AUJ
d
X=Xl = > o7 Xu y. T

WY«

46




COLUMN REDUNDANCY

Colinearity of data features leads to an approximately

\

sq.ft.|

low-rank data matrix. d-
bedrooms| bathrooms
2
4 2.5
5 3.5

1800
2700

3600

sale price ~ 1.05 - list price.
property tax ~ .01 - list price.




COLUMN REDUNDANCY

Sometimes these relationships are simple, other times more
complex. But as long as there exists linear relationships
between features, we will have a lower rank matrix.

. 1
Qot size)- -~ square footage.

. 1 1
cumulative GPA & -year 1 GPA + 5 vear 2 GPA

1 1
+ Z-year3 GPA + Z-yeam GPA.

48



LOW-RANK INTUITION

Two other examples of data with good low-rank

approximations:

1. Genetic data:

single nucleotide polymorphisms (SNPs) loci

w31
[individual1 &)
individual 2 /

(individualn | A

436

800

943

2. “Term-document” matrix with bag-of-words data:

doc_1

doc_n

on /09’7/)%"@ %y %o
0o|j0f1|0|0]|1 1|00
0o|0fo0 1/0(1|0|0]|0O
1 1|0 1/10(0|0|1]|0
ojofojofoj|o0|0|1 1
i1(fojo0oj0|O0|O0O|O0]1 1

49



EXAMPLES OF LOW-RANK STRUCTURE

SNPs matrices tend to be very low-rank.

single nucleotide polymorphisms (SNPs) loci
144 312 436 800 943
individual1 A
individual 2

individual n A A

Most of the information in x is explained by just a few latent
variable.

50



EXAMPLES OF LOW-RANK STRUCTURE

“Genes Mirror Geography Within Europe” — Nature, 2008.

X Z X
1zzl.31|~|

encode decode

In data collected from European populations, latent variables
capture information about geography.

|z[1] = relative north-south position of birth place

[2[2] ~ relative east-west position of birth place

Individuals born in similar places tend to have similar genes.

51



PCA FOR DATA VISUALIZATION

“Genes Mirror Geograp rope” — Nature, 2008

Genetic data can be nicely visualized using PCA! Plot each data
example x using two loading variables in z. 52



PRINCIPAL COMPONENTS

For more complex data, what do principal components and
loading vectors look like?

53



PRINCIPAL COMPONENTS

MNIST principal components:

k principal
compgnents

o

n loading
vectors

Often principal components are difficult to interpret. 54



LOADING VECTORS

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which
recombine the top k principal components vy,..., Vv, to
approximately reconstruct x.

k d
A A

@00 E -
X v, v, A A

Provide a short “finger print” for any image x which can be used to

reconstruct that image. o



LOADING VECTORS: SIMILARITY VIEW

For any x with loading vector z, z; is the inner product similarity
between x and the it" principal component v;.

: o

—
X, =,I:|\€1 ‘)
= W —

-
(Ve Vu

13
N

k principal
components

n loading
vectors

z1=(m,ﬂ) zz=(m,m) z3=<g,$)...

—_—

YV

56



LOADING VECTORS: PROJECTION VIEW

Zy'Vq

Since vq,...,Vp are orthonormal, this operation is a projection
onto first k principal components.

l.e. we are projecting x onto the k-dimensional subspace

spanned by vq,...,Vp.
57



LOADING VECTORS: PROJECTION VIEW

For an example x;, the loading vector z; contains the
coordinates in the projection space:

58



SIMILARITY PRESERVATION

Important takeaway for data visualization and more: Latent
feature vectors preserve similarity and distance information in
the original data.

Let X;...,X, € R? be our original data vectors, z; . ..,z, € RF
be our loading vectors (encoding), and %; ..., %, € RY be our
low-rank approximated data.

We have:
S 2 2
1Xill2 = [1zill5
(X -'/Y)'> ~ <)N(f’)~(j> = <Z’_’ZL>
Voo 5l o 1% — %115 = llzi — zl3
b}

59



SIMILARITY PRESERVATION

" - W) et

Conclusion: If our data had a good low rank approximation, we

expect that:
Ixill5 ~ l1zill5
\3< <thj> ~ <Z,‘,Zj>
S A e R R
N Jd7
£ %

V)
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TERM DOCUMENT MATRIX

Word-document matrices tend to be low rank.

olo|o|e|eo]:

o|lo|r|r|o

o|lo|lo|r |~
o|lo|o|o|r
B|r|o]|o

doc_n

Documents tend to fall into a relatively small number of
different categories, which use similar sets of words:

(Financial news:|markets, analysts, dow, rates, stocks

‘(US Politics:)president, senate, pass, slams, twitter, media

- StackOverflow posts: python, help, convert, javascript

61



LATENT SEMANTIC ANALYSIS

Latent semantic analysis)= PCA applied to a word-document
matrix (usually from a large corpus). One of the most
fundamental techniques in natural language processing (NLP).

) U
term-document matrix single docuement
i %ﬁ»&/—%—ﬁ BOW features LSA features
doc_1 1 0 1 =

y PCA

) X

D10y \

word vectors
—_—

R

wlolrfe

0
)
0
0

0
o
0
0

aEaY

1
)
0
0

oloflrfe

document vectors
-

Each column of z corresponds to a latent “category” or “topic”.
Corresponding row in Y corresponds to the “frequency” with
which different words appear in documents on that topic.
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LATENT SEMANTIC ANALYSIS

SimHar documents have similar LSA document vectors. I.e.
|s large.

- z; provides a more compact “finger print” for documents
than the long bag-of-words vectors. Useful for e.g search
engines.

Comparing document vectors is often more effective than
comparing raw BOW features. Two documents can have
(zj,2j) large even if they have no overlap in words. E.g.
because both share a lot of words with words with
another document R, or with a bunch of other documents.

63



EIGENFACES

Same fingerprinting idea was also important in early facial
.. . —_—
recognition systems_based on “eigenfaces”

Each image above is one of the principal components of a
dataset containing images of faces.

64



WORD EMBEDDINGS

single docuement
BOW features LSA features

D )

word vectors
—_—

X

14

document vectors
<
. Q,—,za> ~ 1Twhen docg, contains word;.
- If word; and word; both appear in docg, then
(Vi,Za) = (¥),Za) = 1, SO We expectfyfgy) to be large.

a

If two words appear in the same document their, word vectors

. . . . 65
tend to point more in the same direction.



SEMANTIC EMBEDDINGS

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors.
Dissimilar words to dissimilar vectors. '4’ @

excellent
great

[ (V
C

(r (U

diffucult

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near
synonyms. Or that “difficult” and “easy” are antonyms. 66



WORD EMBEDDINGS: MOTIVATING PROBLEM

[

Review 1: Very small and handy for traveling or camping.
Excellent quality, operation, and appearance. )

Review 2: So far this thing is great. Well designed, compact,
and easy to use. I'll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
someone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

67



BAG-OF-WORDS FEATURES

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review 1: Very small and handy for traveling or camping. Excellent
quality, operation, and appearance.

[ ) Y ) Y ) ) ) ]

Review 2: So far this thing is great. Well designed, compact, and easy
to use. I'll never use another can opener.

[ ? ’ ? ’ ? ) ? ]

Review 3: Not entirely sure this was worth $20. Mom couldn’t figure
out how to use it and it’s fairly difficult to turn for someone with
arthritis.



SEMANTIC EMBEDDINGS

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are
near synonyms. Or that “difficult” and “easy” are antonyms.

excellent
easy great

diffucult

This can be addressed by first mapping words to semantically
meaningful vectors. That mapping can be trained using a much large
corpus of text than the data set you are working with (e.g. Wikipedia,
Twitter, news data sets).

69



USING WORD EMBEDDINGS

How to go from word embeddings to features for a whole
sentence or chunk of text?

remove
“stop words”

Very small and handy for traveling or camping. ‘ [ small, handy, traveling, camping ]

word
embedding

[ small, handy, traveling, camping] ‘

V1Y . Yq

?2??

ViV ... ¥
e d feature vector

70



USING WORD EMBEDDINGS

A few simple options:
_ 1%
Feature vector x = ¢ > ., Yq-

small
average

h
useless andy

average

heavy

Feature vector X = [y1,Y2,...,Yql-

) |

ViV . Vg

x |

71



USING WORD EMBEDDINGS

To avoid issues with inconsistent sentence length, word
ordering, etc., can concatenate a fixed number of top principal
components of the matrix of word vectors:

SVD

ViVy . Vg ViV, Vi

X

There are much more complicated approaches that account for
word position in a sentence. Lots of pretrained libraries
available (e.g. Facebook’'s InferSent). 72



WORD EMBEDDINGS

Another view on word embeddings from LSA:

doc_1

doc_2

doc_n

o %
o D9, g

%, G

0

0

1

1

0
1
0
1

0

o|lo|o|o

olo|r|r]|e

o|lo|e|o]|e

olo|o|r|r

o|lo|o|lo|r

rlr|r|lo]|e

0

term-document matrix

0
; Y

~
° Z word vectors
1
1
X document

vectors

We chose Z to equal XV, = UyX, and Y = V/.

Could have just as easily set Z = U, and Y = X,V!, so Z has

orthonormal columns.
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WORD EMBEDDINGS

Another view on word embeddings from LSA:

Y

X /"e,,/"%s %y o
doc_tlofo|1|o0|o0of2|[1]|0]f0
doc_2| o o|l1fof1]{ofo]fo0
~
1{21|of1|oofof1]o S Z
olofo|ofo|of|o|1]1
doc_nj 1 0 0 0 0 0 0 1 1
. document
term-document matrix X
vectors

- X~ 2ZY
- XX~ YTZZY = YTY
- So for word; and wordj, {y;,y;) ~ [XX]; .

word vectors
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WORD EMBEDDINGS

doc2fofo|o|1|0|1|0|0]0O Y

]

V4 word vectors

docnfi1|o0|o0|0fO0|O0|0O|1]|1

document
X vectors

term-document matrix
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WORD EMBEDDINGS

(vi,y)) is larger if word; and word; appear in more documents
together (high value in word-word co-occurrence matrix, X'X).
Similarity of word embeddings mirrors similarity of word context.

General word embedding recipe:

1. Choose similarity metric R(word;, word;) which can be computed
for any pair of words.
2. Construct similarity matrix M € R™" with M; ; = k(word;, word;).

3. Find low rank approximation M ~ Y'Y where Y € RF*".

4. Columns of Y are word embedding vectors.
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WORD EMBEDDINGS
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How do current state-of-the-art methods differ from LSA?

- Similarity based on co-occurrence in smaller chunks of words.
E.g. in sentences or in any consecutive sequences of 3, 4, or 10
words.

- Usually transformed in non-linear way. E.g.
k(word;,word;) = ‘(7,)’[)’) where p(i,j) is the frequency both I,
appeared together, and p(i), p(j) is the frequency either one
appeared.
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MODERN WORD EMBEDDINGS

Computing word similarities for “window size” 4:

dog park crowded the

The girl walks to her|dog to the park.

It can take a long time to parkyour car in NYC.

0 2 0 3
|The dog park islalways|crowded on Saturdays.

Sop

The girl walks to her dog to the park.
It can take a long time to park your car in NYC.
The dog|park is always crowded|on Saturdays.

The girl walks to

It can take a long time to park your car in NYC.

The dog park is|always crowded on Saturdays.

papmosd  Jed

ay
w
N
o
o
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MODERN WORD EMBEDDINGS

Current state of the art models: GLoVE, word2vec.

- word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

- Forword2vec, similarity metric is the “point-wise mutual

information”: log p[(Jj()ig()j)'
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CAVEAT ABOUT FACTORIZATION

we,,é%s %, %
7 Y
& \

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite® then the optimal low-rank
approximation does not have this form.

*l.e,, R(word;, word;) is not a positive semidefinite kernel.
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CAVEAT ABOUT FACTORIZATION

%

Y |

M = wr

%, %,
S

EN

- For each word | we get a left and right embedding vector
w; and y;. It's reasonable to just use one or the other.

- If {y;,y)) is large and positive, we expect thaty; and y; have
similar similarity scores with other words, so they typically
are still related words.

- Another option is to use as your features for a word the
concatenation [wj, yj]
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EASIEST WAY TO USE WORD EMBEDDINGS

If you want to use word embeddings for your project, the
easiest approach is to use pre-trained word vectors:

- Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

- Compilation of many sources:
https://github.com/3Top/word2vec-api
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WORD EMBEDDINGS MATH

Lots of cool demos online for what can be done with these
embeddings. E.g. “vector math” to solve analogies.

Vector Math

King - Man

King

/’ Queen
/ .
/ Man

he slower
\ she  sow—
cat
himself faster slowest
dog \ herself
\ cats fast
France

dogs

England longer
fastest
long
Paris Italy
London
longest

Rome
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SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

item1 item2

itemn

L way

similarity matrix

M

zway

way

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

14
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NODE EMBEDDINGS

a

ER I & \ - _rﬂn
g A T kg

a ~ e

P 2 [} ]

at (] 9 Ad A e}

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

1 o 7 1,3,4,4,52,1,2,5

Q\Qj;\\ ’// \\\ Q\ 6,8,6,4,3,1,53,4
\2\ \\\: 0\3 \\\6 \\\ 71 81 6' 8' 7' 8' 6' 8' 6
\ ‘ . \\:\\ \O\ ] \\\ :

, O~"> 5 o 4,6,8,6,4,3,1,2,5
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NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

node1 node2 .. node 8
1,3,4,4,52,1,2,5 Bl 0|2 !
6,8,6,43,1,5,3, & I .
7,8,6,8,7,8,6,8,6 o
4,6,8,6,4,3,1,2,5 g

® 1 0 0

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).
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