
CS-GY 6923: Lecture 12
Autoencoders, Principal Component Analysis

NYU Tandon School of Engineering, Prof. Christopher Musco

1

TRANSFER LEARNING

State-of-the-art supervised learning models like neural
networks learn very good features.

But they require lots and lots of data. Imagenet has 14 million
unlabeled images. Mostly of everyday objects.

2

ONE-SHOT LEARNING

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

Example: Classify images of different Quidditch balls.

3

ONE-SHOT LEARNING

Real example: Classify images of insects for use in agricultural
applications in new localities.

4

ONE-SHOT LEARNING

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

Major question in ML: How? Can we design ML algorithms
which can do the same?

5

TRANSFER LEARNING

Transfer knowledge from one task we already know how to
solve to another.

For example, we have learned from past experience that balls
used in sports have consistent shapes, colors, and sizes. These
features can be used to distinguish balls of different type.

6

FEATURE LEARNING

Examples of possible high-level features a human would learn:

7

FEATURE LEARNING

If these features are highly informative (i.e. lead to highly
separable data) few training examples are needed to learn.

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.

8

TRANSFER LEARNING

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

Even if we can’t put into words what each feature in z means... 9

TRANSFER LEARNING

This is now a common technique in computer vision:

1. Download network trained on large image classification dataset
(e.g. Imagenet).

2. Extract features z for any new image x by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
github.com/thatbrguy/Object-Detection-Quidditch

10

github.com/thatbrguy/Object-Detection-Quidditch

UNSUPERVISED FEATURE LEARNING

Transfer learning: Lots of labeled data for one problem makes
up for little labeled data for another.

But what if we don’t even have labeled data for a sufficiently
related problem?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.

11

SUPERVISED VS. UNSUPERVISED LEARNING

• Supervised learning: All input data examples come with
targets/labels. What machines have been really good at
for the past 8 years.

• Unsupervised learning: No input data examples come
with targets/labels. Interesting problems to solve include
clustering, anomaly detection, semantic embedding, etc.

• Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human
babies are really good at, and we have recently made
machines a lot better at.

12

AUTOENCODER

Simple but clever idea: If we have inputs x1, . . . , xn ∈ Rd but
few or no targets y1, . . . , yn, just make the inputs the targets.

• Let fθ : Rd → Rd be our model.
• Let Lθ be a loss function. E.g. squared loss:
Lθ(x) = ∥x− fθ(x)∥22.

• Train model: θ∗ = minθ
∑n

i=1 Lθ(x).

If fθ is a model that incorporates feature learning, then these
features can be used for supervised tasks.

fθ is called an autoencoder. It maps input space to input
space (e.g. images to images, french to french, PDE solutions to

PDE solutions).

13

AUTOENCODER

Two examples of autoencoder architectures:

Which would lead to better feature learning?

14

AUTOENCODER

Important property of autoencoders: no matter the architecture,
there must always be a bottleneck with fewer parameters than the
input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.

15

AUTOENCODER

Separately name the mapping from input to bottleneck and from
bottleneck to output.

Encoder: e : Rd → Rk Decoder: d : Rd → Rk

f(x) =

Often symmetric, but does not have to be. 16

AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 17

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as supervised
methods for feature extraction, but they require no labeled
data.1

There are a lot of cool applications of autoencoders beyond
feature learning!

• Learned data compression.
• Denoising and in-painting.
• Data/image synthesis.

1Recent progress on self-supervised learning achieves the best of both
worlds – state-of-the-art feature learning with no labeled data.

18

AUTOENCODERS FOR DATA COMPRESSION

Due to their bottleneck design, autoencoders perform
dimensionality reduction and thus data compression.

Given input x, we can completely recover f(x) from z = e(x). z
typically has many fewer dimensions than x and for a typical
image f(x) will closely approximate x. 19

AUTOENCODERS FOR IMAGE COMPRESSION

The best lossy compression algorithms are tailor made for specific
types of data:

• JPEG 2000 for images

• MP3 for digital audio.

• MPEG-4 for video.

All of these algorithms take advantage of specific structure in these
data sets. E.g. JPEG assumes images are locally “smooth”.

20

AUTOENCODERS FOR IMAGE COMPRESSION

With enough input data, autoencoders can be trained to find this
structure on their own.

“End-to-end optimized image compression”, Ballé, Laparra, Simoncelli

Need to be careful about how you choose loss function, design the
network, etc. but can lead to much better image compression than
“hand-tuned” algorithms like JPEG. 21

AUTOENCODERS FOR IMAGE CORRECTION

Train autoencoder on uncorrupted images (unsupervised). Pass
corrupted image x through autoencoder and return f(x) as repaired
result.

22

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

Why does this work?

Consider 128× 128× 3 images with pixels values in 0, 1 . . . , 255.
How many possible images are there?

If z holds k values in 0, .1, .2, . . . , 1, how many unique images w
can be output by the autoencoder function f?

23

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

For a good (accurate, small bottleneck) autoencoder, S will
closely approximate I . Both will be much smaller than A.

24

AUTOENCODERS LEARN COMPRESSED REPRESENTATIONS

f(x) = d(e(x)) projects an image x closer to the space of
natural images.

25

AUTOENCODERS FOR DATA GENERATION

Suppose we want to generate a random natural image. How
might we do that?

• Option 1: Draw each pixel value in x uniformly at random.
Draws a random image from A.

• Option 2: Draw x randomly from S , the space of images
representable by the autoencoder.

How do we randomly select an image from S?

26

AUTOENCODERS FOR DATA GENERATION

How do we randomly select an image x from S?

Randomly select code z, then set x = d(z).2

2Lots of details to think about here. In reality, people use “variational
autoencoders” (VAEs), which are a natural modification of AEs.

27

AUTOENCODERS FOR DATA GENERATION DEMO

Teal created a demo for the ”Fashion MNIST” data set:

28

PRINCIPAL COMPONENT ANALYSIS

28

PRINCIPAL COMPONENT ANALYSIS

Rest of lecture: Deeper dive into understanding a simple, but
powerful autoencoder architecture. Specifically we will view
principal component analysis (PCA) as a type of autoencoder.

PCA is the “linear regression” of unsupervised learning: often
the go-to baseline method for feature extraction and
dimensionality reduction.

Very important outside machine learning as well.

29

PRINCIPAL COMPONENT ANALYSIS

Consider the simplest possible autoencoder:

• One hidden layer. No non-linearity. No biases.

• Latent space of dimension k.

• Weight matrices are W1 ∈ Rd×k and W2 ∈ Rk×d.

30

PRINCIPAL COMPONENT ANALYSIS

Given input x ∈ Rd, what is f(x) expressed in linear algebraic
terms?

f(x)T = xTW1W2

31

PRINCIPAL COMPONENT ANALYSIS

Encoder: e(x) = xTW1. Decoder: d(z) = zW2

32

PRINCIPAL COMPONENT ANALYSIS

Given training data set x1, . . . , xn, let X denote our data matrix.
Let X̃ = XW1W2.

33

FROBENIUS NORM

Natural squared autoencoder loss: Minimize L(X, X̃) where:

L(X, X̃) =
n∑
i=1

∥xi − f(xi)∥22

=
n∑
i=1

d∑
j=1

(xi[j]− f(xi)[j])2

= ∥X− X̃∥2F

Goal: Find W1,W2 to minimize the Frobenius norm loss
∥X− X̃∥2F = ∥X− XW1W2∥2F (sum of squared entries).

34

LOW-RANK APPROXIMATION

Rank in linear algebra:

• The columns of a matrix with column rank k can all be written
as linear combinations of just k columns.

• The rows of a matrix with row rank k can all be written as linear
combinations of k rows.

• Column rank = row rank = rank.

X̃ is a low-rank matrix. It only has rank k for k ≪ d.
35

LOW-RANK APPROXIMATION

Principal component analysis is the task of finding W1, W2,
which amounts to finding a rank k matrix X̃ which
approximates the data matrix X as closely as possible.

Finding the best W1 and W2 is a non-convex problem. We could
try running an iterative method like gradient descent anyway.
But there is also a direct algorithm!

36

SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0. I.e. U and V are
orthogonal matrices.

This is called the singular value decomposition.

Can be computed in O(nd2) time (faster with approximation algos). 37

ORTHOGONAL MATRICES

Let u1, . . . ,un ∈ Rn denote the columns of U. I.e. the left
singular vectors of X.

∥ui∥22 = uTi uj =

38

SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

Eckart–Young–Mirsky Theorem: For any k ≤ d, Xk = UkΣkVTk is
the optimal k rank approximation to X:

Xk = argmin
X̃ with rank ≤ k

∥X− X̃∥2F.

39

SINGULAR VALUE DECOMPOSITION

Claim: Xk = UkΣkVTk = XVkVTk.

So for a model with k hidden variables, we obtain an optimal
autoencoder by setting W1 = Vk, W2 = VTk. f(x) = xVkVTk. 40

PRINCIPAL COMPONENT ANALYSIS

Usually x’s columns (features) are mean centered and
normalized to variance 1 before computing principal
components. 41

SINGULAR VALUE DECOMPOSITION

Computing the SVD.

• Full SVD:
U,S,V = scipy.linalg.svd(X).

Runs in O(nd2) time.
• Just the top k components:
U,S,V = scipy.sparse.linalg.svds(X, k).

Runs in roughly O(ndk) time.

42

CONNECTION TO EIGENDECOMPOSITION

Recall that for a matrix M ∈ Rp×p, q is an eigenvector of M if
λq = Mq for any scalar λ.

• U’s columns (the left singular vectors) are the
orthonormal eigenvectors of XXT.

• V’s columns (the right singular vectors) are the
orthonormal eigenvectors of XTX.

• σ2
i = λi(XXT) = λi(XTX)

Exercise: Verify this directly. This means you can use any
(symmetric) eigensolver for computing the SVD.

43

PCA APPLICATIONS

Like any autoencoder, PCA can be used for:

• Feature extraction
• Denoising and rectification
• Data generation
• Compression
• Visualization

44

LOW-RANK APPROXIMATION

The larger we set k, the better approximation we get.

45

LOW RANK APPROXIMATION

Error vs. k is dictated by X’s singular values. The singular
values are often called the spectrum of X.

∥X− Xk∥2F =
d∑

i=k
σ2
i .

46

COLUMN REDUNDANCY

Colinearity of data features leads to an approximately
low-rank data matrix.

sale price ≈ 1.05 · list price.
property tax ≈ .01 · list price.

47

COLUMN REDUNDANCY

Sometimes these relationships are simple, other times more
complex. But as long as there exists linear relationships
between features, we will have a lower rank matrix.

yard size ≈ lot size− 1
2 · square footage.

cumulative GPA ≈ 1
4 · year 1 GPA+

1
4 · year 2 GPA

+
1
4 · year 3 GPA+

1
4 · year 4 GPA.

48

LOW-RANK INTUITION

Two other examples of data with good low-rank
approximations:

1. Genetic data:

2. “Term-document” matrix with bag-of-words data:

49

EXAMPLES OF LOW-RANK STRUCTURE

SNPs matrices tend to be very low-rank.

Most of the information in x is explained by just a few latent
variable.

50

EXAMPLES OF LOW-RANK STRUCTURE

“Genes Mirror Geography Within Europe” – Nature, 2008.

In data collected from European populations, latent variables
capture information about geography.

z[1] ≈ relative north-south position of birth place
z[2] ≈ relative east-west position of birth place

Individuals born in similar places tend to have similar genes.

51

PCA FOR DATA VISUALIZATION

“Genes Mirror Geography Within Europe” – Nature, 2008.

Genetic data can be nicely visualized using PCA! Plot each data
example x using two loading variables in z. 52

PRINCIPAL COMPONENTS

For more complex data, what do principal components and
loading vectors look like?

53

PRINCIPAL COMPONENTS

MNIST principal components:

Often principal components are difficult to interpret. 54

LOADING VECTORS

What do the loading vectors looks like?

The loading vector z for an example x contains coefficients which
recombine the top k principal components v1, . . . , vk to

approximately reconstruct x.

Provide a short “finger print” for any image x which can be used to
reconstruct that image.

55

LOADING VECTORS: SIMILARITY VIEW

For any x with loading vector z, zi is the inner product similarity
between x and the ith principal component vi.

56

LOADING VECTORS: PROJECTION VIEW

So we approximate x ≈ x̃ = ⟨x, v1⟩ · v1 + . . .+ ⟨x, vk⟩ · vk.

Since v1, . . . , vk are orthonormal, this operation is a projection
onto first k principal components.

I.e. we are projecting x onto the k-dimensional subspace
spanned by v1, . . . , vk.

57

LOADING VECTORS: PROJECTION VIEW

For an example xi, the loading vector zi contains the
coordinates in the projection space:

58

SIMILARITY PRESERVATION

Important takeaway for data visualization and more: Latent
feature vectors preserve similarity and distance information in
the original data.

Let x1 . . . , xn ∈ Rd be our original data vectors, z1 . . . , zn ∈ Rk

be our loading vectors (encoding), and x̃1 . . . , x̃n ∈ Rd be our
low-rank approximated data.

We have:

∥x̃i∥22 = ∥zi∥22
⟨x̃i, x̃j⟩ = ⟨zi, zj⟩

∥x̃i − x̃j∥22 = ∥zi − zj∥22

59

SIMILARITY PRESERVATION

Conclusion: If our data had a good low rank approximation, we
expect that:

∥xi∥22 ≈ ∥zi∥22
⟨xi, xj⟩ ≈ ⟨zi, zj⟩

∥xi − xj∥22 ≈ ∥zi − zj∥22

60

TERM DOCUMENT MATRIX

Word-document matrices tend to be low rank.

Documents tend to fall into a relatively small number of
different categories, which use similar sets of words:

• Financial news: markets, analysts, dow, rates, stocks
• US Politics: president, senate, pass, slams, twitter, media
• StackOverflow posts: python, help, convert, javascript

61

LATENT SEMANTIC ANALYSIS

Latent semantic analysis = PCA applied to a word-document
matrix (usually from a large corpus). One of the most
fundamental techniques in natural language processing (NLP).

Each column of z corresponds to a latent “category” or “topic”.
Corresponding row in Y corresponds to the “frequency” with
which different words appear in documents on that topic.

62

LATENT SEMANTIC ANALYSIS

Similar documents have similar LSA document vectors. I.e.
⟨zi, zj⟩ is large.

• zi provides a more compact “finger print” for documents
than the long bag-of-words vectors. Useful for e.g search
engines.

• Comparing document vectors is often more effective than
comparing raw BOW features. Two documents can have
⟨zi, zj⟩ large even if they have no overlap in words. E.g.
because both share a lot of words with words with
another document k, or with a bunch of other documents.

63

EIGENFACES

Same fingerprinting idea was also important in early facial
recognition systems based on “eigenfaces”:

Each image above is one of the principal components of a
dataset containing images of faces.

64

WORD EMBEDDINGS

• ⟨yi, za⟩ ≈ 1 when doca contains wordi.
• If wordi and wordj both appear in doca, then
⟨yi, za⟩ ≈ ⟨yj, za⟩ ≈ 1, so we expect ⟨yj, yj⟩ to be large.

If two words appear in the same document their, word vectors
tend to point more in the same direction.

65

SEMANTIC EMBEDDINGS

Result: Map words to numerical vectors in a semantically
meaningful way. Similar words map to similar vectors.
Dissimilar words to dissimilar vectors.

Extremely useful “side-effect” of LSA.

Capture e.g. the fact that “great” and “excellent” are near
synonyms. Or that “difficult” and “easy” are antonyms. 66

WORD EMBEDDINGS: MOTIVATING PROBLEM

Review 1: Very small and handy for traveling or camping.
Excellent quality, operation, and appearance.

Review 2: So far this thing is great. Well designed, compact,
and easy to use. I’ll never use another can opener.

Review 3: Not entirely sure this was worth $20. Mom couldn’t
figure out how to use it and it’s fairly difficult to turn for
someone with arthritis.

Goal is to classify reviews as “positive” or “negative”.

67

BAG-OF-WORDS FEATURES

Vocabulary: Small, handy, excellent, great, quality, compact, easy,
difficult.

Review 1: Very small and handy for traveling or camping. Excellent
quality, operation, and appearance.

[, , , , , , ,]

Review 2: So far this thing is great. Well designed, compact, and easy
to use. I’ll never use another can opener.

[, , , , , , ,]

Review 3: Not entirely sure this was worth $20. Mom couldn’t figure
out how to use it and it’s fairly difficult to turn for someone with
arthritis.

[, , , , , , ,] 68

SEMANTIC EMBEDDINGS

Bag-of-words approach typically only works for large data sets.

The features do not capture the fact that “great” and “excellent” are
near synonyms. Or that “difficult” and “easy” are antonyms.

This can be addressed by first mapping words to semantically
meaningful vectors. That mapping can be trained using a much large
corpus of text than the data set you are working with (e.g. Wikipedia,
Twitter, news data sets).

69

USING WORD EMBEDDINGS

How to go from word embeddings to features for a whole
sentence or chunk of text?

70

USING WORD EMBEDDINGS

A few simple options:
Feature vector x = 1

q
∑q

i=1 yq.

Feature vector x = [y1, y2, . . . , yq].

71

USING WORD EMBEDDINGS

To avoid issues with inconsistent sentence length, word
ordering, etc., can concatenate a fixed number of top principal
components of the matrix of word vectors:

There are much more complicated approaches that account for
word position in a sentence. Lots of pretrained libraries
available (e.g. Facebook’s InferSent). 72

WORD EMBEDDINGS

Another view on word embeddings from LSA:

We chose Z to equal XVk = UkΣk and Y = VTk.

Could have just as easily set Z = Uk and Y = ΣkVTk, so Z has
orthonormal columns.

73

WORD EMBEDDINGS

Another view on word embeddings from LSA:

• X ≈ ZY
• XTX ≈ YTZTZY = YTY
• So for wordi and wordj, ⟨yi, yj⟩ ≈ [XTX]i,j.

What does the i, j entry of XTX reprent?

74

WORD EMBEDDINGS

What does the i, j entry of XTX reprent?

75

WORD EMBEDDINGS

⟨yi, yj⟩ is larger if wordi and wordj appear in more documents
together (high value in word-word co-occurrence matrix, XTX).
Similarity of word embeddings mirrors similarity of word context.

General word embedding recipe:

1. Choose similarity metric k(wordi,wordj) which can be computed
for any pair of words.

2. Construct similarity matrix M ∈ Rn×n with Mi,j = k(wordi,wordj).

3. Find low rank approximation M ≈ YTY where Y ∈ Rk×n.

4. Columns of Y are word embedding vectors.

76

WORD EMBEDDINGS

How do current state-of-the-art methods differ from LSA?

• Similarity based on co-occurrence in smaller chunks of words.
E.g. in sentences or in any consecutive sequences of 3, 4, or 10
words.

• Usually transformed in non-linear way. E.g.
k(wordi,wordj) =

p(i,j)
p(i)p(j) where p(i, j) is the frequency both i, j

appeared together, and p(i), p(j) is the frequency either one
appeared.

77

MODERN WORD EMBEDDINGS

Computing word similarities for “window size” 4:

78

MODERN WORD EMBEDDINGS

Current state of the art models: GloVE, word2vec.

• word2vec was originally presented as a shallow neural
network model, but it is equivalent to matrix factorization
method (Levy, Goldberg 2014).

• For word2vec, similarity metric is the “point-wise mutual
information”: log p(i,j)

p(i)p(j) .

79

CAVEAT ABOUT FACTORIZATION

SVD will not return a symmetric factorization in general. In fact,
if M is not positive semidefinite3 then the optimal low-rank
approximation does not have this form.

3I.e., k(wordi,wordj) is not a positive semidefinite kernel.

80

CAVEAT ABOUT FACTORIZATION

• For each word i we get a left and right embedding vector
wi and yi. It’s reasonable to just use one or the other.

• If ⟨yi, yj⟩ is large and positive, we expect that yi and yj have
similar similarity scores with other words, so they typically
are still related words.

• Another option is to use as your features for a word the
concatenation [wi, yi]

81

EASIEST WAY TO USE WORD EMBEDDINGS

If you want to use word embeddings for your project, the
easiest approach is to use pre-trained word vectors:

• Original gloVe website:
https://nlp.stanford.edu/projects/glove/.

• Compilation of many sources:
https://github.com/3Top/word2vec-api

82

https://nlp.stanford.edu/projects/glove/
https://github.com/3Top/word2vec-api

WORD EMBEDDINGS MATH

Lots of cool demos online for what can be done with these
embeddings. E.g. “vector math” to solve analogies.

83

SEMANTIC EMBEDDINGS

The same approach used for word embeddings can be used to
obtain meaningful numerical features for any other data where
there is a natural notion of similarity.

For example, the items could be nodes in a social network
graph. Maybe be want to predict an individuals age, level of
interest in a particular topic, political leaning, etc.

84

NODE EMBEDDINGS

Generate random walks (e.g. “sentences” of nodes) and
measure similarity by node co-occurence frequency.

85

NODE EMBEDDINGS

Again typically normalized and apply a non-linearity (e.g. log)
as in word embeddings.

Popular implementations: DeepWalk, Node2Vec. Again
initially derived as simple neural network models, but are
equivalent to matrix-factorization (Qiu et al. 2018).

86

