
CS-GY 6923: Lecture 10
Convolutional Neural Networks, Adversarial
Examples

NYU Tandon School of Engineering, Prof. Christopher Musco

1

RECAP FROM LAST LECTURE

1

BACKPROP

For any feed-forward neural network with d parameters:

• Backpropagation can be used to compute derivatives with
respect to one particular input in O(d) time.

• Final computation boils down to linear algebra operations
(matrix multiplication and vector operations) which can
be performed quickly on a GPU.

Allows for very fast implementation of Stochastic Gradient
Descent for training neural networks.

2

NEURAL NETWORK DEMOS

Two demos will be uploaded on neural networks:

• keras_demo_synthetic.ipynb
• keras_demo_mnist.ipynb

Please spend some time working through these.

3

NEURAL NETWORK SOFTWARE

Low-level libraries have built in optimizers (SGD and improvements)
and can automatically perform backpropagation for arbitrary
network structures. Also ptimize code for any available GPUs.

Keras has high level functions for defining and training a neural
network architecture. 4

NEURAL NETWORK SOFTWARE

Define model:

Compile model:

Train model:

5

FEATURE EXTRACTION

Why do neural networks work so well?

Treat feature transformation/extraction as part of the learning
process instead of making this the users job.

But sometimes they still need a nudge in the right direction...

6

BASIC FEATURE EXTRACTION

7

BASIC FEATURE EXTRACTION

Sigmoid activation: Each hidden variable zi equals 1
1+e−zi

where zi = wTx+ b for input x.

Other non-linearities yield similar features.

8

BASIC FEATURE EXTRACTION

If you combine more hidden variables, you can start building
more complex classifiers.

What about even more complex datasets?

9

BASIC FEATURE EXTRACTION

With more layers, complexity starts ramping up:

But there is a limit...

10

BASIC FEATURE EXTRACTION

Modern machine learning algorithms can differentiate
between images of African and Asian elephants:

The features needed for this task are far more complex then
we could expect a network to learn completely on its own
using combinations of linear layers + non-linearities.

11

CONVOLUTIONAL FEATURE EXTRACTION

Today’s topic: Understand why convolution is a powerful way
of extracting features from image data. Also super valuable for

• Audio data.
• Time series data.

Ultimately, can build convolutional networks that already have
convolutional feature extraction pre-coded in. Just need to
learn weights.

12

MOTIVATING EXAMPLE

What features would tell use this image contains a stop sign?

Typically way of vectorizing an image chops up and splits up
any pixels in the stop sign. We need very complex features to
piece these back together again... 13

CONVOLUTION

Objects or features of an image often involve pixels that are spatially
correlated. Convolution explicitly encodes this.

Definition (Discrete 1D convolution1)
Given x ∈ Rd and w ∈ Rk the discrete convolution x⊛ w is a
d− k+ 1 vector with:

[x⊛ w]i =
k∑
j=1

x(j+i−1)wj

Think of x ∈ Rd as long data vector (e.g. d = 512) and w ∈ Rk as short
filter vector (e.g. k = 8). u = [x⊛ w] is a feature transformation.
1This is slightly different from the definition of convolution you might have
seen in a Digital Signal Processing class because w does not get “flipped”. In
signal processing our operation would be called correlation.

14

1D CONVOLUTION

15

MATCH THE CONVOLUTION

16

2D CONVOLUTION

Definition (Discrete 2D convolution)
Given matrices x ∈ Rd1×d2 and w ∈ Rk1×k2 the discrete convolution
x⊛ w is a (d1 − k1 + 1)× (d2 − k2 + 1) matrix with:

[x⊛ w]i,j =
k1∑
ℓ=1

k2∑
h=1

x(i+ℓ−1),(j+h−1) · wℓ,h

Again technically this is “correlation” not “convolution”. Should be
performed in Python using scipy.signal.correlate2d instead
of scipy.signal.convolve2d.
w is called the filter or convolution kernel and again is typically
much smaller than x.

17

2D CONVOLUTION

w =

0 1 2
2 2 0
0 1 2



18

2D CONVOLUTION

w =

0 1 2
2 2 0
0 1 2



19

ZERO PADDING

Sometimes “zero-padding” is introduced so x⊛ w is d1 × d2 if x
is d1 × d2.

Need to pad on left and right by (k1 − 1)/2 and on top and
bottom by (k2 − 1)/2.

20

APPLICATIONS OF CONVOLUTION

Examples code will be available in
demo1_convolutions.ipynb.

Application 1: Blurring/smooth.

In one dimension:

• Uniform (moving average) filter: wi =
1
k for i = 1, . . . , k.

• Gaussian filter: wi ∼ exp(i−k/2)2/σ2 for i = 1, . . . , k.

21

SMOOTHING FILTERS

22

SMOOTHING FILTERS

Useful for smoothing time-series data, or removing
noise/static from audio data.

Replaces every data point with a local average.

23

SMOOTHING IN TWO DIMENSIONS

In two dimensions:

• Uniform filter: wi,j =
1

k1k2 for i = 1, . . . , k1, j = 1, . . . , k2.

• Gaussian filter: wi ∼ exp
(i−k1/2)

2+(j−k2/2)
2

σ2 for i = 1, . . . , k1,
j = 1, . . . , k2.

Larger filter equates to more smoothing.

24

SMOOTHING IN TWO DIMENSIONS

For Gaussian filter, you typically choose k ≳ 2σ to capture the
fall-off of the Gaussian.

Both approaches effectively denoise and smooth images.
25

SMOOTHING FOR FEATURE EXTRACTION

When combined with other feature extractors, smoothing at
various levels allows the algorithm to focus on high-level
features over low-level features.

26

APPLICATIONS OF CONVOLUTION

Application 2: Pattern matching.

Slide a pattern over an image. Output of convolution will be
higher when pattern correlates well with underlying image.

27

LOCAL PATTERN MATCHING

Applications of local pattern matching:

• Check if an image contains text.
• Look for specific sound in audio recording.
• Check for other well-structured objects

28

3D CONVOLUTION

Recall that color images actually have three color channels for
red, green, blues. Each pixel is represented by 3 values (e.g. in
0, . . . , 255) giving the intensity in each channel.

[0, 0, 0] = black, [0, 0, 0] = white, [1, 0, 0] = pure red, etc.

View image as 3D tensor:

29

3D CONVOLUTION

Definition (Discrete 3D convolution)
Given tensors x ∈ Rd1×d2×d3 and w ∈ Rk1×k2×k3 the discrete
convolution x⊛ w is a
(d1 − k1 + 1)× (d2 − k2 + 1)× (d3 − k3 + 1) tensor with:

[x⊛ w]i,j,g =

k1∑
ℓ=1

k2∑
m=1

k3∑
n=1

x(i+ℓ−1),(j+m−1),(g+n−1) · wℓ,m,n

30

APPLICATION 2: PATTERN MATCHING

More powerful patter matching in color images:

31

APPLICATIONS OF CONVOLUTION

Application 3: Edge detection.

These are 2D edge detection filter:

W1 =
[
1 −1

]
W2 =

[
1
−1

]

32

APPLICATIONS OF CONVOLUTION

Sobel filter is more commonly used:

W1 =

1 0 −1
2 0 −2
1 0 −1

 W2 =

 1 2 1
0 0 0
−1 −2 −1



33

DIRECTIONAL EDGE DETECTION

Can define edge detection filters for any orientation.

34

EDGE DETECTION

How would edge detection as a feature extractor help you
classify images of city-scapes vs. images of landscapes?

35

EDGE DETECTION

mean(EC) = .108 vs. mean(EL) = .123

The image with highest vertical edge response isn’t the city-scape.
36

EDGE DETECTION + PATTERN MATCHING

Feed edge detection result into pattern matcher that looks for
long vertical lines.

37

HIERARCHICAL CONVOLUTIONAL FEATURES

mean(VC) = .062 vs. mean(VL) = .054

The image with highest average response to (edge detector) +
(vertical pattern) is the city scape.

mean(V) = VTβ where β = [1/n, . . . , 1/n]. So the new features in V
could be combined with a simple linear classifier to separate
cityscapes from landscapes

38

HIERARCHICAL CONVOLUTIONAL FEATURES

Hierarchical combinations of simple convolution filters are
very powerful for understanding images.

Edge detection seems like a critical first step.

Lots of evidence from biology.

39

VISUAL SYSTEM

Light comes into the eye through the lens and is detected by an
array of photosensitive cells in the retina.

Rod cells are sensitive to all light, larger cone cells are sensitive to
specific colors. We have three types of cones:

40

VISUAL SYSTEM

Signal passes from the retina to the primary (V1) visual cortex, which
has neurons that connect to higher level parts of the brain.

What sort of processing happens in the primary cortex?

Lots of edge detection!
41

EDGE DETECTORS IN CATS

Huber + Wiesel, 1959: “Receptive fields of single neurones in the cat’s
striate cortex.” Won Nobel prize in 1981.

Different neurons fire when the cat is presented with stimuli at
different angles. Cool video at
https://www.youtube.com/watch?v=OGxVfKJqX5E.
”What the Frog’s Eye Tells the Frog’s Brain”, Lettvin et al. 1959. Found
explicit edge detection circuits in a frogs visual cortex.

42

https://www.youtube.com/watch?v=OGxVfKJqX5E

EXPLICIT FEATURE ENGINEERING

State of the art until 12 years ago:

• Convolve image with edge detection filters at many
different angles.

• Hand engineer features based on the responses.
• SIFT and HOG features were especially popular.

43

CONVOLUTIONAL NEURAL NETWORKS

Neural network approach: Learn the parameters of the convolution
filters based on training data.

First convolutional layer involves n convolution filters W1, . . . ,Wn.
Each is small, e.g. 5× 5. Every entry in Wi is a free parameter: ∼ 25 · n
parameters to learn.

Produces n matrices of hidden variables: i.e. a tensor with depth n.

44

WEIGHT SHARING

Convolutional layers can be viewed as fully connected layers
with added constraints. Many of the weights are forced to 0
and we have weight sharing constraints.

Weight sharing needs to be accounted for when running
backprop/gradient descent.

45

CONVOLUTIONAL NEURAL NETWORKS

A fully connected layer that extracts the same feature would require
(28 · 28 · 24 · 24) · n = 451, 584 · n parameters. Difference of over
200, 000x from 25n.

By “baking in” knowledge about what type of features matter, we
greatly simply the network.

Each of the n ouputs is typically processed with a non-linearity.
Most commonly a Rectified Linear Unity (ReLU): x = max(x̄, 0).

46

POOLING AND DOWNSAMPLING

Convolution + non-linearity are typically followed by a layer
which performs pooling + down-sampling.

Most common approach is max-pooling.

47

POOLING AND DOWNSAMPLING

• Reduces number of variables.

• Helps “smooth” result of
convolutional filters.

• Improves shift-invariance.

48

OVERALL NETWORK ARCHITECTURE

Each layer contains a 3D tensor of variables. Last few layers
are standard fully connected layers.

49

UNDERSTANDING LAYERS

What type of convolutional filters do we learn from gradient descent?
Lots of edge detectors in the first layer!

Other layers are harder to understand... but roughly hidden variables
later in the network encode for “higher level features”:

50

UNDERSTANDING LAYERS

How can we know?

Go through dataset and find the inputs that most “excite” a
given neuron h. I.e. for which |h(x)| is largest.

51

UNDERSTANDING LAYERS

How can we know?

Alternative approach: Solve the optimization problem
maxx |h(x)| e.g. using gradient descent.

52

UNDERSTANDING LAYERS

Early work had some interesting results.

“Understanding Neural Networks Through Deep Visualization”, Yosinski et al.

53

UNDERSTANDING LAYERS

There has been a lot of work on improving these methods by
regularization. I.e. solve maxx |h(x)|+ g(x) where g constrains x to
look more like a “natural image”.

If you are interested in learning more on these techniques, there is a
great Distill article at:
https://distill.pub/2017/feature-visualization/.

54

https://distill.pub/2017/feature-visualization/

UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

55

UNDERSTANDING LAYERS

Nodes at different layers have different layers capture increasingly
more abstract concepts.

General obervation: Depth more important than width. Alexnet 2012
had 8 layers, modern convolutional nets can have 100s.

56

TRICKS OF THE TRADE

Beyond techinques discussed for general neural nets (back-prop,
batch gradient descent, adaptive learning rates) training deep
networks requires a lot of “tricks”.

• Batch normalization (accelerate training).

• Dropout (prevent over-fitting)

• Residual connections (accelerate training, allow for more depth
– 100s of layers).

• Data augmentation.

And deep networks require lots of training data and lots of time.

57

BATCH NORMALIZATION

Start with any neural network architecture:

For input x,

z̄ = wTx+ b
z = s(z̄)

where w, b, and s are weights, bias, and non-linearity. 58

BATCH NORMALIZATION

z̄ is a function of the input x. We can write it as z̄(x). Consider
the mean and standard deviation of the hidden variable over
our entire dataset x1 . . . , xn:

µ =
1
n

n∑
j=1

z̄(xj)

σ2 =
1
n

n∑
j=1

(z̄(xj)− µ)2

Just as normalization (mean centering, scaling to unit variance)
is sometimes used for input features, batch-norm applies
normalization to learned features.

59

BATCH NORMALIZATION

Can add a batch normalization layer after any layer:

ū =
z̄− µ

σ

u = s(ū).

Has the effect of mean-centering/normalizing z̄. Typically we actualy
allow u = s(γ · ū+ c) for learned parameters γ and c.

60

BATCH NORMALIZATION

Proposed in 2015: “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”, Ioffe, Szegedy.

Doesn’t change the expressive power of the network, but allows for
significant convergence acceleration. It is not yet well understood
why batch normalizition speeds up training.

61

DATA AUGMENTATION

Great general tool to know about. Main idea:

• More training data typically leads to a more accurate model.

• Artificially enlarge training data with simple transformations.

Take training images and randomly shift, flip, rotate, skew, darken,
lighten, shift colors, etc. to create new training images. Final
classifier will be more robust to these transformations.

62

DEEP LEARNING TRICKS

Need to take a full course on neural networks/deep learning to
learn more! State-of-the-art techniques are constantly

evolving.

63

DEEPER AND DEEPER, BIGGER AND BIGGER

After AlexNet (8 layers, 60 million parameters) achieved start of
the art performance on ImageNet, progress proceeded rapidly:

64

GENERALIZATION FOR NEURAL NETWORKS

Even with weight sharing, convolution, etc. modern neural
networks typically have 100s of millions of parameters. And we
don’t train them with regularization. Intuitively we might
expect them to overfit to training data.

65

GENERALIZATION FOR NEURAL NETWORKS

In fact, we now know that modern neural nets can easily
overfit to training data. This work showed that we can fit large
vision data sets with random class labels to essentially perfect
accuracy.

But we don’t always see a large gap between training and test
error. Don’t take this to mean overfitting isn’t a problem when
using neural nets! It’s just not always a problem.

66

GENERALIZATION FOR NEURAL NETWORKS

We even see this lack of overfitting for MNIST data. I will post a
demo keras_demo_mnist.ipynb I posted on the website:

67

GENERALIZATION FOR NEURAL NETWORKS

One growing realization is that this phenomena doesn’t only apply to
neural networks – it can also be true for fitting
highly-overparameterized polynomials.

The choice of training algo (e.g. gradient descent) seems important. 68

DOUBLE DESCENT

We sometimes see a “double descent curve” for these models. Test
error is worst for “just barely” overparameterized models, but gets
better with lots of overparameterization.

We don’t usually see this same curve for neural networks.
69

OVERFITTING IN NEURAL NETS

Take away: Modern neural network overfit, but still seem fairly
robust. Perform well on any new test data we throw that them.

Or do they?

70

ADVERSARIAL EXAMPLES

70

ADVERSARIAL EXAMPLES

Main discovery: It is possible to find imperceptibly small
perturbations of input images that will fool deep neural
networks. This seems to be a universal phenomenon.

Important: Random perturbations do not work!

71

ADVERSARIAL EXAMPLES

How to find “good” perturbations:

Fix model fθ , input x, correct label y. Consider the loss ℓ(θ, x, y).

Solve the optimization problem:

max
δ,∥δ∥≤ϵ

ℓ(θ, x+ δ, y)

Can be solved using gradient descent! We just need to
compute the derivative of the loss with respect to the image
pixels. Backprop can do this easily.

72

ADVERSARIAL EXAMPLES

Teal put together a really cool lab where you can find your own
adversarial examples for a model called Resnet18. The entire
model + weights are available through PyTorch, so we do not
need to train it ourselves (i.e. this is a pre-trained model).

73

TRANSFER LEARNING

73

ONE-SHOT LEARNING

What if you want to apply deep convolutional networks to a problem
where you do not have a lot of labeled data in the first place?

Example: Classify images of different Quidditch balls.

74

ONE-SHOT LEARNING

A human could probably achieve near perfect classification
accuracy even given access to a single labeled example from
each class:

Major question in ML: How? Can we design ML algorithms
which can do the same?

75

TRANSFER LEARNING

Transfer knowledge from one task we already know how to
solve to another.

For example, we have learned from past experience that balls
used in sports have consistent shapes, colors, and sizes. These
features can be used to distinguish balls of different type.

76

FEATURE LEARNING

Examples of possible high-level features a human would learn:

77

FEATURE LEARNING

If these features are highly informative (i.e. lead to highly
separable data) few training examples are needed to learn.

Might suffice to classify ball using nearest training example in
feature space, even if just a handful of training examples.

78

TRANSFER LEARNING

Empirical observation: Features learned when training models
like deep neural nets seem to capture exactly these sorts of
high-level properties.

Even if we can’t put into words what each feature in z means... 79

TRANSFER LEARNING

This is now a common technique in computer vision:

1. Download network trained on large image classification dataset
(e.g. Imagenet).

2. Extract features z for amy new image x by running it through the
network up until layer before last.

3. Use these features in a simpler machine learning algorithm that
requires less data (nearest neighbor, logistic regression, etc.).

This approach has even been used on the quidditch problem:
github.com/thatbrguy/Object-Detection-Quidditch

80

github.com/thatbrguy/Object-Detection-Quidditch

UNSUPERVISED FEATURE LEARNING

Transfer learning: Lots of labeled data for one problem makes
up for little labeled data for another.

What if we don’t even have much labeled data for irrelevant
classes?

How to extract features in a data-driven way from unlabeled
data is one of the central problems in unsupervised learning.

81

SUPERVISED VS. UNSUPERVISED LEARNING

• Supervised learning: All input data examples come with
targets/labels. What machines are good at now.

• Unsupervised learning: No input data examples come
with targets/labels. Interesting problems to solve include
clustering, anomaly detection, semantic embedding, etc.

• Semi-supervised learning: Some (typically very few) input
data examples come with targets/labels. What human
babies are really good at, and we are just starting to make
machines better at.

82

TRANSFER LEARNING

Back to the problem at hand: Want to extract meaningful
features from an already trained neural network.

83

AUTOENCODER

Simple but clever idea: If we have inputs x1, . . . , xn ∈ Rd but
no targets y1, . . . , yn to learn, just make the inputs the targets.

• Let fθ : Rd → Rd be our model.
• Let L be a loss function. E.g. squared loss:
Lθ(x) = ∥x− fθ(x)∥22.

• Train model: θ∗ = minθ
∑n

i=1 Lθ(x).

If fθ is a model that incorporates feature learning, hopefully
these features will capture high-level meaning.

fθ is called an autoencoder. It maps inputs space to inputs
space.

84

AUTOENCODER

Two examples of autoencoder architectures:

Which would lead to better feature learning?

85

AUTOENCODER

Important property of autoencoders: no matter what architecture is
use, there must always be a bottleneck with fewer parameters than
the input. The bottleneck ensures information is “distilled” from
low-level features to high-level features.

86

AUTOENCODER

Architecture typically split into two parts:

Encoder: e : Rd → Rk

Decoder: d : Rd → Rk

f(x) =

Often symmetric, but does not have to be. 87

AUTOENCODER RECONSTRUCTION

Example image reconstructions from autoencoder:

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

Input parameters: d = 49152.
Bottleneck “latent” parameters: k = 1024. 88

https://www.biorxiv.org/content/10.1101/214247v1.full.pdf

AUTOENCODERS FOR FEATURE EXTRACTION

The best autoencoders do not work as well as for feature
extraction as supervised methods. But, they have many other
applications.

• Image segmentation.
• Learned image compression.
• Denoising and in-painting.
• Image synthesis.

89

