
CS-GY 6923: Lecture 1
Introduction to Machine Learning

NYU Tandon School of Engineering, Prof. Christopher Musco
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ARTIFICIAL INTELLIGENCE IS HAVING A MOMENT

Who has tried ChatGPT? DALLE? Imagen?
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ARTIFICIAL INTELLIGENCE IS HAVING A MOMENT

Who has tried ChatGPT? DALLE? Imagen?
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ARTIFICIAL INTELLIGENCE IS HAVING A MOMENT

May look back on 2015-now as a the dawn of true artificial
intelligence.
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ARTIFICIAL INTELLIGENCE IS HAVING A MOMENT

Other developments in recent years:

• Human-level image classification and understanding.
• Near perfect machine translation.
• Human level game play in very complex games (Go,
Starcraft).

• Machine learning as a central tool in science.

What technologies have caught people’s eye?
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GOAL OF THIS CLASS

Give you a foundation to understand the main ideas in
modern machine learning.

6



GOAL OF THIS CLASS

We will do so through a combination of:

• Hands on implementation.
• Demos and take-home labs using Python and Jupyter
notebooks. 20% of grade

• We will use Google Colab as the primary programming
environment.

• Theoretical exploration.
• Written problem sets. 20%
• Midterm and final exam. 25% of grade each.
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COURSE OBJECTIVES

Goals of theoretical component:

1. Build experience with the most important mathematical
tools used in machine learning, including probability,
statistics, and linear algebra. This experience will prepare
you for more advanced coursework in ML, or research.

2. Be able to understand contemporary research in machine
learning, including papers from NeurIPS, ICML, ICLR, and
other major machine learning venues.

3. Learn how theoretical analysis can help explain the
performance of machine learning algorithms and lead to
the design of entirely new methods.
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COURSE OBJECTIVES

Goals of hands-on component:

1. Reinforce theory learned in class, and make sure you
understand algorithms described by implementing them.

2. Learn how to view and formulate real world problems in
the language of machine learning.

3. Gain experience applying the most popular and successful
machine learning algorithms to thse problems.
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MORE ADVANCED CLASSES AT TANDON

• CS-GY 6953: Deep Learning (Prof. Chinmay Hegde)
• ECE-GY 7143: Advanced Machine Learning (Prof. Anna
Chromanska)

• CS-GY 6763: Algorithmic Machine Learning and Data
Science (me)

• Keep your eyes out for special topics courses.
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SOMETHING A BIT DIFFERENT

Given recent progress, we will run this semester of the course
as a special semester focused on generative machine learning.

• Still cover all the basics.
• Add material in each section on background for topics like
text and image generation, style transfer, etc.
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BASIC INFORMATION

All class information can be found at:

www.chrismusco.com/machinelearning2023_grad
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TWO MOST IMPORTANT THINGS FROM SYLLABUS

1. Make sure you are signed into and follow EdStem, which
will be used for all classroom communication (no email).
Now integrated into Brightspace.

2. Don’t hesitate to ask me or the TAs for help.1

Aarshvi Gajjar Atsushi Shimizu Teal Witter

1Fill out office hours poll on Ed!
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CLASS PARTICIPATION

Class participation accounts for 10% of your grade. It’s easy to
get a perfect score:

• Ask and answer questions in lecture.
• Post questions or responses to other students on Ed. Or
other things you find interesting.

• Participate in professor or TA office hours.
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THE PREDICTION PROBLEM
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BASIC GOAL

Goal: Develop algorithms to make predictions based on data.

• Input: A single piece of data (an image, audio file, patient
healthcare record, MRI scan).

• Output: A prediction (this image is a stop sign, this stock
will go up 10% next quarter, this song is in French).
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CLASSIC EXAMPLE

Optical character recognition (OCR): Decide if a handwritten
character is an a,b, . . . , z, 0, 1, . . . , 9, . . ..
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CLASSIC EXAMPLE

Optical character recognition (OCR): Decide if a handwritten
character is an a,b, . . . , z, 0, 1, . . . , 9, . . ..

Applications:

• Automatic mail sorting.
• Text search in handwritten documents.
• Digitizing scanned books.
• License plate detection for tolls.
• Etc.
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EXPERT SYSTEMS

How would you write an code to distinguish these digits?

Suppose you just want to distinguish between a 1 and a 7.
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1S VS. 7S ALGORITHM

Reasonable approach: A number which contains one vertical
line is a 1, if it contains one vertical and one horizontal line, it’s
a 7.
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1S VS. 7S ALGORITHM

This rule breaks down in practice:

Even fixes/modifications of the rule tend to be brittle... Maybe
you could get 80% accuracy, but not nearly good enough.
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CHALLENGE OF EXPERT SYSTEMS

Rule based systems, also called Expert Systems were the
dominant approach to artificial intelligence in the 1970s and
1980s.

Major limitation: While human’s are very good at many tasks,

• It’s often hard to encode why humans make decisions in
simple programmable logic.

• We think in abstract concepts with no mathematical
definitions (how exactly do you define a line? how do you
define a curve? straight line?)
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A DIFFERENT APPROACH: SUPERVISED MACHINE LEARNING

Focus on what humans do well: solving the task at hand!

Step 1: Collect and label many input/output pairs (xi, yi). For
our digit images, we have each xi ∈ R28×28 and
yi ∈ {0, 1, . . . , 9}.

This is called the training dataset.
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A DIFFERENT APPROACH: MACHINE LEARNING

Step 2: Learn from the examples we have.

• Have the computer automatically find some function f(x)
such that f(xi) = yi for most (xi, yi) in our training data set
(by searching over many possible functions).

Think of f as any crazy equation, or an arbitrary program:

f(x) = 10 · x[1, 1]− 6 · x[3, 45] · x[9, 99] + 5 ·mean(x) + . . .

This approach of learning a function from labeled data is
called supervised learning.
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SUPERVISED LEARNING FOR OCR

National Institute for Standards and Technology collected a huge
amount of handwritten digit data from census workers and high
school students in the early 90s:

This is called the NIST dataset, and was used to create the famous
MNIST handwritten digit dataset. 24



MACHINE LEARNING

Since the 1990s machine learning have overtaken expert
systems as the dominant approach to artificial intelligence.

• Current methods achieve .17% error rate for OCR on
benchmark datasets (MNIST).2

• Very successful on other problems as well. The big break
through for supervised learning in the 2010s was image
classification.

2Not because of overfitting! See: Cold Case: The Lost MNIST Digits by Chhavi
Yadav + Léon Bottou.
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CENTRAL QUESTIONS IN SUPERVISED MACHINE LEARNING

Once we have the basic supervised machine learning setup,
many very difficult questions remain:

• How do we parameterize a class of functions f to search?
• How do we efficiently find a good function in the class?
• How do we ensure that an f(x) which works well on our
training data will generalize to perform well on future
data?

• How do we deal with imperfect data (noise, outliers,
incorrect training labels)?
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MACHINE LEARNING

Recall that in the supervised learning setup every input xi in
our training dataset comes with a desired output yi (typically
generated by a human, or some other process).

Types of supervised earning:

• Classification – predict a discrete class label.
• Regression – predict a continuous value.

• Dependent variable, response variable, target variable, lots
of different names for yi.
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SUPERVISED LEARNING

Another example of supervised classification: Face Detection.

Each input data example xi is an image. Each output yi is 1 if
the image contains a face, 0 otherwise.

• Harder than digit recognition, but we now have essentially
perfect methods (used in nearly all digital cameras,
phones, etc.)
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SUPERVISED LEARNING

Other examples of supervised classification:

• Object detection (Input: image, Output: dog or cat)
• Spam detection (Input: email text, Output: spam or not)
• Medical diagnosis (Input: patient data, Output: disease
condition or not)

• Credit decision making (Input: financial data, Output: offer
loan or not)
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SUPERVISED LEARNING

Example of supervised regression: Stock Price Prediction.

Each input x is a vector of metrics about a company (sales
volume, PE ratio, earning reports, historical price data).

Each output yi is the price of the stock 3 months in the future.
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SUPERVISED LEARNING

Other examples of supervised regression:

• Home price prediction (Inputs: square footage, zip code,
number of bathrooms, Output: Price)

• Car price prediction (Inputs: make, model, year, miles
driven, Output: Price)

• Weather prediction (Inputs: weather data at nearby
stations, Output: tomorrows temperature )

• Robotics/Control (Inputs: information about environment
and current position at time t, Output: estimate of
position at time t+ 1)

31



OTHER TYPES OF LEARNING

Later in the class we will talk about other frameworks:

• Unsupervised learning (no labels or response variable)
• Important for representation learning and generative ML.

• Semi-supervised learning, self-supervised learning.

Focus less in this class on:

• Reinforcement learning
• Game playing

• Active-learning.
• The learning algorithms can request labels.

32



SUPERVISED LEARNING

Types of supervised learning:

• Classification – predict a discrete class label.
• Regression – predict a continuous value.

• Dependent variable, response variable, target variable, lots
of different names for yi.
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PREDICTING MPG

Motivating example: Predict the highway miles per gallon
(MPG) of a car given quantitative information about its engine.
Demo in demo_auto_mpg.ipynb.

What factors might matter?
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PREDICTING MPG

Data set available from the UCI Machine Learning Repository:
https://archive.ics.uci.edu/.
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PREDICTING MPG

Datasets from UCI (and many other places) comes as tab,
space, or comma delimited files.
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PREDICTING MPG

Check dataset description to know what each column means.

’mpg’, ’cylinders’,’displacement’, ’horsepower’, ’weight’,
’acceleration’, ’model year’, ’origin’, ’car name’
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LIBRARIES FOR INITIAL DATA READING

• Use pandas for reading data from delimited files. Stores
data in a type of table called a “data frame” but this is just
a wrapper around a numpy array.

• Use matplotlib for initial exploration.

38



SIMPLE LINEAR REGRESSION
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SIMPLE LINEAR REGRESSION

Linear regression from a Machine Learning (not a Statistics)
perspective. Our first supervised machine learning model.

Only focus on one predictive variable at a time (e.g.
horsepower). This is why it’s called simple linear regression.
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SIMPLE LINEAR REGRESSION

Dataset:
• x1, . . . , xn ∈ R (horsepowers of n cars – this is the
predictor/independent variable)

• y1, . . . , yn ∈ R (MPG – this is the response/dependent
variable)
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SUPERVISED LEARNING DEFINITIONS

• Model fθ(x): Class of equations or programs which map input x
to predicted output. We want fθ(xi) ≈ yi for training inputs.

• Model Parameters θ: Vector of numbers. These are numerical
knobs which parameterize our class of models.

• Loss Function L(θ): Measure of how well a model fits our data.
Often some function of fθ(x1)− y1, . . . , fθ(xn)− yn

Common Goal: Choose parameters θ∗ which minimize the Loss
Function:

θ∗ = argmin
θ

L(θ)

Choosing θ∗ based on minimizing the empirical error on our training
data is called Empirical Risk Minimization. It is by far the most
common approach to solving supervised learning problems.
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LINEAR REGRESSION

General Supervised Learning

• Model: fθ(x)

• Model Parameters: θ

• Loss Function: L(θ)

Linear Regression

• Model:

• Model Parameters:

• Loss Function:
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HOW TO MEASURE GOODNESS OF FIT

What is a natural loss function for linear regression?
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HOW TO MEASURE GOODNESS OF FIT

Typical choices are a function of y1 − fβ0,β1(x1), . . . , yn − fβ0,β1(xn)

• ℓ2/Squared Loss: L(β0, β1) =
∑n

i=1 (yi − fβ0,β1(xi))
2.

• ℓ1/Lease absolute deviations: L(β0, β1) =
∑n

i=1 |yi − fβ0,β1(xi)|.

• ℓ∞ Loss L(β0, β1) = maxi∈1,...,n |yi − fβ0,β1(xi)|.
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HOW TO MEASURE GOODNESS OF FIT

We’re going to start with the Squared Loss/Sum-of-Squares Loss.
Also called “Residual Sum-of-Squares (RSS)”

• Relatively robust to outliers.

• Simple to define, leads to simple algorithms for finding β0, β1

• Theoretically justified from classical statistics related to
assumptions about Gaussian noise. Will discuss later in the
course. 45



LINEAR REGRESSION

General Supervised Learning

• Model: fθ(x)

• Model Parameters: θ

• Loss Function: L(θ)

Linear Regression

• Model:
fβ0,β1(x) = β0 + β1 · x

• Model Parameters: β0, β1

• Loss Function: L(β0, β1) =∑n
i=1(yi − fβ0,β1(xi))2

Goal: Choose β0, β1 to minimize
L(β0, β1) =

∑n
i=1(yi − β0 − β1xi)2.

This is the entire job of any Supervised Learning Algorithm.
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FUNCTION MINIMIZATION

Univariate function:

x3 + 3 · x2 − 5 · x+ 1

• Find all places where derivative f′(x) = 0 and check which
has the smallest value. 47



FUNCTION MINIMIZATION

Multivariate function: L(β0, β1)

• Find values of β0, β1 where all partial derivatives equal 0.
• ∂L

∂β0
= 0 and ∂L

∂β1
= 0.
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MINIMIZING SQUARED LOSS FOR REGRESSION

Multivariate function: L(β0, β1) =
∑n

i=1(yi − β0 − β1xi)2

• Find values of β0, β1 where all partial derivatives equal 0.
• ∂L

∂β0
= 0 and ∂L

∂β1
= 0.

Some definitions:

• Let ȳ = 1
n
∑n

i=1 yi. ȳ is the mean of y.
• Let x̄ = 1

n
∑n

i=1 xi. ȳ is the mean of x.
• Let σ2

y =
1
n
∑n

i=1(yi − ȳ)2. σ2
y is the variance of y.

• Let σ2
x =

1
n
∑n

i=1(xi − x̄)2. σ2
x is the variance of x.

• Let σxy = 1
n
∑n

i=1(xi − x̄)(yi − ȳ). σxy is the covariance.

Claim: L(β0, β1) is minimized when:

• β1 = σxy/σ
2
x

• β0 = ȳ− β1x̄ 49



PROOF

Loss function: L(β0, β1) =
∑n

i=1(yi − β0 − β1xi)2
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PROOF

Loss function after substitution:
L̃(β1) =

∑n
i=1(yi − ȳ+ β1x̄− β1xi)2
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MINIMIZING SQUARED LOSS FOR REGRESSION

Takeaways:

• Minimizing functions exactly is sometimes easy with
calculus, but not always! We will learn much more general
tools (like gradient descent).

• Simple closed form formula for optimal parameters β∗
0

and β∗
1 for squared-loss!
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A FEW COMMENTS

Let L(β0, β1) =
∑n

i=1(yi − β0 − β1xi)2.

R2 = 1− L(β0, β1)
nσ2

y

is exactly the R2 value (“coefficient of determination”) you may
remember from statistics.

The smaller the loss, the closer R2 is to 1, which means we
have a better regression fit.
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A FEW COMMENTS

Many reasons you might get a poor regression fit:
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A FEW COMMENTS

Some of these are fixable!

• Remove outliers, use more robust loss function.
• Non-linear model transformation.

Fit the model 1
mpg ≈ β0 + β1 · horsepower.

Much better fit, same exact learning algorithm!
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MULTIPLE LINEAR REGRESSION
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MORE COMMON GOAL

Predict target y using multiple features, simultaneously.

Motivating example: Predict diabetes progression in patients
after 1 year based on health metrics. (Measured via numerical
score.)

Features: Age, sex, average blood pressure, six blood serum
measurements (e.g. cholesterol, lipid levels, iron, etc.)

Demo in demo_diabetes.ipynb.
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LIBRARIES FOR THIS DEMO

Introducing Scikit Learn.
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SCIKIT LEARN

Pros:

• One of the most popular “traditional” ML libraries.

• Many built in models for regression, classification,
dimensionality reduction, etc.

• Easy to use, works with ‘numpy‘, ‘scipy‘, other libraries we use.

• Great for rapid prototyping, testing models.

Cons:

• Everything is very “black-box”: difficult to debug, understand
why models aren’t working, speed up code, etc.
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SCIKIT LEARN

Modules used:

• datasets module contains a number of pre-loaded
datasets. Saves time over downloading and importing
with pandas.

• linear_model can be used to solve Multiple Linear
Regression. A bit overkill for this simple model, but gives
you an idea of sklearn’s general structure.
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THE DATA MATRIX

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features
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LINEAR ALGEBRA REVIEW

Now it the time to review your linear algebra!

Notation:

• Let X be an n× d matrix. Written X ∈ Rn×d.
• xi is the ith row of the matrix.
• x(j) is the jth column.
• xij is the i, j entry.
• For a vector y, yi is the ith entry.
• XT is the matrix transpose.
• yT is a vector transpose.
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LINEAR ALGEBRA REVIEW

Things to remember:

• Matrix multiplication. If I multiply X ∈ Rn×d by Y ∈ Rd×k I
get XY = Z ∈ Rn×k.

• Inner product/dot product. ⟨y, z⟩ =
∑n

i=1 yizi.
• ⟨y, z⟩ = yTz = zTy.
• Euclidean norm: ∥y∥2 =

√
yTy.

• (XY)T = YTXT.
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LINEAR ALGEBRA REVIEW

Things to remember:

• Identity matrix is denoted as I.
• “Most” square matrices have an inverse: i.e. if Z ∈ Rn×n,
there is a matrix Z−1 such that Z−1Z = ZZ−1 = I.

• Let D = diag(d) be a diagonal matrix containing the
entries in d.

• XD scales the columns of X. DX scales the rows.
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LINEAR ALGEBRA REVIEW

You also need to be comfortable working with matrices in
numpy . Go through the demo_numpy_matrices.ipynb
slowly.
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THE DATA MATRIX

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features

Assume first columns contains all 1’s. If it doesn’t append on a
column of all 1’s.
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MULTIPLE LINEAR REGRESSION

Data matrix indexing:

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd


Multiple Linear Regression Model:

Predict yi ≈ β1xi1 + β2xi2 + . . .+ βdxid

The rate at which diabetes progresses depends on many
factors, with each factor having a different magnitude effect.
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MULTIPLE LINEAR REGRESSION

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

 =


1 x12 . . . x1d
1 x22 . . . x2d
1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd


Multiple Linear Regression Model:

Predict yi ≈ β1 + β2xi2 + . . .+ βdxid

In this case, β1 serves as the “intercept” parameter.
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MULTIPLE LINEAR REGRESSION

Use as much linear algebra notation as possible!

• Model Parameters:

• Model:

• Loss Function:
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MULTIPLE LINEAR REGRESSION

Linear Least-Squares Regression.

• Model Parameters:

β = [β1, β2, . . . , βd]

• Model:

fβ(x) = ⟨x,β⟩

• Loss Function:

L(β) =
n∑
i=1

|yi − ⟨xi,β⟩|2

= ∥y− Xβ∥22
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LINEAR ALGEBRAIC FORM OF LOSS FUNCTION
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LOSS MINIMIZATION

Machine learning goal: minimize the loss function
L(β) : Rd → R.

Find optimum by determining for which β = [β1, . . . , βd] all
partial derivatives are 0. I.e. when do we have:

∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
. . .

0


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THE ALL IMPORTANT GRADIENT

For any function L(β) : Rd → R, the gradient ∇L()β) is a
function from Rd → Rd defined:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd


The gradient of the loss function is a central tool in machine
learning. We will use it again and again.
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GRADIENT

Loss function:

L(β) = ∥y− Xβ∥22

Gradient:

−2 · XT(y− Xβ)

Find optimum by determining for which β = [β1, . . . , βd] the
gradient is 0. I.e. when do we have:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
...
0


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LOSS MINIMIZATION

Goal: minimize the loss function L(β) = ∥y− Xβ∥22.

∇L(β) = −2 · XT(y− Xβ)
= 2XTXβ − 2XTy = 0

Solve for optimal β∗:

XTXβ∗ = XTy

β∗ =
(
XTX

)−1 XTy
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MULTIPLE LINEAR REGRESSION SOLUTION

Need to compute β∗ = argminβ ∥y− Xβ∥22 =
(
XTX

)−1 XTy.

• Main cost is computing (XTX)−1 which takes O(nd2) time.
• Can solve slightly faster using the method
numpy.linalg.lstsq, which is running an algorithm
based on QR decomposition.

• For larger problems, can solve much faster using an
iterative methods like scipy.sparse.linalg.lsqr.

Will learn more about iterative methods when we study
Gradient Descent.
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GRADIENT WARMUP

Function:

f(z) = aTz for some fixed vector a ∈ Rd

Gradient:

Function:

f(z) = ∥z∥22

Gradient:
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GRADIENT

Loss function:

L(β) = ∥y− Xβ∥22
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GRADIENT

Loss function:

L(β) = ∥y− Xβ∥22
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TEST YOUR INTUITION

Model: fβ(x) =
∑d

i=1 β1xi

Example from book: What is the sign of β1 when we run a
simple linear regression using the following predictors for
number of sales in a particular market as a function of:

• Amount of TV advertising in that market:
• Amount of print advertising in that market:
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INTERACTING VARIABLES

What is the sign of the corresponding β’s when we run a
multiple linear regression using the following predictors
together:

• Amount of TV advertising in that market: Positive
• Amount of print advertising in that market: Negative, close
to zero

Can you explain this? Try to think of your own example of a
regression problem where this phenomenon might show up.
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DEALING WITH CATEGORICAL VARIABLES

The sex variable in the diabetes problem was binary. We
encoded it as 2 numbers – e.g. (0,1), (-1,1), (1,2).

Suppose we go back to the MPG prediction problem. What if
we had a categorical predictor variable for car make with more
than 2 options: e.g. Ford, BMW, Honda. How would you encode
as a numerical column?

ford
ford
honda
bmw

honda
ford


→




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ONE HOT ENCODING

Better approach: One Hot Encoding.

ford
ford
honda
bmw
honda
ford


→



1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0


• Create a separate feature for every category, which is 1
when the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
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