
Problem 1: Practice Minimizing a Loss Function (10pts)

New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6923: Written Homework 1.
Due Friday, February 17th, 2023, 11:59pm.

Discussion with other students is allowed for this problem set, but solutions must be written-up individually.

For just this first problem set, 10% extra credit will be given if solutions are typewritten (using LaTeX,
Markdown, or some other mathematical formatting program).

Problem 1: Practice Minimizing a Loss Function (10pts)
Consider a linear model of the form:

fβ(x) = βx,

which is the same as the linear model we saw in class, but with the intercept forced to zero. Such models
are used when we want to force the predicted value fβ(x) = 0 when x = 0. For example, if we are modeling
y = output power of a motor vs. x = the input power, we would expect x = 0 ⇒ y = 0.

(a) Given data (x1, y1), . . . , (xn, yn), write the equation for a loss function which measures prediction accu-
racy using the sum-of-squared distances between the predicted values and target values.

(b) Derive an expression for the β that minimizes this loss function. Do you get the same expression that
we got for β1 in the full linear model?

Problem 2: Machine Learning Does Averages (15pts)
Suppose we have data y1, . . . , yn ∈ R and we want to choose a single value m ∈ R which is “most repre-
sentative” of our dataset. This is sometimes called the “central tendency” problem in statistics. A machine
learning approach to this problem would measure how representative m is of the data using a loss function.
As you will see, different choices of loss function lead to different measures of central tendancy you have
probably seen in the past!

(a) Consider the loss function L(m) =
∑n

i=1(yi − m)2. Show that L(m) is minimized by setting m = ȳ,
where ȳ = 1

n

∑n
i=1 yi is the mean of our data.

(b) Consider the loss function L(m) = maxi |yi −m|. What value of m minimizes this loss? Hint: Using
derivatives will not help here – try just thinking about the minimization problem directly.

(c) Consider the loss function L(m) =
∑n

i=1 |yi − m|. Prove that L(m) is minimized by setting m to the
median of the data. Hint: This question is harder than the previous two and takes some creativity!
Again derivatives might not be helpful.

Problem 3: Piecewise Linear Regression via Feature Transformations (15pts)
Your goal is to fit a piecewise linear model to a single variate dataset of the form (x1, y1), . . . , (xn, yn) where
all values are scalars. We will only use two pieces. In other words, for some known value λ,

f(xi) =

{
a1 + s1xi for xi < λ

a2 + s2xi for xi ≥ λ

with the additional constraint that a1+s1λ = a2+s2λ. This constraint ensures that our two linear models
actually “meet” at x = λ, which means we get a continuous prediction function.

For example, when λ = 100, a piecewise linear fit for our MPG data might look like:



Problem 4: Thinking About Data Transformations (15pts)

(a) Show that this model is equivalent to the following unconstrained model:

f(xi) =

{
a1 + s1xi for xi < λ

a1 + s1λ− s2λ+ s2xi for xi ≥ λ

(b) Show how to fit an optimal f under the squared loss using an algorithm for multiple linear regression.
In particular, your approach should:

• Transform the input data to form a data matrix X with multiple columns.
• Use a multiple regression algorithm to find the β which minimizes ∥y −Xβ∥22.
• Extract from the optimal β optimal values for a1, s1, s2.

You need to describe 1) a correct data transformation and 2) a correct mapping from β to a1, s1, s2. Note
that in our model λ is known. It is not a model parameter which needs to be optimized.

(c) Implement your algorithm in Python and apply it to the dataset from demo_auto_mpg.ipynb. Produce
a piecewise linear fit for MPG as a function of Horsepower using the value λ = 100. Plot the result. You
can attach a Jupyter notebook to your submission, or simply include the printed code and plot.

(d) (3pts bonus) Modify your approach to handle the case when λ is unknown. Again obtain a fit for MPG
vs. horsepower. What value of λ gives the optimal fit? Include any modified code and a plot of your
result.

Problem 4: Thinking About Data Transformations (15pts)
Supposed you are trying to fit a multiple linear regression model for a given data set. You have already
transformed your data by appending a column of all ones, which resulted in a final data matrix:

X =


1 x1,1 x1,2 . . . x1,d

1 x2,1 x2,2 . . . x2,d

...
...

...
1 xn,1 xn,2 . . . xn,d


However, your model does not seem to be working well. It obtains poor loss in both training and test.
(a) A friend suggests that you should try mean centering your data columns. In other words, for each i,

compute the column mean x̄i =
1
n

∑n
j=1 xj,i and subtract x̄i from every entry in column i. Note that we

won’t mean center the first column, as doing so would set the 1s to 0s. You try this, but mean centering
gives no improvement in the model loss at all.
Use a mathematical argument to explain why this is the case. Hint: It does not depend on the specific
data set – mean centering will never help improve a multiple linear regression model!

(b) Another friend suggests normalizing your data columns to have unit standard deviation. In other words
for each i, compute the column standard deviation σi =

√
1
n

∑n
j=1(xj,i − x̄i)2 and divide every column

by σi. Again you try it, but normalizing gives no improvement in the model loss at all.
Use a mathematical argument to explain why this is the case.



Problem 4: Thinking About Data Transformations (15pts)

(c) A third friend suggests that the issue may be in how you one-hot encoded some binary data. In particular,
each data points contains a class attribute that is either red, blue, or green. You encoded the attributes
in three columns so that red maps to [0, 0, 1], blue maps to [0, 1, 0], and green maps to [1, 0, 0]. Your
friend suggests instead trying red to red maps to [1, 0, 0], green to [0, 1, 0], and blue to [0, 0, 1]. You do
this, but again the model loss does not improve.
Use a mathematical argument to explain why this is the case.

Ultimately, you give up, and find new friends.
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