Naïve Bayes and Logistic Regression

Required reading:

• Mitchell draft chapter (see course website)

Recommended reading:

- Mitchell, 6.10 (text learning example)
- Bishop, Chapter 3.1.3, 3.1.4
- Ng and Jordan paper

Machine Learning 10-701

Tom M. Mitchell Center for Automated Learning and Discovery Carnegie Mellon University

September 27, 2005

Naïve Bayes and Logistic Regression

- Design learning algorithms based on our understanding of probability
- Two of the most widely used
- Interesting relationship between these two
- Generative and Discriminative classifiers

Bayes Rule $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$

Which is shorthand for:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

$$P(X = x_j)$$
Random Variable It's ith possible value

Bayes Rule
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Which is shorthand for:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

Equivalently:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k) P(Y = y_k)}$$

Bayes Rule $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$

Which is shorthand for:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

Common abbreviation:

$$(\forall i, j) P(y_i | x_j) = \frac{P(x_j | y_i) P(y_i)}{P(x_j)}$$

Bayes Classifier

Training data:

		X	-			Y
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Learning = estimating P(X|Y), P(Y) Classification = using Bayes rule to calculate P(Y | X^{new})

Bayes Classifier

Training data:

		X				Y
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

How shall we represent P(X|Y), P(Y)? How many parameters must we estimate?

Bayes Classifier

Training data:

		X	-			Y
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Naïve Bayes

Naïve Bayes assumes $X = \langle X_1, ..., X_n \rangle$, Y discrete-valued $P(X_1 ... X_n | Y) = \prod_i P(X_i | Y)$

i.e., that X_i and X_j are conditionally independent given Y, for all $i \neq j$

Conditional Independence

Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X|Y,Z) = P(X|Z)$$

E.g.,

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y

then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y) = P(X_1|Y)P(X_2|Y)$$

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

How many parameters needed now for P(X|Y)? P(Y)?

$$\theta_{ij} \equiv P(X = x_i | Y = y_j) \qquad \pi_j \equiv P(Y = y_j)$$

Naïve Bayes classification

Bayes rule:

$$P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) P(X_1 \dots X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 \dots X_n | Y = y_j)}$$

Assuming conditional independence: $P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_i P(Y = y_i) \prod_i P(X_i | Y = y_i)}$

So, classification rule for $X^{new} = \langle X_1, ..., X_n \rangle$ is:

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i | Y = y_k)$$

Naïve Bayes Algorithm

- Train Naïve Bayes (examples) for each^{*} value y_k estimate π_k ≡ P(Y = y_k) for each^{*} value x_{ij} of each attribute X_i estimate θ_{ijk} ≡ P(X_i = x_{ij}|Y = y_k)
- Classify (X^{new}) $Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i | Y = y_k)$

^{*} parameters must sum to 1

Estimating Parameters: *Y*, *X_i* discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\}}{|D|}$$
$$\hat{\theta}_{ijk} = \hat{P}(X_{i} = x_{ij}|Y = y_{k}) = \frac{\#D\{X_{i} = x_{ij} \land Y = y_{k}\}}{\#D\{Y = y_{k}\}}$$

MAP estimates (uniform Dirichlet priors):

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\} + l}{|D| + lR}$$
$$\hat{\theta}_{ijk} = \hat{P}(X_{i} = x_{ij}|Y = y_{k}) = \frac{\#D\{X_{i} = x_{ij} \land Y = y_{k}\} + l}{\#D\{Y = y_{k}\} + lM}$$

Consider *PlayTennis* again, and new instance

 $\langle Outlk = sun, Temp = cool, Humid = high, Wind = streen light and light an$

Want to compute:

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i | Y = y_k)$$

P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

$$\rightarrow Y^{new} = n$$

Learning to classify text documents

- Classify which emails are spam
- Classify which emails are meeting invites
- Classify which web pages are student home pages

How shall we represent text documents for Naïve Bayes?

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard. From: xxx@yyy.zzz.edu (John Doe) Subject: Re: This year's biggest and worst (opinic Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most obvious candidate for pleasant surprise is Alex Zhitnik. He came highly touted as a defensive defenseman, but he's clearly much more than that. Great skater and hard shot (though wish he were more accurate). In fact, he pretty much allowed the Kings to trade away that huge defensive liability Paul Coffey. Kelly Hrudey is only the biggest disappointment if you thought he was any good to begin with. But, at best, he's only a mediocre goaltender. A better choice would be Tomas Sandstrom, though not through any fault of his own, but because some thugs in Toronto decided

Learning to Classify Text

Target concept $Interesting?: Document \rightarrow \{+, -\}$

- 1. Represent each document by vector of words
 - \bullet one attribute per word position in document
- 2. Learning: Use training examples to estimate
 - P(+)
 - P(-)
 - $\bullet \ P(doc|+)$
 - $\bullet \ P(doc|-)$

Naive Bayes conditional independence assumption

$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k|v_j)$$

where $P(a_i = w_k | v_j)$ is probability that word in position *i* is w_k , given v_j

one more assumption: $P(a_i = w_k | v_j) = P(a_m = w_k | v_j), \forall i, m$

Baseline: Bag of Words Approach

Twenty NewsGroups

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics r comp.os.ms-windows.misc comp.sys.ibm.pc.hardware rec comp.sys.mac.hardware rec. comp.windows.x rec

misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc talk.politics.misc sci.space sci.crypt sci.electronics sci.med

Naive Bayes: 89% classification accuracy

LEARN_NAIVE_BAYES_TEXT(Examples, V)

- 1. collect all words and other tokens that occur in Examples
- $Vocabulary \leftarrow$ all distinct words and other tokens in Examples

2. calculate the required $P(v_j)$ and $P(w_k|v_j)$ probability terms

- For each target value v_j in V do
 - $-docs_j \leftarrow$ subset of Examples for which the target value is v_j

$$-P(v_j) \leftarrow \frac{|docs_j|}{|Examples|}$$

 $-Text_j \leftarrow a \text{ single document created by}$ concatenating all members of $docs_j$

<u>www.cs.cmu.edu/~tom/mlbook.html</u> click on "Software and Data"

- $-n \leftarrow \text{total number of words in } Text_j$ (counting duplicate words multiple times)
- for each word w_k in *Vocabulary*

*
$$n_k \leftarrow$$
 number of times word w_k occurs in $Text_j$

$$* P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$$

$CLASSIFY_NAIVE_BAYES_TEXT(Doc)$

- $positions \leftarrow all word positions in Doc that contain tokens found in Vocabulary$
- Return v_{NB} , where

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \underset{i \in positions}{\Pi} P(a_i | v_j)$$

Learning Curve for 20 Newsgroups

