
CS-GY :ࠂࠁ69 Lecture 9
Support Vector Machines, Neural Nets
Introduction

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

LAST LECTURE

How to use non-linear kernels with logistic regression.

• Often leads to better classification than basic linear
logistic regression.

• Equivalent to feature transformation, but often
computationally faster.

ࠁ

EXAMPLES OF NON-LINEAR KERNELS

Commonly used positive semidefinite (PSD) kernel functions:

• Linear (inner-product) kernel: k(x, y) = 〈x, y〉
• Gaussian RBF Kernel: k(x, y) = e−‖x−y‖ࠁࠁ/σࠁ

• Laplace Kernel: k(x, y) = e−‖x−y‖ࠁ/σ

• Polynomial Kernel: k(x, y) = (〈x, y〉+ .q(ࠀ

Recall: Every PSD kernel has a corresponding feature
transformation φ : Rd → Rm.

k(x, y) = φ(x)Tφ(y))

ࠂ

=
- -

KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Sometimes φ(x) is simple and explicit. More often, it is not.

x =

xࠀ
xࠁ
xࠂ

 φ(x) =

√ࠀ
√ࠀxࠁ
√ࠁxࠁ
ࠂxࠁ
xࠀࠁ
xࠁࠁ
xࠂࠁ√
√ࠁxࠀxࠁ
√ࠂxࠀxࠁ
ࠂxࠁxࠁ

Degree ࠁ polynomial kernel, k(x,w) = (xTw+ .ࠁ(ࠀ

ࠃ

KERNEL MATRIX

Typically doesn’t matter because we only need to compute the
kernel Gram matrix K to retrofit algorithms like logistic or
linear regression to use non-linear kernels.

ࠄ

:

TODAY

Support Vector Machines (SVMs): Another algorithm for finding
linear classifiers which is as popular as logistic regression.

• Can also be combined with kernels.
• Developed from a pretty different perspective.
• But final algorithm is not that different.

• Invented in ࠂࠅࠈࠀ by Alexey
Chervonenkis and Vladimir
Vapnik. Also founders of
VC-theory.

• First combined with
non-linear kernels in .ࠂࠈࠈࠀ

ࠅ

=

=

SVM’S VS. LOGISTIC REGRESSION

For some reason, SVMs are more commonly associated with
non-linear kernels. For example, sklearn’s SVM classifier
(called SVC) has support for non-linear kernels built in by
default. Its logistic regression classifier does not.

• I believe this is mostly for historical reasons and
connections to theoretical machine learning.

• In the early s߿߿߿ࠁ SVMs where a “hot topic” in machine
learning and their popularity persists.

• It is not clear to me if they are better than logistic
regression, but honestly I’m not sure...

ࠆ

SVM’S VS. LOGISTIC REGRESSION

Next lab: lab4.ipynb.

Machina-a-machina comparison of SVMs vs. logistic regression
for a MNIST digit classification problem. Which provides better

accuracy? Which is faster to train?

ࠇ

LINEARLY SEPARABLE DATA

We call a dataset with binary labels linearly separable if it can
be perfectly classified with a linear classifier:

This the realizable setting we discussed in the learning theory
lecture.

ࠈ

•

v i i i .i i .
s

'

I I

LINEARLY SEPARABLE DATA

Formally, there exists a parameter β such that 〈β, x〉 > ߿ for all
x in class ࠀ and 〈β, x〉 < ߿ for all x in class .߿

Note that if we multiply β by any constant c, cβ gives the same
separating hyperplane because 〈cβ, x〉 = c〈β, x〉.

߿ࠀ

- -

-

I

7

•
•

,

a

LINEARLY SEPARABLE DATA

A data set might be linearly separable when using a
non-kernel/feature transformation even if it is not separable
in the original space.

This data is separable when using a degree-ࠁ polynomial
kernel. If suffices for φ(x) to contain xࠀࠁ and xࠁࠁ.

ࠀࠀ

MARGIN

When data is linearly separable, there are typically multiple
valid separating hyperplanes.

Which hyperplane/classification rule is best?

ࠁࠀ

ooo o o
•

MARGIN

The margin m of a separating hyperplane is the minimum ࠁ"
(Euclidean) distance between a point in the dataset and the
hyperplane.

m = min
i

∆i where ∆i =
|〈xi,β〉|
‖β‖ࠁ

ࠂࠀ

-

÷.r€÷.
D i = 11V i" z

0
= ,

MARGIN

We have that xi = vi + ei where vi is parallel to β and ei is
perpendicular.

∆i = ‖vi‖ࠁ = ࠀ
‖vi‖ࠁ

· 〈vi, vi〉 = ࠀ
‖vi‖ࠁ

· ‖vi‖ࠁ
‖β‖ࠁ · |〈vi,βi〉| =

|〈vi,β〉|
‖β‖ࠁ .

Finally, we have that 〈xi,β〉 = 〈vi,β〉 because 〈ei,β〉 = .߿

ࠃࠀ

v i .-fi:#I'

I lVill,'

- - - 0 1 £

"i-'gig? I -
-

L X i ,B) = C Ui t e i ,B)

= Lui ,B) t Levi,B >
t o

SUPPORT VECTOR

A support vector is any data point xi such that |〈xi,β〉|
‖β‖ࠁ = m.

ࠄࠀ

HARD-MARGIN SVM

A hard-margin support vector machine (SVM) classifier finds
the maximum margin (MM) linear classifier.

I.e. the separating hyperplane which maximizes the margin m.

ࠅࠀ

=

→
¥ "

MARGIN

Denote the maximum margin by m∗.

m∗ = max
β

[
min

i∈ࠀ,...,n

|〈|xi,β〉|
‖β‖ࠁ

]

= max
β

[
min

i∈ࠀ,...,n

yi · 〈xi,β〉
‖β‖ࠁ

]

where yi = ,ࠀ− ࠀ depending on what class xi.ࠀ

Noteࠀ that this is a different convention than the ,߿ ࠀ class labels we
typically use.

ࠆࠀ

{0,13g

- ¥
"B"2= 1

= I

HARD-MARGIN SVM

Equivalent formulation:

m∗ = max
v:‖v‖ࠀ=ࠁ

[
min

i∈ࠀ,...,n
yi · 〈xi, v〉

]

ࠀ
m∗ = min

v:‖v‖ࠀ=ࠁ
c

c subject to yi · 〈xi, c · v〉 ≥ ࠀ for all i.

= min
v:‖v‖ࠀ=ࠁ

c

‖c · v‖ࠁ subject to yi · 〈xi, c · v〉 ≥ ࠀ for all i.

ࠇࠀ

§
" * &

O . - .
I = - E)

D
.

O

c .✓ = p
Cg' "' " r s t . Yi-Qi-%??,;)

HARD-MARGIN SVM

Equivalent formulation:

min
β

‖β‖ࠁࠁ subject to yi · 〈xi,β〉 ≥ ࠀ for all i.

Under this formulation m = ࠀ
‖β‖ࠁ .

This is a constrained optimization problem. In particular, a
linearly constrained quadratic program, which is a type of
problem we have efficient optimization algorithms for.

ࠈࠀ

÷. o ÷ o
÷

HARD-MARGIN SVM

Hard-margin SVMs have a few critical issues in practice:

Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If K is full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel. ߿ࠁ

%

HARD-MARGIN SVM

While important in theory, hard-margin SVMs have a few critical
issues in practice:

Hard-margin SVM classifiers are not robust.

ࠀࠁ

0 0 .

SOFT-MARGIN SVM

Solution: Allow the classifier to make some mistakes!

Hard margin objective:

min
β

‖β‖ࠁࠁ subject to yi · 〈xi,β〉 ≥ ࠀ for all i.

Soft margin objective:

min
β

‖β‖ࠁࠁ + C
n∑

i=ࠀ

εi subject to yi · 〈xi,β〉 ≥ −ࠀ εi for all i.

where εi ≥ ߿ is a non-negative “slack variable”. This is the
magnitude of the error made on example xi.

C ≥ ߿ is a non-negative tuning parameter.

ࠁࠁ

=

€ - 0 C
"

e . , . . . , a n

-

SOFT-MARGIN SVM

Example of a non-separable problem:

ࠂࠁ

E x .

SOFT-MARGIN SVM

Recall that ∆i =
yi·〈xi,β〉
‖β‖ࠁ .

Soft margin objective:

min
β

‖β‖ࠁࠁ + C
n∑

i=ࠀ

εi subject to yi · 〈xi,β〉 ≥ −ࠀ εi for all i.

ࠃࠁ

÷ .
"O/

O

"

,

a....IO - -

SOFT-MARGIN SVM

Recall that ∆i =
yi·〈xi,β〉
‖β‖ࠁ .

Soft margin objective:

min
β

‖β‖ࠁࠁ + C
n∑

i=ࠀ

εi subject to yi · 〈xi,β〉
‖β‖ࠁ

≥ ࠀ
‖β‖ࠁ

− εi
‖β‖ࠁ

for all i.

ࠄࠁ

€
finish?#-Di°,.is/

0./.O "

"÷÷
÷÷.

of
a.......@Pditj5iqI.Q

SOFT-MARGIN SVM

Any xi with a non-zero εi is a support vector.

ࠅࠁ

=

EFFECT OF C

Soft margin objective:

min
β

‖β‖ࠁࠁ + C
n∑

i=ࠀ

εi.

• Large C means penalties are punished more in objective
=⇒ smaller margin, less support vectors.

• Small C means penalties are punished less in objective
=⇒ larger margin, more support vectors.

When data is linearly separable, as C → ∞ we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.

ࠆࠁ

@ D
↳ o

EFFECT OF C

Example dataset:

ࠇࠁ

EFFECT OF C

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.

ࠈࠁ

O

-

DUAL FORMULATION

Reformulation of soft-margin objective:

max
α

n∑

i=ࠀ

αi −
ࠀ
ࠁ
∑

i,j

yiyjαiαi〈xi, xj〉 −
ࠀ
Cࠁ

n∑

i=ࠀ

αࠁ
i

subject to αi ≥ ,߿
n∑

i=ࠀ

αiyi = .߿

Obtained by taking the Lagrangian dual of the objective. Beyond the
scope of this class, but important for a few reasons:

• Objective only depends on inner products 〈xi, xj〉, which makes
it clear how to combine the soft-margin SVM with a kernel.

• Dual formulation can be solved faster in low-dimensions.

• Possible to prove that αi is only non-zero for the support
vectors. When classifying a new data point, only need to
compute inner products (or the non-linear kernel inner
product) with this subset of training vectors. ߿ࠂ

t¥¥ : : : :

-

COMPARISON TO LOGISTIC REGRESSION

Some basic transformations of the soft-margin objective:

min
β

‖β‖ࠁࠁ + C
n∑

i=ࠀ

εi subject to yi · 〈xi,β〉 ≥ −ࠀ εi for all i.

min
β

‖β‖ࠁࠁ + C
n∑

i=ࠀ

max(߿, −ࠀ yi · 〈xi,β〉).

min
β

λ‖β‖ࠁࠁ +
n∑

i=ࠀ

max(߿, −ࠀ yi · 〈xi,β〉).

These are all equivalent. λ = C/ࠀ is just another scaling
parameter.

ࠀࠂ

E i - t ¥ ¥
"¥?."

o f

HINGE LOSS

Hinge-loss: max(߿, −ࠀ yi · 〈xi,β〉). Recall that yi ∈ ,ࠀ−} .{ࠀ

Soft-margin SVM:

min
β

[n∑

i=ࠀ

max(߿, −ࠀ yi · 〈xi,β〉) + λ‖β‖ࠁࠁ

]
. (ࠀ)

ࠁࠂ

- 0

ooo..

- -

LOGISTIC LOSS

Recall the logistic loss for yi ∈ ,߿} :{ࠀ

L(β) = −
n∑

i=ࠀ

yi log(h(〈xi,β〉)) + −ࠀ) yi) log(ࠀ− h(〈xi,β〉))

= −
n∑

i=ࠀ

yi log
(

ࠀ
+ࠀ e−〈xi,β〉

)
+ −ࠀ) yi) log

(
e−〈xi,β〉

+ࠀ e−〈xi,β〉

)

= −
n∑

i=ࠀ

yi log
(

ࠀ
+ࠀ e−〈xi,β〉

)
+ −ࠀ) yi) log

(
ࠀ

+ࠀ e〈xi,β〉

)

ࠂࠂ

"Exim--j¥÷÷÷¥
- -

- i
- ①

÷÷÷.÷

COMPARISON OF SVM TO LOGISTIC REGRESSION

Compare this to the logistic regression loss reformulated for
yi ∈ ,ࠀ−} :({ࠀ

n∑

i=ࠀ

− log

(
ࠀ

−ࠀ e−yi·〈xi,β〉

)

ࠃࠂ

- o o

@Y. : l
l

Yi-JenChiong
D o r i s. .

@

COMPARISON TO LOGISTIC REGRESSION

So, in the end, the function minimized when finding β for the
standard soft-margin SVM is very similar to the objective
function minimized when finding β using logistic regression
with ࠁ" regularization. Sort of...

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large
problems.

ࠄࠂ

-

-

COMPARISON TO LOGISTIC REGRESSION

The jury is still out on how different these methods are...

• Work through demo_mnist_svm.ipynb.
• Then complete lab lab4.ipynb.

ࠅࠂ

NEURAL NETWORKS

ࠅࠂ

NEURAL NETWORKS

Key Concept

Approach in prior classes:

• Choose good features or a good kernel.
• Use optimization to find best model given those features.

Neural network approach:

• Learn good features and a good model simultaneously.

ࠆࠂ

NEURAL NETWORKS

The hot-topic in machine learning right now.

Focus of investment at universities, government research labs,
funding agencies, and large tech companies.

Studied since the .s߿ࠄ/s߿ࠃࠈࠀ Why the sudden attention? More
on history of neural networks at the end of lecture.

ࠇࠂ

SIMPLE MOTIVATING EXAMPLE

Classification when data is not linearly separable:

Could use feature transformations or a non-linear kernel.

Alternative approach: Divide the space up into regions using
multiple linear classifiers.

ࠈࠂ

o o t.fi .

SIMPLE MOTIVATING EXAMPLE

For each linear classifier β, add a new ,ࠀ− ࠀ feature for every
example x = [x߿, xࠀ] depending on the sign of 〈x,β〉.

߿ࠃ

B, B r

o

s ,
O O

O s ,

O

[11 I - I] f -l l l - l)

SIMPLE MOTIVATING EXAMPLE

,ࠁ. ,ࠇ.
,ࠄ. ࠄ.
...

,ࠄ. ࠀ

xࠀ
xࠁ
...
xn

=⇒

uࠀ

uࠁ
...
un

=

ࠀ−,ࠀ+,ࠀ−,ࠀ−
ࠀ−,ࠀ+,ࠀ+,ࠀ−

...
ࠀ−,ࠀ−,ࠀ−,ࠀ−

Question: After data transformation, how should we map a
new vectors u to a class label?

ࠀ−,ࠀ+,ࠀ−,ࠀ−
ࠀ−,ࠀ+,ࠀ+,ࠀ−

...
ࠀ−,ࠀ−,ࠀ−,ࠀ−

?−→

߿
ࠀ
...
߿

ࠀࠃ

I [FEI"
(mi,v ? 7 A

y

SIMPLE MOTIVATING EXAMPLE

Our machine learning algorithms needs to learn two things:

• The original linear functions which divide our data set into
regions (their slopes + intercepts).

• Another linear function which maps our new features to
an output label (typically by thresholding).

ࠁࠃ

- -

% "
① ↳

POSSIBLE MODEL

Input: x = xࠀ, . . . , xNI

Model: f(x,Θ):

• zH ∈ RNH = WHx+ bh.
• uH = sign(zH)
• zO ∈ R = WOuH + bO
• uO = [zO > λ]

Parameters: Θ = [WH ∈ RNH×NI ,bH ∈ RNH ,WO ∈ Rࠀ×NH ,bO ∈ R].

WH, WO are weight matrices and bH, bO are bias terms that
account for the intercepts of our linear functions.

ࠂࠃ

- . . " "¥÷⇒÷tt¥÷
÷÷:LQ

(B ,x) = 0

I ' I i ¥ 1 pg... s o ,x > t o = oz a
o

POSSIBLE MODEL

Our model is function f which makes x to a class label uO.ࠁ

This is called a “multilayer perceptron”: one of the oldest types
of neural nets. Dates back to Frank Rosenblatt from ࠇࠄࠈࠀ
• Number of input variables NI =

• Number of hidden variables NH =

• Number of output variables NO =
Forࠁ regression, would cut off at zO to get continuous output. ࠃࠃ

(B,x7
y

3

O O O o .
• a

3

5
1

POSSIBLE MODEL

Our model is function f which maps x to a class label uO.

Training the model:

• Choose a loss function L(f(x,Θ), y).
• Find optimal parameters: Θ∗ = argminΘ

∑n
i=ࠀ L(f(xi,Θ), yi)

How to find optimal parameters?
ࠄࠃ

O
- a

= -

FINAL MODEL

A more typical model uses smoother activation functions, aka
non-linearities, which are more amenable to computing gradients.
E.g. we might use the sigmoid function g = ࠀ

e−x+ࠀ .

• Use cross-entropy loss:

L(f(xi,Θ), yi) = −y log(f(xi,Θ))− −ࠀ) yi) log(ࠀ− f(xi,Θ))

• We will discuss soon how to compute gradients.

ࠅࠃ

- I
$008

-
- - 8 A -

"//

Ley,×) x c = 0

1 = 1Woe.Wa x = 0 € . x

FEATURE EXTRACTION

Features learned using step-function activation are binary,
depending on which side of a set of learned hyperplanes each
point lies on.

ࠆࠃ

µ ? B)

FEATURE EXTRACTION

Features learned using sigmoid activation are real valued in
,߿] .[ࠀ Mimic binary features.

ࠇࠃ

• .i .%

HYPERPARAMETERS

Things we can change in this basic classification network:

• More or less hidden variables.
• We could add more layers.
• Different non-linearity/activation function.
• Different loss function.

ࠈࠃ

E G

TEST YOUR INTUITION

How many hidden variables (e.g. splitting hyperplanes) would
be needed to classify this dataset correctly?

https://playground.tensorflow.org/

߿ࠄ

i÷÷÷÷÷÷÷
.

https://playground.tensorflow.org/

TEST YOUR INTUITION

ࠀࠄ

1 . e - -

log(o) 2=4,@)

Z

(F)

log(¥) 1%4-4¥
¥ E -

1. 0 0 0 0 0 0 0 0 I- I

NOTATION

Another common diagram for a layered-ࠁ network:

ࠁࠄ

§?.FI"
" '" '" '" '" '" '" '"

¥
=

-

/ o

g l)

NOTATION

Neural network math:

ࠂࠄ

-

NOTATION

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linear activation functions. ࠃࠄ

= :

' →

NOTATION

How to interpret:

WH and WO are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected” layers.
Every variable in layer i is connected to every variable in layer i+ .ࠀ ࠄࠄ

ARCHITECTURE VISUALIZATION

Effective way of visualize “architecture” of a neural network:

Visualize number of variables, types of connections, number of
layers and their relative sizes.

These are all feedforward neural networks. No backwards (recurrent)
connections.

ࠅࠄ

8 8 0 :%
O

-

SOME HISTORY AND MOTIVATION

ࠅࠄ

CONNECTION TO BIOLOGY

Simplified model of the brain:
Dendrites: Input electrical
current from other neurons.
Axon: Output electrical current
to other neurons.
Synapse: Where these two
connect.

A neuron “fires” (outputs non-zero electric charge) if it receives
enough cumulative electrical input from all neurons connected to it.

Output charge can be positive or negative (excitatory vs. inhibitory).
ࠆࠄ

o
→

-

CONNECTION TO BIOLOGY

Inspired early work on neural networks:

• s߿ࠃࠈࠀ Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

• s߿ࠄࠈࠀ Frank Rosenblatt’s Perceptron is one of the first
“artifical” neural networks.

• Continued work throughout the .s߿ࠅࠈࠀ

Main issue with neural network methods: They are hard to
train. Generally require a lot of computation power. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. We have gotten a lot better
at resolving these issues though!

ࠇࠄ

=

EARLY NEURAL NETWORK EXPLOSION

Around ࠄࠇࠈࠀ several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via (stochastic) gradient descent. Along with
increased computational power this lead to a resurgence of
interest in neural network models.

Very good performance on problems like digit recognition. ࠈࠄ

0

NEURAL NETWORK DECLINE

From s߿ࠈࠈࠀ - ,߿ࠀ߿ࠁ kernel methods, SVMs, and probabilistic
methods began to dominate the literature in machine learning:

• Work well “out of the box”.
• Relatively easy to understand theoretically.
• Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from :5߿߿ࠁ
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-learning-according.html

߿ࠅ

1

http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html

NEURAL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

ࠀࠅ

MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

Recent state-of-the-art results in game playing, image
recognition, content generation, natural language processing,
machine translation, many other areas.

ࠁࠅ

MODERN NEURAL NETWORKS

All changed with the introduction of AlexNet and the ࠁࠀ߿ࠁ
ImageNet Challenge...

Very general image classification task.
ࠂࠅ

MODERN NEURAL NETWORKS

All changed with AlexNet and the ࠁࠀ߿ࠁ ImageNet Challenge...

߿ࠀ߿ࠁ Results

ࠁࠀ߿ࠁ Results ࠃࠅ

MODERN NEURAL NETWORKS

Why ?ࠁࠀ߿ࠁ

• Clever ideas in changing neural network architectures. E.g.
convolutional units baked into the neural net.

• Wide-spread access to GPU computing power (CUDA and
publicly available Nvidia GPU first released in .(ࠆ߿߿ࠁ

ࠄࠅ

9ࠀ߿ࠁ TURING AWARD WINNERS

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing.”

What were these breakthroughs? What made training large neural
networks computationally feasible?

ࠅࠅ

GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

• :ࠆ߿߿ࠁ Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used ߿ࠅ million parameters. Could not
have been trained using CPUs alone (except maybe on a
government super computer).

ࠆࠅ

TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

.ࠀ Stochastic gradient descent.
.ࠁ Backpropogation.

ࠇࠅ

TRAINING NEURAL NETWORKS

Let f(θ, x) be our neural network. A typical "-layer feed forward
model has the form:

g" (W" (. . .Wࠂ · gࠁ (Wࠁ · gࠀ (Wࠀx+ bࠀ) + bࠁ) + bࠂ . . .) + b") .

Wi and bi are the weight matrix and bias vector for layer i and
gi is the non-linearity (e.g. sigmoid). θ = [W߿,b߿, . . . ,W",b"] is
a vector of all entries in these matrices.

Goal: Given training data (xࠀ, yࠀ), . . . , (xn, yn) minimize the loss

L(θ) =
n∑

i=ࠀ

L (yi, f(θ, xi))

Example: We might use the binary cross-entropy loss for
binary classification:

L (yi, f(θ, xi)) = yi log(f(θ, xi)) + −ࠀ) yi) log(ࠀ− f(θ, xi))
ࠈࠅ

GRADIENT OF THE LOSS

Most common approach: minimize the loss by using gradient
descent. Which requires us to compute the gradient of the loss
function, ∇L. Note that this gradient has an entry for every
value in W߿,b߿, . . . ,W",b".

As usual, our loss function has finite sum structure, so:

∇L(θ) =
n∑

i=ࠀ

∇L (yi, f(θ, xi))

So we can focus on computing:

∇θL (yi, f(θ, xi))

for a single training example (xi, yi).

߿ࠆ

GRADIENT OF THE LOSS

Applying chain rule to loss:

∇θL (y, f(θ, x)) =
∂L

∂f(θ, x) ·∇θf(θ, x)

Binary cross-entropy example:

L (y, f(θ, x)) = y log(f(θ, x)) + −ࠀ) y) log(ࠀ− f(θ, x))

ࠀࠆ

GRADIENT OF THE LOSS

We have reduced our goal to computing ∇θf(θ, x), where the
gradient is with respect to the parameters θ.

Back-propagation is a natural and efficient way to compute
∇θf(θ, x). It derives its name because we compute gradient
from back to front: starting with the parameters closest to the
output of the neural net.

ࠁࠆ

