CS-GY 6923: Lecture 9
Support Vector Machines, Neural Nets
Introduction

NYU Tandon School of Engineering, Prof. Christopher Musco



LAST LECTURE

How to use non-linear kernels with logistic regression.

- Often leads to better classification than basic linear
logistic regression.

- Equivalent to feature transformation, but often
computationally faster.



EXAMPLES OF NON-LINEAR KERNELS

Commonly used positive semidefinite (PSD) kernel functions:

- Linear (inner-product) kernel: R(x,y) = (X, V)
- Gaussian RBF Kernel: k(x,y) = e~ lx-Vlz/7*

- Laplace Kernel: k(x,y) = e~ Ixvlz/o

- Polynomial Kernel: R(x,y) = ((x,y) + 1)q.

Recall: Every PSD kernel has a corresponding feature
transformation ¢ : RY — R™.

R(x,Y) = 6(x)T6(y))



KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Sometimes ¢(x) is simple and explicit. More often, it is not.
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Degree 2 polynomial kernel, R(x, w) = (x'w + 1)2.



KERNEL MATRIX

Typically doesn’'t matter because we only need to compute the
kernel Gram matrix K to retrofit algorithms like logistic or
linear regression to use non-linear kernels.

$(%)
9(x;) - k(%)
$(X) X7 = :
H%) SR
K




TODAY

Support Vector Machines (SVMs): Another algorithm for finding
linear classifiers which is as popular as logistic regression.

- Can also be combined with kernels.
- Developed from a pretty different perspective.
- But final algorithm is not that different.

- Invented in 1963 by Alexey
Chervonenkis and Vladimir
Vapnik. Also founders of
VC-theory.

+ First combined with
non-linear kernels in 1993.




SVM’S VS. LOGISTIC REGRESSION

For some reason, SVMs are more commonly associated with
non-linear kernels. For example, sklearn’s SVM classifier
(called SVC) has support for non-linear kernels built in by
default. Its logistic regression classifier does not.

- | believe this is mostly for historical reasons and
connections to theoretical machine learning.

- In the early 2000s SVMs where a “hot topic” in machine
learning and their popularity persists.

- It is not clear to me if they are better than logistic
regression, but honestly I'm not sure...



SVM’S VS. LOGISTIC REGRESSION

Next lab: lab_mnist_partial.ipynb.

Machina-a-machina comparison of SVMs vs. logistic regression
for a MNIST digit classification problem. Which provides better
accuracy? Which is faster to train?



LINEARLY SEPARABLE DATA

We call a dataset with binary labels linearly separable if it can
be perfectly classified with a linear classifier:

seperating
hyperplane

This the realizable setting we discussed in the learning theory
lecture.



LINEARLY SEPARABLE DATA

Formally, there exists a parameter 3 such that (3,x) > 0 for all
xin class Tand (8,x) < 0 for all x in class 0.

B

° .
.. s seperating
‘.0 ° hyperplane
(B, x)<0 (B,x)=0

Note that if we multiply 3 by any constant ¢, ¢3 gives the same
separating hyperplane because (c3,x) = c(3, X).
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LINEARLY SEPARABLE DATA

A data set might be linearly separable when using a
non-kernel/feature transformation even if it is not separable
in the original space.

feature ‘

- |

transformation

This data is separable when using a degree-2 polynomial
kernel. If suffices for ¢(x) to contain x? and x3.

n



MARGIN

When data is linearly separable, there are typically multiple
valid separating hyperplanes.

Which hyperplane/classification rule is best?
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MARGIN

The margin m of a separating hyperplane is the minimum /¢,
(Euclidean) distance between a point in the dataset and the
hyperplane.

|(xi, B)|
1812

m = min A; where AVES
I
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MARGIN

We have that x; = v; + e; where v; is parallel to 8 and e; is
perpendicular.

T E N T A e
Ai = Vil = - Vi Vi) = w81, 1V Bl = T,

Finally, we have that (x;, 8) = (v;, 3) because (e;,3) = 0.
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SUPPORT VECTOR

A support vector is any data point x; such that % =m.
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HARD-MARGIN SVM

A hard-margin support vector machine (SVM) classifier finds
the maximum margin (MM) linear classifier.

l.e. the separating hyperplane which maximizes the margin m.



MARGIN

Denote the maximum margin by m*.

m* :max[ T ‘<’XIaﬁ>|:|
B i€1,...,n ”,@Hz
B [ Y <X/,/3>]
= max min ———
B liet.n |82
where y; = —1,1 depending on what class x;."

"Note that this is a different convention than the 0,1 class labels we
typically use.



HARD-MARGIN SVM

Equivalent formulation:

m* = max | min Y;-(Xj,V)
vi||vl[;=1 [i€1,...,n

— = min C subjectto ;- (x;,c-v)y >1foralli.
m* v:||vy2:1

= IImIin 1 lc-v|l, subjectto ;- (xj,c-v)>1foralli
V:||V][2=
C



HARD-MARGIN SVM

Equivalent formulation:

mgn 1813 subject to yi - (x;,8) > 1forall i.

Under this formulation m =

18Il2"

This is a constrained optimization problem. In particular, a
linearly constrained quadratic program, which is a type of
problem we have efficient optimization algorithms for.
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HARD-MARGIN SVM

Hard-margin SVMs have a few critical issues in practice:

X»

-1.0

Xi

Data might not be linearly separable, in-which case the maximum
margin classifier is not even defined.

Less likely to be an issue when using a non-linear kernel. If Kis full
rank then perfect separation is always possible. And typically it is,
e.g. for an RBF kernel or moderate degree polynomial kernel. 20



HARD-MARGIN SVM

While important in theory, hard-margin SVMs have a few critical
issues in practice:

X
,

1
Xo

Hard-margin SVM classifiers are not robust.
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SOFT-MARGIN SVM

Solution: Allow the classifier to make some mistakes!

Hard margin objective:

mﬁin 18113 subject to yi - (x;,8) >1foralli.
Soft margin objective:
min +C . subjectto  y;-(x;,3) >1—¢ foralli.
5 Hﬁﬂz ;‘ J Vi < i :3> €j

where ¢ > 0 is a non-negative “slack variable”. This is the
magnitude of the error made on example x;.

C > 0is a non-negative tuning parameter.
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SOFT-MARGIN SVM

Example of a non-separable problem:

°
°
o® ’.: ° ¢
e Qe
og.o.
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SOFT-MARGIN SVM

Recall that A; = Y:%iB),

18Il

j1/IIBII

Soft margin objective:

n
min IBI5+CD e subjectto y;-(x;,B) >1—¢ foralli.
i=1
24



SOFT-MARGIN SVM

Recall that A; = Y:%iB),

18Il

N

/1Bl

Soft margin objective:

yi- (X;, B) S ] €

— — for all /.
18l ~ 1Bl 1182

n
min 1813+ C> e subject to
=

25



SOFT-MARGIN SVM

/1Bl

Any x; with a non-zero ¢; is a support vector.
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EFFECT OF C

Soft margin objective:

n
i IBI3+C> e

i=1

- Large C means penalties are punished more in objective
— smaller margin, less support vectors.

- Small C means penalties are punished less in objective
— larger margin, more support vectors.

When data is linearly separable, as C — oo we will always get a
separating hyperplane. A smaller value of C might lead to a
more robust solution.

27



EFFECT OF C

Example dataset:

28



EFFECT OF C

large C smaller C

The classifier on the right is intuitively more robust. So for this
data, a smaller choice for C might make sense.
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DUAL FORMULATION

Reformulation of soft-margin objective:

n
mjx;: aj — Zy:yja»@: Xi, Xj) — ZCZQ

ij

n
subjectto «; >0, Za,y,- =0.
i=1
Obtained by taking the Lagrangian dual of the objective. Beyond the
scope of this class, but important for a few reasons:

- Objective only depends on inner products (x;, X;), which makes
it clear how to combine the soft-margin SVM with a kernel.

- Dual formulation can be solved faster in low-dimensions.

- Possible to prove that «; is only non-zero for the support
vectors. When classifying a new data point, only need to
compute inner products (or the non-linear kernel inner
product) with this subset of training vectors. 30



COMPARISON TO LOGISTIC REGRESSION

Some basic transformations of the soft-margin objective:

n
mﬂin IBI5+C) "€ subjectto y;- (x;,8) >1—¢ foralli.
=1

min 1815+ € max(0,1—y; - (x;, B)).

=1
n

min AIBIE + ) " max(0,1 - y; - (x;, 3)).
p

These are all equivalent. A = 1/C is just another scaling
parameter.
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HINGE LOSS

Hinge-loss: max(0,1—y; - (x;, 3)). Recall thaty; € {-1,1}.

max(0,1 —y; - (Z, 5))

Soft-margin SVM:

i > max(0,1—y;- (x;,8)) + AlBl5] - (1)
=1

32



LOGISTIC LOSS

Recall the logistic loss for y; € {0, 1}:

Zy,log (%, 8))) + (1= y;) log(1 — h((x;, 8)))

| e_<xi7:3>
- _Zyi og (,I T e<x/‘ﬁ>> + (’I _yi) |Og 1+ o—(%.5)
Zylg (1 y)log [ ——
! 11 e—x.8) ! 1 4+ efXiB)
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COMPARISON OF SVM TO LOGISTIC REGRESSION

Compare this to the logistic regression loss reformulated for
Vi € {_171})

! 1
Z — log (1 — e—Yf'<Xiﬂ>>

i=1

—— Hinge Loss
— Logistic Regression Loss

34



COMPARISON TO LOGISTIC REGRESSION

So, in the end, the function minimized when finding 3 for the
standard soft-margin SVM is very similar to the objective
function minimized when finding 3 using logistic regression
with ¢, regularization. Sort of...

yi - (&, )

Both functions can be optimized using first-order methods like
gradient descent. This is now a common choice for large

problems.
35



COMPARISON TO LOGISTIC REGRESSION

The jury is still out on how different these methods are...

- Work through demo_mnist_svm.1ipynb.
- Then complete lab lab4.ipynb.

36



NEURAL NETWORKS



NEURAL NETWORKS

Key Concept

Approach in prior classes:

- Choose good features or a good kernel.

- Use optimization to find best model given those features.
Neural network approach:

- Learn good features and a good model simultaneously.

37



NEURAL NETWORKS

The hot-topic in machine learning right now.

S(:Ience

Focus of investment at universities, government research labs,
funding agencies, and large tech companies.

Studied since the 1940s/50s. Why the sudden attention? More

on history of neural networks at the end of lecture.
38



SIMPLE MOTIVATING EXAMPLE

Classification when data is not linearly separable:

Could use feature transformations or a non-linear kernel.

Alternative approach: Divide the space up into regions using
multiple linear classifiers.

39



L
-
o
=
<
>
L
O
=
=
<
=
=
o
=
L
-
o
=
(%]

add a new —1,1 feature for every

’

For each linear classifier 3

x7] depending on the sign of (x, 8).
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SIMPLE MOTIVATING EXAMPLE

2,81 [x u; —1, =1, 41, -1

5.5 % U, —1, 41,41, -1
. =1.= :

5,1 [xn Un —1, =1, -1, -1

Question: After data transformation, how should we map a
new vectors u to a class label?

—1,—1,+1, 1 0
—1,4+1,+1,=1| - |1
. - .

—1,—1, -1, —1 0

41



SIMPLE MOTIVATING EXAMPLE

Our machine learning algorithms needs to learn two things:

- The original linear functions which divide our data set into
regions (their slopes + intercepts).

- Another linear function which maps our new features to

an output label (typically by thresholding). "



POSSIBLE MODEL

Input: X =Xq,..., Xy

Model: f(x, ©):

!

- zy € RV = Wyx + by,
- uy = sign(zy)

- Zo € R =Wouy + bo
© Up =1[zp > A

Parameters: © = [Wy € RV#*Ni by € RV Wo € R™NH by € R].

Wy, Wp are weight matrices and by, bp are bias terms that
account for the intercepts of our linear functions.

43



POSSIBLE MODEL

Our model is function f which makes x to a class label up.2

non-linearity/

linear map activation function

o h =0

x)— —0 _.% —»Q§: linear map threshold function
®— — O — [ —'87@—'@—’—'@
®&— —O0—0 — Woliy* b Zo flzg) Yo
3 - —0 — [ _.9/ oYH™ Yo 0

X WX + by Zy  g(z,) Uw

This is called a “multilayer perceptron”: one of the oldest types
of neural nets. Dates back to Frank Rosenblatt from 1958
- Number of input variables N, =

- Number of hidden variables Ny =
- Number of output variables Ng =

ZFor regression, would cut off at zo to get continuous output. Lty




POSSIBLE MODEL

Our model is function f which maps x to a class label up.

non-linearity/

linear map activation function
—0O0—0—0 ,
@— —O—O0 —0 § o threshold function
®— —>O—’—'87EI:I:I:E—>O—-—>O
©— —0 — - Wi+ b Zy f(f) Ug
- —.O — — O/ 0.
X WX+ by Zy g(z,) Uy

Training the model:

- Choose a loss function L(f(x, ©), ).
- Find optimal parameters: ©* = argming Y7, L(f(X;, ©), V;)

How to find optimal parameters? i



FINAL MODEL

A more typical model uses smoother activation functions, aka
non-linearities, which are more amenable to computing gradients.

E.g. we might use the sigmoid function g = 1.
linear ma sigmoid
P O non—earity O

—_— —_— —_— . a id
©— — 0O — — O \\\A ineaian nors1l-gl?rllglarity
®— —0 — @ —O— NN —0— 1 —O
»— —'8—'—’07 W.T0.+ b Cz> ) Yo

—0O —[] — O oUn* Do o 8z,
X  Wgx+b, Z, g(z,) Uy

- Use cross-entropy loss:
L(f(xi, ©),yi) = —ylog(f(xi, ©)) — (1 —y;) log(1 — f(x;, ©))

- We will discuss soon how to compute gradients.

46



47

-function activation are binary,

08

depending on which side of a set of learned hyperplanes each

Features learned using step
point lies on.
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FEATURE EXTRACTION

Features learned using sigmoid activation are real valued in
[0,1]. Mimic binary features.

48



HYPERPARAMETERS

Things we can change in this basic classification network:

- More or less hidden variables.

- We could add more layers.

- Different non-linearity/activation function.
- Different loss function.

Sigmoid ' tanh ‘ ReLU 1
0(2) = 1= tanh(z) ’ » max(0,z)

49



TEST YOUR INTUITION

How many hidden variables (e.g. splitting hyperplanes) would
be needed to classify this dataset correctly?

o

https://playground.tensorflow.org/

50


https://playground.tensorflow.org/

TEST YOUR INTUITION

51



NOTATION

Another common diagram for a 2-layered network:

hidden
layer

52



NOTATION

Neural network math:

f=ax+by+cz

W

53



NOTATION

How to interpret:

X

zy
Wy and Wy are our weight matrices from before.

Note: This diagram does not explicitly show the bias terms or
the non-linear activation functions. 54




NOTATION

How to interpret:

X

zy
Wy and Wy are our weight matrices from before.

Note: This diagram depicts a network with “fully-connected” layers.
Every variable in layer i is connected to every variable in layer i + 1. 55



ARCHITECTURE VISUALIZATION

Effective way of visualize “architecture” of a neural network:
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Made by Leon Eyrich Jessen, Twitter: @jessenieon

Visualize number of variables, types of connections, number of
layers and their relative sizes.

These are all feedforward neural networks. No backwards (recurrent)
connections.
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SOME HISTORY AND MOTIVATION



CONNECTION TO BIOLOGY

Simplified model of the brain:
Dendrites: Input electrical

A L[ e current from other neurons.

£ FNM:I&J = H

( T Axon: Output electrical current
PRttt sn =2 : to other neurons.

ee—— |/ R <L @ e Synapse: Where these two

connect.

A neuron “fires” (outputs non-zero electric charge) if it receives
enough cumulative electrical input from all neurons connected to it.

A

®—T]

e
fire

wh

Output charge can be positive or negative (excitatory vs. inhibitory).
57



CONNECTION TO BIOLOGY

Inspired early work on neural networks:

- 1940s Donald Hebb proposed a Hebbian learning rule for
how brains neurons change over time to allow learning.

-+ 1950s Frank Rosenblatt's Perceptron is one of the first
“artifical” neural networks.

- Continued work throughout the 1960s.

Main issue with neural network methods: They are hard to
train. Generally require a lot of computation power. Also pretty
finicky: user needs to be careful with initialization,
regularization, etc. when training. We have gotten a lot better
at resolving these issues though!

58



EARLY NEURAL NETWORK EXPLOSION

Around 1985 several groups (re)-discovered the
backpropagation algorithm which allows for efficient training
of neural nets via (stochastic) gradient descent. Along with
increased computational power this lead to a resurgence of
interest in neural network models.

Backpropagation Applied to Handwritten Zip Code
Recognition

Y. LeCun

B. Boser

J. S. Denker

D. Henderson

R. E. Howard

W. Hubbard

L. D. Jackel

AT&T Bell Laboratories Holmdel, NJ 07733 USA

The ability of learning lize can be greatly d
by providing constraints from !he ‘task domain. This paper demon-
strates how such ints can be i dintoab

network through the architecture of the network. This appmach has
been successfully applied to the recognition of handwritten zip code
digits provided by the U.S. Postal Service. A single network learns the
entire recognition operation, going from the normalized image of the
character to the final classification.

Very good performance on problems like digit recognition. 59



NEURAL NETWORK DECLINE

From 1990s - 2010, kernel methods, SVMs, and probabilistic
methods began to dominate the literature in machine learning:

- Work well “out of the box".

- Relatively easy to understand theoretically.

- Not too computationally expensive for moderately sized
datasets.

Fun blog post to check out from 2005:
http://yaroslavvb.blogspot.com/2005/12/
trends-in-machine-1learning-according.html

60


http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html
http://yaroslavvb.blogspot.com/2005/12/trends-in-machine-learning-according.html

AL NETWORK DECLINE

Finding trends in machine learning by search papers in Google Scholar that
match a certain keyword:

You can see a major upward trend starting around 1985 (that's when Yann LeCun and several others
independenty rediscovered backpropagation algorithm), peaking in 1992, and going downwards from then.

On other hand, search for *support vector machine" shows no sign of slowing down Also, "Naive Bayes" seems to be growing without bound
e Lexe
30| 14
1.2
25|
1.0f
20|
o)
1]
o]
1.0
0.4
03 o
o8 1996 1998 2000 2002 2004 050 iooa 1994 1996 1998 2000 2002 2004
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(1895 is when Vapnik and Cortez proposed the algorithm) If 1 were to trust this, | would say that Naive Bayes research the hottest machine learning area right now



MODERN NEURAL NETWORK RESURGENCE

In recent years this trend completely turned around:

Un sourire coite moins cher que X Un sourire coiite moins cher que
Télectricité, mais donne autant Télectricité, mais donne autant
de lumiére de lumiére

A smile costs less expensive than % | A smile costs less than electricity,
electricity, but gives as many light | but gives as much light

(-] © 0 ® 0 i

Recent state-of-the-art results in game playing, image
recognition, content generation, natural language processing,
machine translation, many other areas.
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MODERN NEURAL NETWORKS

All changed with the introduction of AlexNet and the 2012
ImageNet Challenge...

14,197,122 images, 21841 synsets indexed

IMAGEN

Explore Download Challenges Publications Updates About
ILSVRC 2017

Notlogged in. Login I Signup
ILSVRC 2016
ILSVRC 2015
ImageNet is an image database organized according to [ESLEELEEt hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundrjikaaiEi isands of images. Currently we have
MGl vill become a useful resource for
LSvRe 2ot bn for pictures.

geNet mailing list.

an average of over five hundred images per node. We hq
researchers, educators, students and all of you who shal
Click here to learn more about ImageNet, Click here to jO

ILSVRC 2010

What do these images have in common? Find out!

Very general image classification task.
63



MODERN NEURAL NETWORKS

All changed with AlexNet and the 2012 ImageNet Challenge...

team name |team members filename flat cost sioesl description
INEC: Yuangqing Lin, using sift and
Fengjun Lv, Shenghuo Zhu, Ibp feature with
Ming Yang, Timothee Cour, two non-linear

. Kai Yu UIUC: LiangLiang lcoding

NEC-UIUC Cao, Zhen Li, Min-Hsuan flat_opt.txt 0-28191]2.1144 representations
[Tsai, Xi Zhou, Thomas land stochastic
Huang Rutgers: Tong ISVM, optimized
|Zhang [for top-5 hit rate

2010 Results
Team name Filename Error (5 guesses) Description

test-preds-141-146.2009-131 Using extra training data
SuperVision P ) 0.15315 from ImageNet Fall 2011
137-145-146.2011-145f.

release
test-preds-131-137-145-135- Using only supplied
SuperVision P 0.16422 g only Suppl
145f.txt training data
Weighted sum of scores
from each classifier with
I1SI pred_FVs_wLACs_weighted.txt 0.26172 SIFT+FV, LBP+FV,

GIST+FV, and
CSIFT+FV, respectively.

2012 Results 64



MODERN NEURAL NETWORKS

Why 2012?

- Clever ideas in changing neural network architectures. E.g.
convolutional units baked into the neural net.

- Wide-spread access to GPU computing power (CUDA and
publicly available Nvidia GPU first released in 2007).
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2019 TURING AWARD WINNERS

“For conceptual and engineering breakthroughs that have made
deep neural networks a critical component of computing”

Sixas

Googl gy A .
: oge( o ad
Yann LeCun Geoff Hinton  Yoshua Bengio

What were these breakthroughs? What made training large neural
networks computationally feasible?

66



GRAPHICS PROCESSING UNIT

Hardware innovation: Widely available, inexpensive GPUs
allowing for cheap, highly parallel linear algebra operations.

-+ 2007: Nvidia released CUDA platform, which allows GPUs to
be easily programmed for general purposed computation.

AlexNet architecture used 60 million parameters. Could not
have been trained using CPUs alone (except maybe on a

government super computer).
67



TRAINING NEURAL NETWORKS

Two main algorithmic tools for training neural network
models:

1. Stochastic gradient descent.

2. Backpropogation.
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TRAINING NEURAL NETWORKS

Let f(8,x) be our neural network. A typical ¢-layer feed forward
model has the form:

e (We (... Ws-g2(Wy- g1 (Wix+ b)) +by)+bs...)+ by).

W; and b; are the weight matrix and bias vector for layer i and
g; is the non-linearity (e.g. sigmoid). @ = [Wo, by, ..., Wy, b/] is
a vector of all entries in these matrices.

Goal: Given training data (X1, V1), .., (Xn,¥n) minimize the loss

— > Lf6.%)

Example: We might use the binary cross-entropy loss for
binary classification:

L (v, (0, %)) = yilog(f(0,xi)) + (1 — y;) log(1 - f(8,Xi))
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GRADIENT OF THE LOSS

Most common approach: minimize the loss by using gradient
descent. Which requires us to compute the gradient of the loss
function, VL. Note that this gradient has an entry for every
valiue in W, bo, e, Wy, by.

As usual, our loss function has finite sum structure, so:
n
VL(O) = > VL(yi.f(6,x))
i=1

So we can focus on computing:

Vol (vi,f(0,x))

for a single training example (x;, ;).
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GRADIENT OF THE LOSS

Applying chain rule to loss:

oL

Vol (v,f(0,x)) = 310X

’ vef(ea X)
Binary cross-entropy example:

L(y,f(6,x)) = ylog(f(6,x)) + (1 — y) log(1 - f(8,x))
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GRADIENT OF THE LOSS

We have reduced our goal to computing Vef(6,x), where the
gradient is with respect to the parameters 6.

Back-propagation is a natural and efficient way to compute
Vof(0,x). It derives its name because we compute gradient
from back to front: starting with the parameters closest to the
output of the neural net.
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