
CS-GY 6923: Lecture 8
k-Nearest Neighbors, Kernel Methods

NYU Tandon School of Engineering, Prof. Christopher Musco

1



NON-LINEAR METHODS

• Previous methods studied (regression, logistic regression)
are considered linear methods. They make predictions
based on ⟨x,β⟩ – i.e. based on weighted sums of features.

• In the next part of the course we move on to non-linear
methods. Specifically, kernel methods and neural
networks.

• Both are very closely related to feature transformations!

2



WARM UP: k-NEAREST NEIGHBOR METHOD

k-NN algorithm: a simple but powerful baseline for
classification.

Training data: (x1, y1), . . . , (xn, yn) where y1, . . . , yn ∈ {1, . . . , q}.

Classification algorithm:

Given new input xnew,

• Compute sim(xnew, x1), . . . , sim(xnew, xn).1

• Let xj1 , . . . , xjk be the training data vectors with highest
similarity to xnew.

• Predict ynew as majority(yj1 , . . . , yjk).

1sim(xnew, xi) is any chosen similarity function, like 1− ∥xnew − xi∥2.

3



k-NEAREST NEIGHBOR METHOD

• Smaller k, more complex classification function.
• Larger k, more robust to noisy labels.

Works remarkably well for many datasets.

4



MNIST IMAGE DATA

Especially good for large datasets with lots of repetition. Works
well on MNIST for example:

≈ 95% Accuracy out-of-the-box.2

Let’s look into this example a bit more...

2Can be improved to 99.5% with a fancy similarity function! 5



MNIST IMAGE DATA

Each pixel is number from [0, 1]. 0 is black, 1 is white.
Represent 28× 28 matrix of pixel values as a flattened vector.

6



INNER PRODUCT SIMILARITY

Given data vectors x,w ∈ Rd, the inner product ⟨x,w⟩ is a
natural similarity measure.

⟨x,w⟩ =
d∑
i=1

xiwi = cos(θ)∥x∥2∥w∥2.

Also called “cosine similarity”.
7



INNER PRODUCT SIMILARITY

Connection to Euclidean (ℓ2) Distance:

∥x− w∥22 = ∥x∥22 + ∥w∥22 − 2⟨x,w⟩

If all data vectors has the same norm, the pair of vectors with
largest inner product is the pair with smallest Euclidean
distance.

8



INNER PRODUCT FOR MNIST

Inner product between MNIST digits:

⟨x,w⟩ =
28∑
i=1

28∑
j=1

matx[i, j] · matw[i, j].

Inner product similarity is higher when the images have large
pixel values (close to 1) in the same locations. I.e. when they
have a lot of overlapping white/light gray pixels.

9



INNER PRODUCT FOR MNIST

Visualizing the inner product between two images:

Images with high inner product have a lot of overlap.

10



K-NN ALGORITHM ON MNIST

Most similar images during k-nn search, k = 9:

11



K-NN FOR OTHER IMAGES

Does not work as well for less standardized classes of images:

CIFAR 10 Images

Even after scaling to have same size, converting to separate
RGB channels, etc. something as simple as k-nn won’t work.

12



ANOTHER VIEW ON LOGISTIC REGRESSION

One-vs.-all or Multiclass Cross-entropy Classification with
Logistic Regression:

• Learn q classifiers with parameters β(1),β(2), . . . ,β(q).
• Given xnew compute ⟨xnew,β(1)⟩, . . . , ⟨xnew,β(q)⟩
• Predict class ynew = argmaxi⟨xnew,β(i)⟩.

If each x is a vector with 28× 28 = 784 entries than each β(i)

also has 784 entries. Each parameter vector can be viewed as a
28× 28 image.

13



MATCHED FILTER

Visualizing β1, . . . ,βq:

For an input image , compute inner product similarity
with all weight matrices and choose most similar one.

In contrast to k-NN, only need to compute similarity with q
items instead of n. 14



ALTERNATIVE VIEW

Logistic Regression Model:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y ∈ {0, 1}n for class i (1 if in class i, 0 if not), find β ∈ Rd

to minimize the log loss between:

y and h(Xβ)

where h(z) = 1
1+e−z applies the logistic function entrywise to

Xβ.

Loss = −
∑n

j=1 yj log(h(Xβ)j) + (1− yj) log(1− h(Xβ)j)

15



ALTERNATIVE VIEW

Reminder from linear algebra: Without loss of generality, can
assume that β lies in the row span of X.

So for any β ∈ Rd, there exists a vector α ∈ Rn such that:

β = XTα.

16



ALTERNATIVE VIEW

Logistic Regression Equivalent Formulation:

Given data matrix X ∈ Rn×d (here d = 784) and binary label
vector y ∈ {0, 1}n for class i (1 if in class i, 0 if not), find α ∈ Rn

to minimize the log loss between:

y and h(XXTα).

Can still be minimized via gradient descent:

∇L(α) = XXT(h(XXTα)− y).

17



REFORMULATED VIEW

What does classification for a new point xnew look like? Recall
that for a given one-vs-all classification for class i, the original
parameter vector β(i) = XTα(i).

• Learn q classifiers with parameters α(1),α(2), . . . ,α(q).
• Given xnew compute ⟨xnew, XTα(1)⟩, . . . , ⟨xnew, XTα(q)⟩
• Predict class ynew = argmaxi⟨xnew, XTα(i)⟩.

18



REFORMULATED VIEW

Score for class i:

⟨xnew, XTαi⟩ = xTnewXTα(i)

= ⟨Xxnew,α(i)⟩

=
n∑
j=1

α
(i)
j ⟨xnew, xj⟩.

19



ORIGINAL VIEW OF LOGISTIC REGRESSION

20



NEW VIEW OF LOGISTIC REGRESSION

Learn n length parameter vectors α(0), . . . ,α(9), one for each
class.

21



NEW VIEW OF LOGISTIC REGRESSION

Classification looks similar to k-NN: we compute the similarity
between xnew and every other vector in our training data set. A
weighted sum of the similarities leads to scores for each class.

Assign xnew to the class with highest score.

22



DIVING INTO SIMILARITY

Often the inner product does not make sense as a similarity
measure between data vectors. Here’s an example (recall that
smaller inner product means less similar):

But clearly the first image is more similar.

Here’s a more realistic scenario. 23



KERNEL FUNCTIONS: PERSPECTIVE ONE

A kernel function k(x, y) is simply a similarity measure
between data points.

k(x, y) =

large if x and y are similar.
close to 0 if x and y are different.

Example: The Radial Basis Function (RBF) kernel, aka the
Gaussian kernel:

k(x, y) = e−∥x−y∥22/σ2

for some scaling factor σ.

24



KERNEL FUNCTIONS: PERSPECTIVE ONE

Lots of kernel functions functions involve transformations of
⟨x, y⟩ or ∥x− y∥2:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥22/σ2

• Laplace Kernel: k(x, y) = e−∥x−y∥2/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ 1)q.

But you can imagine much more complex similarity metrics.

25



KERNEL FUNCTIONS: PERSPECTIVE TWO

For a simple algorithm like k-NN you can swap our the inner
product similarity with any similarity function you could
possibly imagine.

For a methods like logistic regression, this is not the case...

Recall: We learned a parameter vector α to minimize LL(y, XTα)

where LL() denotes the logistic loss. Then we classified via:

⟨xnew, XTα⟩ = xTnewXTα =
n∑
j=1

αj⟨xnew, xj⟩.

The inner product similarity came from the fact that our
predictions were based on the linear function ⟨xnew, XTα⟩.

26



KERNEL FUNCTIONS AS FEATURE TRANSFORMATION

A positive semidefinite (PSD) kernel is any similarity function
with the following form:

k(x,w) = ϕ(x)Tϕ(w)

where ϕ : Rd → Rm is a some feature transformation function.

27



KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Example: Degree 2 polynomial kernel, k(x,w) = (xTw+ 1)2.

x =

x1x2
x3

 ϕ(x) =



1√
2x1√
2x2√
2x3
x21
x22
x23√
2x1x2√
2x1x3√
2x2x3


(xTw+ 1)2 = (x1y1 + x2y2 + x3y3 + 1)2

= 1+ 2x1w1 + 2x2w2 + 2x3w3 + x21w2
1 + x22w2

2 + x23w2
3

+ 2x1w1x2w2 + 2x1w1x3w3 + 2x2w2x3w3

= ϕ(x)Tϕ(w). 28



KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Not all similarity metrics are positive semidefinite (PSD), but
all of the ones we saw earlier are:

• Gaussian RBF Kernel: k(x, y) = e−∥x−y∥22/σ2

• Laplace Kernel: k(x, y) = e−∥x−y∥2/σ

• Polynomial Kernel: k(x, y) = (⟨x, y⟩+ 1)q.

And there are many more...

29



KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Sometimes ϕ(⃗x) is simple and explicit. More often, it is not.

As we will discuss shortly, it doesn’t necessarily matter – we
often don’t even need to know ϕ.

30



KERNEL FUNCTIONS AND FEATURE TRANSFORMATION

Feature transformations ⇐⇒ new similarity metrics.

Using k(·, ·) in place of the inner product ⟨·, ·⟩ is equivalent to
replacing every data point x1, . . . , xn by ϕ(x1), . . . , ϕ(xn).3

3Transform dimension m is often very large: e.g. m = O(dq) for a degree q
polynomial kernel. For many kernels (e.g. the Gaussian kernel) m is actually
infinite. Typically you need to use regularization. 31



TAKEAWAY ONE

We can improve performance by replacing the inner product
with another kernel k(·, ·) for the same reason that feature
transformations improved performance.

When you add features, it becomes possible to learn more
complex decision boundaries (in this case a circle) with a
linear classifier.

32



TAKEAWAY TWO

PSD kernel functions give a principled way of “swapping out”
the inner product with a new similarity metric for linear
algorithms like multiple linear regression or logistic regression.

For non-PSD kernels it is not clear how to do this.

33



KERNEL LOGISTIC REGRESSION

Standard logisitic regression

Loss function:

L(α) = LL(y, XTα).

Gradient:

∇L(α) = XXT(h(XXTα)− y).

Prediction:

z =
n∑
j=1

α[j]⟨xnew, xj⟩.

ynew = 1[z > 0]

Kernel logisitic regression

Loss function:

L(α) = LL(y, ϕ(X)Tα).

Gradient:

∇L(α) = ϕ(X)ϕ(X)T(h(ϕ(X)ϕ(X)Tα)− y).

Prediction:

z =
n∑
j=1

αj⟨ϕ(xnew), ϕ(xj)⟩

ynew = 1[z > 0]

34



KERNEL REGRESSION

Standard linear regression

Loss function:

L(α) = ∥y− XXTα∥2

Gradient:

∇L(α) = 2XXT(XXTα− y).

Prediction:

ynew =
n∑
j=1

αj · ⟨xnew, xj⟩.

Kernel linear regression

Loss function:

L(α) = ∥y− ϕ(X)ϕ(X)Tα∥2

Gradient:

∇L(α) = 2ϕ(X)ϕ(X)T(ϕ(X)ϕ(X)Tα− y).

Prediction:

ynew =
n∑
j=1

αj · ⟨ϕ(xnew), ϕ(xj)⟩.

35



KERNEL MATRIX

K = ϕ(X)ϕ(X)T is called the kernel Gram matrix.

36



KERNEL TRICK

We never need to actually compute ϕ(x1), . . . , ϕ(xn) explicitly!

• For training we just need the kernel matrix K, which
requires computing k(xi, xj) for all i, j.

• For testing we just need to compute k(xnew, xi) for all i.

37



KERNEL TRICK

This can lead to significant computational savings!

• Transform dimension m is often very large: e.g. m = O(dq)
for a degree q polynomial kernel.

• For many kernels (e.g. the Gaussian kernel) m is actually
infinite. So kernel trick is your only option.

38



BEYOND THE KERNEL TRICK

The kernel matrix K is still n× n though which is huge when
the size of the training set n is large. Has made the kernel trick
less appealing in some modern ML applications.

There is an inherent quadratic dependence on n in the
computational and space complexity of kernel methods.

• 10, 000 data points → runtime scales as ∼ 100, 000, 000, K
takes 800MB of space.

• 1, 000, 000 data points → runtime scales as ∼ 1012, K takes
8TB of space. 39



BEYOND THE KERNEL TRICK

Many algorithmic advances in recent years partially address
this computational challenge (random Fourier features
methods, Nystrom methods, etc.)

Often based on “reversing” the kernel trick to find a compact
feature set that well approximates the kernel.4

4This was a major topic of my research 3-5 years ago.

40



KERNEL REGRESSION

We won’t study kernel regression in detail, but it’s a very
important statistical tool, especially when dealing with spatial
or temporal data.

Also known as Gaussian Process (GP) Regression or Kriging.
Can be justified from a Bayesian modeling perspective.

41



KERNEL REGRESSION

Reformulation of linear regression:

min
β

∥Xβ − y∥22 + λ∥β∥22 → min
α

∥XXTα− y∥22 + λ∥XTα∥22

Replace XXT by kernel matrix K during training.

Prediction:

ynew =
n∑
i=1

αi · k(xnew, xi).

Added benefit: Relatively numerically stable. E.g. is a much better
option for performing multivariate or even single variate polynomial
regression than direct feature expansion.

42


