


CS-GY 6923: Lecture 7
Taste of Learning Theory, PAC learning

NYU Tandon School of Engineering, Prof. Christopher Musco



THE FUNDAMENTAL CURVE OF ML

Key Observation: Due to overfitting, more complex models do
not always lead to lower test error.
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The more complex a model is, the more training data we need
to ensure that we do not overfit.



EXAMPLE: POLYNOMIAL REGRESSION

If we want to learn a degree g polynomial model, we will
perfectly fit our training data if we have n < g examples.
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Need n > g samples to ensure good generalization. How much
more?



EXAMPLE: LINEAR REGRESSION

If we want to fit a multivariate linear model with d features, we
will perfectly fit our training data if we have n < d examples.

d features
|

n examples

Need > d samples to ensure good generalization.

How much more?



STATISTICAL LEARNING THEORY

Major goal in learning theory:

Formally characterize how much training data is required to
ensure good generalization (i.e., good test set performance)
when fitting models of varying complexity.



STATISTICAL LEARNING MODEL

Statistical Learning Model:

- Assume each data example is randomly drawn from some
distribution (x,y) N/D/

For today: We will only consider(classiﬁcation problems)so
assume thaty € {9, 1}



SETUP

Statistical Learning Model:

~ Assume each data example is randomly drawn from some
distribution (x,y) ~ D.

- Assume we want to fit our data with a function h (a
“hypothesis”) in some hypothesis class@For input x,

() — £0.1) We

You can think of h as a model, instantiated with a specific set
of parameters. l.e. h is the same as fj.



EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:
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H contains all functions of the form:

h(x) = 1X'8 > A



EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

hypothesis h, hypothesis h,

H contains all functions of the form:
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:
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H contains all functions of the form:

h(x) =1[hL < x3 <ujand L < x; < Uy



EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:
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hypothesis h, hypothesis h, hypothesis h,

H contains all functions of the form:

h(x) =1[hL < x3 <ujand L < x; < Uy
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EXAMPLE HYPOTHESIS CLASS

;é\""’ X:(XI/"'/XA(S
5 b
Disjunctive N rrym)rm QI_Z)NF) formulas:
Assume x € {0, 1}#1s binary. Xs Ke=l X2

H contains functions of the form: Veze o Kg=)

h(x) :(X1 A Xs /\qu)\/()_(3 /\Xz)v...\/()_(1 A X2 A X10)
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-DNF: Each conjunction has at most k variables.
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POPULATION AND EMPIRICAL ERROR

Same as “population risk” for the zero one loss:

. PMn (“True”) Error: YE( p"enp 0")1 = ?\,,},L\,)
Roop(h) = Pr [1(x) #]

- Empirical Error: Given a set of samples
me?
N GV

X17)/1 s (Xma Vm) ~
1

Remp(h) = I Z 1{h(x;) # yi] o= ' _(Yu-f)")
—= =1 (‘*1/—};\3 -

Goal is to find h € H that minimizm
—
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GENERALIZATION

Let (X1,1), ..., (Xn,¥n) ~ D be our training set and let h¢, be
the empirical error minimizer:

arg min % Z 1[h(x;) # yil
heh [

Let h* be the population error minimizer:
—

h* = argmin Rpop(h) = argmin  Pr [h(X) # Y]
- hep —— h  (xy)~D

Goal: Ideally, for some smalle Rpop(Ntra —RM({ ) <e

P’?"P [\" Feasy ) =5
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SIMPLIFICATION

Simplification for today: Assume we are in the]realizable
setting:)vvhich means that Rpop(h*) =_0. l.e. there is some
hypothesis in our class H that perfectly classifies the data.

Formally, for any (ﬁy) such that Prp[x,y] > 0, h*(x) = .

hypothesis h* hypothesis

Extending to the case when Rpop(h*) # 0 is not hard, but the
math gets a little trickier. And intuition is roughly the same. .



PAC LEARNING

E&ba_bly Approximately Correct (PAC) Learning (Valiant, 1984):

inin data
arg miny, % Zf; 1[h(x;) # y)e

For a hypothesis class H, data
(w, let hirqin

In the realizable setting, how many training samples n are
required so that, with probability 1—9, 5 prabobobly

R Nipin) < €7
pop(Ntrain) = &l —_ %)O,‘.,,qms(-e_‘a.

The number of samples n will depend on g, 4, and the
complexity of the hypothesis class H. Perhaps surprisingly, it
will not depend at all on D.
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COMPLEXITY OF HYPOTHESIS CLASS

s ¥ oF fudhers i B

Viany ways to measure complexi\[)fa hypothesis class. Today
we will start with the simplest peasure: the number of

Example: What is the number of hypothe5|s in the class of

3-DNF formulas on d.dimensional inputs
X =[xi,...,xq] € {0,1}9? _,_./\ A >

(X/\X A X))

(
(%) o) (X,Axu;/a/)J
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COMPLEXITY OF HYPOTHESIS CLASS

dx
- " - o(sd)
Caveat: Many hypothesis classes are infinitely sized. E.g. the
set of linear thresholds

But you could imagine approximating H by a finite hypothesis
class. E.g. take values in 3, A to lie on a finite grid of siz
Then how many hypothesis are there?

Formally moving from finite to infinite sized hypothesis classes
is a huge area of learning theory (VC theory, Rademacher
complexity, etc.)

-
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MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data set (X1, 1), ..., (Xa, ¥n), and
Ntrgin = arg miny, % 27:1 1{h(x;) # vil-

Theorem

{fn > 1 (log |H| + Iog;),ﬁ then with probability 1 -6,

RDOP(htrain) <e

Roughly how many training samples are needed to learn 3-DNF
formulas? To learn (discretized) linear threshold funtions?

) - p®”) ldf= ¢t 0(‘%)

[oa(]],f() - O(&”) l°JH’H % ,—-\DDCL)



TOOLS

Two ingredients needed for proof:

1. Foranye e [0,1], (1—¢) <e”c
2.[Union bound.)Basic but important inequality about
probabilities.
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ALGEBRAIC FACT

AN _
Forany e € [0,1][ (1—¢) < e~ (e/ ) :e,‘-_\/&

+ s & L L\
Q 1-x
) -
@ e ™
- S~———
05
[ 05 \

Raising both sides to 1/¢, we have th 37.

or - l oo N .
Th‘E’SpEUII(, constantretreworr t e poratht

h“-l (,(’Q>\(q— = I/o 21
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UNION BOUND

Lemma (Union Bound)

For any random events Ay, ..., A:

PriAyor Ay or ... or Ag] < Pr[Aj] + Pr[Ay] + ... + Pr[Ag].

Proof by picture. )



UNION BOUND

(\/ _%/'%/ L{/J’é >

-— — —

What is the probability that a(dice roll is odd/or tha{ it is < 37
=Y C

% Prieh v eddsnfe
V/{ro“ S G_Z;S =%C<

7 5
Whatis the probability that a dice rollis 1, or that it is > 4?
(N Pr [dsee ol = 1) = V6

6 = Vg

Prfdhce tell 2 1] = (¢
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MAIN RESULT

9’ Aot (90 (bl/“) s (‘()C{s s/

Consider the realizable setting with hypothesis class H, data
distribution D, training data (X1, V1), ..., (Xn,¥n), @and

Ntrain = argminy, % 27:1 1[h(x;) # yil-

Theorem

ifn>1 log 125, then with probability 1 — 6,

RPOP(htrain) <e
Q
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PROOF

First observation: Note that because we are in the realizable
s_etﬂrjg/,vve always select and hygin With Rergin(Dirain) @There
is always at least one h € H such that h(x;) = y; for all I.

hypothesis hy~

Proof approach: Show that for any fixed hypothesis h?9 with

Roop(h99) > ¢, it is very unlikely that Ryqin(h??9) = 0. So with
high probability, we will not choose a bad hypothesis.
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PROOF

Let h2%¢ be a fixed hypothesis with Rpop(h) > €. F@awn

from D, what is the probability that h?2%(x) = y?
Z =G

-_/—

i bability that for a training set
(X1,51), - - -, (xn,%D:Irawn from D that hP%9(x;) = y; for all i? l.e.

that Reqin(hP29) = 0.

(L) (- .- (v-2) =(-¢)

(7Y
< e

= 26




PROOF

~ 1/, (e @) # ey \/J))

Claim

For any fixed hypthesis h with Rpop(hP99) > ¢, the probability
that Ryqin(h) = Q can be bounded by:

Pr{Rerain(h??) = 0] < e
: 6_? )4" la)(.l\_H/“) =) ;g—

Vi
Set i>m ). Then we have that for any fixed hypthesis
hbad with Rpop(h99) > ¢,

Pr[Rtrain (hbad) = 0] @
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UNION BOUND APPLICATION

Let hbad ... hpad be all hypthesis in W|thmow

large canmk be7 Certainly no more than l”H]'

T
@mm(h?ad) =0or...or Rtrain(h?qad) - O] >

< Pr[Rtrain(h%md) =0]+...+ Pr[Rtrain(h?qad) = 0]
0 -« —
<mg < &
= Wl $/(n|
So with probability 1 — ¢ (high probability) no bad hypotheses

have 0 training error. Accordingly, it must be that when we
choose a hypothesis with 0 training error, we are choosing a

good one. l.e. one with Rpop(h) <€
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THINGS WE DIDN'T COVER TODAY

(Hovv to deal with the non-realizable setting? E.g. where
miny Rpop # 07

(Hovv to deal with infinite hypothesis classes (most classes
in ML are)?

* How to finqherein= arg min, : 27:1 1[h(x;) # yi i
computationally efficient way?
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HAVE A GOOD SPRING BREAK!



