


CS-GY 6923: Lecture 7
Taste of Learning Theory, PAC learning

NYU Tandon School of Engineering, Prof. Christopher Musco
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THE FUNDAMENTAL CURVE OF ML

Key Observation: Due to overfitting, more complex models do
not always lead to lower test error.

The more complex a model is, the more training data we need
to ensure that we do not overfit. ࠁ



EXAMPLE: POLYNOMIAL REGRESSION

If we want to learn a degree q polynomial model, we will
perfectly fit our training data if we have n ≤ q examples.

Need n > q samples to ensure good generalization. How much
more?
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EXAMPLE: LINEAR REGRESSION

If we want to fit a multivariate linear model with d features, we
will perfectly fit our training data if we have n ≤ d examples.

Need > d samples to ensure good generalization.

How much more?
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STATISTICAL LEARNING THEORY

Major goal in learning theory:

Formally characterize how much training data is required to
ensure good generalization (i.e., good test set performance)
when fitting models of varying complexity.
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STATISTICAL LEARNING MODEL

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

For today: We will only consider classification problems so
assume that y ∈ ,߿} .{ࠀ
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SETUP

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Assume we want to fit our data with a function h (a
“hypothesis”) in some hypothesis class H. For input x,
h(x) → ,߿} .{ࠀ

You can think of h as a model, instantiated with a specific set
of parameters. I.e. h is the same as fθ .
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EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

H contains all functions of the form:

h(x) = [xTβ ≥ λ]

.
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EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

H contains all functions of the form:

h(x) = [xTβ ≥ λ]

.
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:

H contains all functions of the form:

h(x) = [lࠀ ≤ xࠀ ≤ uࠀ and lࠁ ≤ xࠁ ≤ uࠁ]
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:

H contains all functions of the form:

h(x) = [lࠀ ≤ xࠀ ≤ uࠀ and lࠁ ≤ xࠁ ≤ uࠁ]
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EXAMPLE HYPOTHESIS CLASS

Disjunctive Normal Form (DNF) formulas:

Assume x ∈ ,߿} d{ࠀ is binary.

H contains functions of the form:

h(x) = (xࠀ ∧ x̄ࠄ ∧ x߿ࠀ) ∨ (x̄ࠂ ∧ xࠁ) ∨ . . . ∨ (x̄ࠀ ∧ xࠁ ∧ x߿ࠀ)

∧ = ”and”, ∨ = ”or”

k-DNF: Each conjunction has at most k variables.
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POPULATION AND EMPIRICAL ERROR

Same as “population risk” for the zero one loss:

• Population (“True”) Error:

Rpop(h) = Pr
(x,y)∼D

[h(x) (= y]

• Empirical Error: Given a set of samples
(xࠀ, yࠀ), . . . , (xm, ym) ∼ D,

Remp(h) =
ࠀ
m

m∑

i=ࠀ

[h(xi) (= yi]

Goal is to find h ∈ H that minimizes population error.
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GENERALIZATION

Let (xࠀ, yࠀ), . . . , (xn, yn) ∼ D be our training set and let htrain be
the empirical error minimizer:

htrain = argmin
h

ࠀ
n

n∑

i=ࠀ

[h(xi) (= yi]

Let h∗ be the population error minimizer:

h∗ = argmin
h

Rpop(h) = argmin
h

Pr
(x,y)∼D

[h(x) (= y]

Goal: Ideally, for some small ε, Rpop(htrain)− Rpop(h∗) ≤ ε.
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SIMPLIFICATION

Simplification for today: Assume we are in the realizable
setting, which means that Rpop(h∗) = .߿ I.e. there is some
hypothesis in our class H that perfectly classifies the data.

Formally, for any (x, y) such that PrD[x, y] > ,߿ h∗(x) = y.

Extending to the case when Rpop(h∗) (= ߿ is not hard, but the
math gets a little trickier. And intuition is roughly the same. ࠄࠀ
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PAC LEARNING

Probably Approximately Correct (PAC) Learning (Valiant, :(ࠃࠇࠈࠀ

For a hypothesis class H, data distribution D, and training data
(xࠀ, yࠀ), . . . , (xn, yn), let htrain = argminh

ࠀ
n
∑n

i=ࠀ [h(xi) (= yi].

In the realizable setting, how many training samples n are
required so that, with probability −ࠀ δ,

Rpop(htrain) ≤ ε?

The number of samples n will depend on ε, δ, and the
complexity of the hypothesis class H. Perhaps surprisingly, it
will not depend at all on D.
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COMPLEXITY OF HYPOTHESIS CLASS

Many ways to measure complexity of a hypothesis class. Today
we will start with the simplest measure: the number of
hypotheses in the class, |H|.

Example: What is the number of hypothesis in the class of
DNF-ࠂ formulas on d dimensional inputs
x = [xࠀ, . . . , xd] ∈ ,߿} ?d{ࠀ

h(x) = (xࠀ ∧ x̄ࠄ ∧ x߿ࠀ) ∨ (x̄ࠂ ∧ xࠁ) ∨ . . . ∨ (x̄ࠀ ∧ xࠁ ∧ x߿ࠀ)
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COMPLEXITY OF HYPOTHESIS CLASS

Caveat: Many hypothesis classes are infinitely sized. E.g. the
set of linear thresholds

h(x) = [xTβ ≥ λ]

But you could imagine approximating H by a finite hypothesis
class. E.g. take values in β,λ to lie on a finite grid of size C.
Then how many hypothesis are there?

Formally moving from finite to infinite sized hypothesis classes
is a huge area of learning theory (VC theory, Rademacher
complexity, etc.)

ࠇࠀ

Htt= Cdt' = o (rd)

o . O
@

-

- -



MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data set (xࠀ, yࠀ), . . . , (xn, yn), and
htrain = argminh

ࠀ
n
∑n

i=ࠀ [h(xi) (= yi].

Theorem
If n ≥ ࠀ

ε

(
log |H|+ log ࠀ

δ

)
, then with probability −ࠀ δ,

Rpop(htrain) ≤ ε.

Roughly how many training samples are needed to learn DNF-ࠂ
formulas? To learn (discretized) linear threshold funtions?
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TOOLS

Two ingredients needed for proof:

.ࠀ For any ε ∈ ,߿] ,[ࠀ −ࠀ) ε) ≤ e−ε.
.ࠁ Union bound. Basic but important inequality about

probabilities.
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ALGEBRAIC FACT

For any ε ∈ ,߿] ,[ࠀ −ࠀ) ε) ≤ e−ε.

Raising both sides to ,ε/ࠀ we have the −ࠀ) ε)ࠀ/ε ≤ ࠀ
e ≈ .ࠆࠂ.

The specific constant here won’t be imporatnt.
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UNION BOUND

Lemma (Union Bound)
For any random events Aࠀ, . . . , Ak:

Pr[Aࠀ or Aࠁ or . . . or Ak] ≤ Pr[Aࠀ] + Pr[Aࠁ] + . . .+ Pr[Ak].

Proof by picture.

Sometimes written as Pr[Aࠀ ∪ Aࠁ ∪ . . . ∪ Ak].
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UNION BOUND

What is the probability that a dice roll is odd, or that it is ≤ ?ࠂ

What is the probability that a dice roll is ,ࠀ or that it is ≥ ?ࠃ

ࠂࠁ
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MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data (xࠀ, yࠀ), . . . , (xn, yn), and
htrain = argminh

ࠀ
n
∑n

i=ࠀ [h(xi) (= yi].

Theorem
If n ≥ ࠀ

ε

(
log |H|+ log ࠀ

δ

)
, then with probability −ࠀ δ,

Rpop(htrain) ≤ ε.
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PROOF

First observation: Note that because we are in the realizable
setting, we always select and htrain with Rtrain(htrain) = .߿ There
is always at least one h ∈ H such that h(xi) = yi for all i.

Proof approach: Show that for any fixed hypothesis hbad with
Rpop(hbad) > ε, it is very unlikely that Rtrain(hbad) = .߿ So with
high probability, we will not choose a bad hypothesis. ࠄࠁ
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PROOF

Let hbad be a fixed hypothesis with Rpop(h) > ε. For (x, y) drawn
from D, what is the probability that hbad(x) = y?

What is the probability that for a training set
(xࠀ, yࠀ), . . . , (xn, yn) drawn from D that hbad(xi) = yi for all i? I.e.
that Rtrain(hbad) = .߿
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PROOF

Claim
For any fixed hypthesis h with Rpop(hbad) > ε, the probability
that Rtrain(h) = ߿ can be bounded by:

Pr[Rtrain(hbad) = [߿ < e−εn.

Set n ≥ ࠀ
ε log(|H|/δ). Then we have that for any fixed hypthesis

hbad with Rpop(hbad) > ε,

Pr[Rtrain(hbad) = [߿ < δ

H .
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UNION BOUND APPLICATION

Let hbad
ࠀ , . . . ,hbad

m be all hypthesis in H with Rpop(h) > ε. How
large can m be? Certainly no more than H!

Pr[Rtrain(hbad
ࠀ ) = ߿ or . . . or Rtrain(hbad

m ) = [߿
≤ Pr[Rtrain(hbad

ࠀ ) = [߿ + . . .+ Pr[Rtrain(hbad
m ) = [߿

< m · δ

H

So with probability −ࠀ δ (high probability) no bad hypotheses
have ߿ training error. Accordingly, it must be that when we
choose a hypothesis with ߿ training error, we are choosing a
good one. I.e. one with Rpop(h) ≤ ε.
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THINGS WE DIDN’T COVER TODAY

• How to deal with the non-realizable setting? E.g. where
minh Rpop (= ?߿

• How to deal with infinite hypothesis classes (most classes
in ML are)?

• How to find htrain = argminh
ࠀ
n
∑n

i=ࠀ [h(xi) (= yi] in a
computationally efficient way?
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HAVE A GOOD SPRING BREAK!
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