CS-GY 6923: Lecture 7 Taste of Learning Theory, PAC learning

NYU Tandon School of Engineering, Prof. Christopher Musco

Key Observation: Due to overfitting, more complex models do not always lead to lower test error.

The more complex a model is, the more <u>training data</u> we need to ensure that we do not overfit.

If we want to learn a degree q polynomial model, we will perfectly fit our training data if we have $n \le q$ examples.

Need *n* > *q* samples to ensure good generalization. How much more?

If we want to fit a multivariate linear model with d features, we will perfectly fit our training data if we have $n \le d$ examples.

Need > d samples to ensure good generalization.

How much more?

Major goal in <u>learning theory</u>:

Formally characterize how much training data is required to ensure good generalization (i.e., good test set performance) when fitting models of varying complexity.

Statistical Learning Model:

Assume each data example is randomly drawn from some distribution (x, y) ~ D.

For today: We will only consider <u>classification problems</u> so assume that $y \in \{0, 1\}$.

Statistical Learning Model:

- Assume each data example is randomly drawn from some distribution (x, y) ~ D.
- Assume we want to fit our data with a function h (a "hypothesis") in some hypothesis class H. For input x, h(x) → {0,1}.

You can think of *h* as a model, instantiated with a specific set of parameters. I.e. *h* is the same as f_{θ} .

Linear threshold functions:

 $\ensuremath{\mathcal{H}}$ contains all functions of the form:

$$h(\mathbf{x}) = \mathbb{1}[\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta} \geq \lambda]$$

Linear threshold functions:

 $\ensuremath{\mathcal{H}}$ contains all functions of the form:

$$h(\mathbf{x}) = \mathbb{1}[\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta} \geq \lambda]$$

Axis aligned rectangles:

 $\ensuremath{\mathcal{H}}$ contains all functions of the form:

 $h(\mathbf{x}) = \mathbb{1}[l_1 \le x_1 \le u_1 \text{ and } l_2 \le x_2 \le u_2]$

Axis aligned rectangles:

 ${\mathcal H}$ contains all functions of the form:

 $h(\mathbf{x}) = \mathbb{1}[l_1 \le x_1 \le u_1 \text{ and } l_2 \le x_2 \le u_2]$

Disjunctive Normal Form (DNF) formulas:

Assume $\mathbf{x} \in \{0, 1\}^d$ is binary.

 $\ensuremath{\mathcal{H}}$ contains functions of the form:

$$h(\mathbf{x}) = (x_1 \wedge \overline{x}_5 \wedge x_{10}) \vee (\overline{x}_3 \wedge x_2) \vee \ldots \vee (\overline{x}_1 \wedge x_2 \wedge x_{10})$$

 \land = "and", \lor = "or"

k-DNF: Each conjunction has at most k variables.

Same as "population risk" for the zero one loss:

Population ("True") Error:

$$R_{pop}(h) = \Pr_{(\mathbf{x}, y) \sim \mathcal{D}} \left[h(\mathbf{x}) \neq y \right]$$

• Empirical Error: Given a set of samples $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) \sim \mathcal{D}$,

$$R_{emp}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[h(\mathbf{x}_i) \neq y_i]$$

Goal is to find $h \in H$ that minimizes population error.

Let $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \sim \mathcal{D}$ be our training set and let h_{train} be the empirical error minimizer:

$$h_{train} = \arg\min_{h} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[h(\mathbf{x}_i) \neq y_i]$$

Let h^* be the population error minimizer:

$$h^* = \arg\min_{h} R_{pop}(h) = \arg\min_{h} \Pr_{(\mathbf{X}, y) \sim \mathcal{D}} \left[h(\mathbf{X}) \neq y \right]$$

Goal: Ideally, for some small ϵ , $R_{pop}(h_{train}) - R_{pop}(h^*) \leq \epsilon$.

SIMPLIFICATION

Simplification for today: Assume we are in the <u>realizable</u> <u>setting</u>, which means that $R_{pop}(h^*) = 0$. I.e. there is some hypothesis in our class \mathcal{H} that perfectly classifies the data.

Formally, for any (\mathbf{x}, y) such that $\Pr_{\mathcal{D}}[\mathbf{x}, y] > 0$, $h^*(\mathbf{x}) = y$.

Extending to the case when $R_{pop}(h^*) \neq 0$ is not hard, but the math gets a little trickier. And intuition is roughly the same.

Probably Approximately Correct (PAC) Learning (Valiant, 1984):

For a hypothesis class \mathcal{H} , data distribution \mathcal{D} , and training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$, let $h_{train} = \arg \min_h \frac{1}{n} \sum_{i=1}^n \mathbb{1}[h(\mathbf{x}_i) \neq y_i]$.

In the realizable setting, how many training samples n are required so that, with probability $1 - \delta$,

 $R_{pop}(h_{train}) \leq \epsilon$?

The number of samples *n* will depend on ϵ , δ , and the <u>complexity</u> of the hypothesis class \mathcal{H} . Perhaps surprisingly, it will not depend at all on \mathcal{D} .

<u>Many ways to measure complexity of a hypothesis class.</u> Today we will start with the simplest measure: the number of hypotheses in the class, $|\mathcal{H}|$.

Example: What is the number of hypothesis in the class of 3-DNF formulas on *d* dimensional inputs $\mathbf{x} = [x_1, \dots, x_d] \in \{0, 1\}^d$?

 $h(\mathbf{x}) = (x_1 \wedge \overline{x}_5 \wedge x_{10}) \vee (\overline{x}_3 \wedge x_2) \vee \ldots \vee (\overline{x}_1 \wedge x_2 \wedge x_{10})$

Caveat: Many hypothesis classes are <u>infinitely sized</u>. E.g. the set of linear thresholds

$$h(\mathbf{x}) = \mathbb{1}[\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta} \geq \lambda]$$

But you could imagine approximating \mathcal{H} by a finite hypothesis class. E.g. take values in β , λ to lie on a finite grid of size C. Then how many hypothesis are there?

Formally moving from finite to infinite sized hypothesis classes is a huge area of learning theory (VC theory, Rademacher complexity, etc.) Consider the realizable setting with hypothesis class \mathcal{H} , data distribution \mathcal{D} , training data set $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$, and $h_{train} = \arg \min_h \frac{1}{n} \sum_{i=1}^n \mathbb{1}[h(\mathbf{x}_i) \neq y_i].$

Theorem

If
$$n \ge \frac{1}{\epsilon} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)$$
, then with probability $1 - \delta$,
 $R_{\text{pop}}(h_{\text{train}}) \le \epsilon$.

Roughly how many training samples are needed to learn 3-DNF formulas? To learn (discretized) linear threshold functions?

Two ingredients needed for proof:

- 1. For any $\epsilon \in [0, 1]$, $(1 \epsilon) \le e^{-\epsilon}$.
- 2. Union bound. Basic but important inequality about probabilities.

ALGEBRAIC FACT

For any $\epsilon \in [0, 1]$, $(1 - \epsilon) \leq e^{-\epsilon}$.

Raising both sides to $1/\epsilon$, we have the $(1 - \epsilon)^{1/\epsilon} \le \frac{1}{e} \approx .37$.

The specific constant here won't be imporatnt.

UNION BOUND

Lemma (Union Bound)

For <u>any</u> random events A_1, \ldots, A_k :

 $\Pr[A_1 \text{ or } A_2 \text{ or } \dots \text{ or } A_k] \leq \Pr[A_1] + \Pr[A_2] + \dots + \Pr[A_k].$

Proof by picture.

What is the probability that a dice roll is odd, or that it is \leq 3?

What is the probability that a dice roll is 1, or that it is ≥ 4 ?

Consider the realizable setting with hypothesis class \mathcal{H} , data distribution \mathcal{D} , training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$, and $h_{train} = \arg \min_h \frac{1}{n} \sum_{i=1}^n \mathbb{1}[h(\mathbf{x}_i) \neq y_i].$

Theorem

If $n \geq \frac{1}{\epsilon} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)$, then with probability $1 - \delta$,

 $R_{pop}(h_{train}) \leq \epsilon.$

PROOF

First observation: Note that because we are in the realizable setting, we always select and h_{train} with $R_{train}(h_{train}) = 0$. There is always at least one $h \in \mathcal{H}$ such that $h(\mathbf{x}_i) = y_i$ for all *i*.

Proof approach: Show that for any fixed hypothesis h^{bad} with $R_{pop}(h^{bad}) > \epsilon$, it is very unlikely that $R_{train}(h^{bad}) = 0$. So with high probability, we will not choose a bad hypothesis.

Let h^{bad} be a fixed hypothesis with $R_{pop}(h) > \epsilon$. For (\mathbf{x}, y) drawn from \mathcal{D} , what is the probability that $h^{bad}(\mathbf{x}) = y$?

What is the probability that for a training set $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ drawn from \mathcal{D} that $h^{bad}(\mathbf{x}_i) = y_i$ for all i? I.e. that $R_{train}(h^{bad}) = 0$.

Claim

For any fixed hypthesis h with $R_{pop}(h^{bad}) > \epsilon$, the probability that $R_{train}(h) = 0$ can be bounded by:

$$\Pr[R_{train}(h^{bad}) = 0] < e^{-\epsilon n}.$$

Set $n \geq \frac{1}{\epsilon} \log(|\mathcal{H}|/\delta)$. Then we have that for any fixed hypthesis h^{bad} with $R_{pop}(h^{bad}) > \epsilon$,

$$\Pr[R_{train}(h^{bad})=0] < \frac{\delta}{\mathcal{H}}.$$

Let $h_1^{bad}, \ldots, h_m^{bad}$ be <u>all hypthesis in \mathcal{H} with $R_{pop}(h) > \epsilon$ </u>. How large can *m* be? Certainly no more than \mathcal{H} !

$$\begin{aligned} &\mathsf{Pr}[R_{train}(h_1^{bad}) = 0 \text{ or } \dots \text{ or } R_{train}(h_m^{bad}) = 0] \\ &\leq \mathsf{Pr}[R_{train}(h_1^{bad}) = 0] + \dots + \mathsf{Pr}[R_{train}(h_m^{bad}) = 0] \\ &< m \cdot \frac{\delta}{\mathcal{H}} \end{aligned}$$

So with probability $1 - \delta$ (high probability) <u>no</u> bad hypotheses have 0 training error. Accordingly, it must be that when we choose a hypothesis with 0 training error, we are choosing a <u>good one</u>. I.e. one with $R_{pop}(h) \le \epsilon$.

- How to deal with the non-realizable setting? E.g. where $\min_h R_{pop} \neq 0$?
- How to deal with infinite hypothesis classes (most classes in ML are)?
- How to find $h_{train} = \arg \min_{h} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[h(\mathbf{x}_i) \neq y_i]$ in a computationally efficient way?

HAVE A GOOD SPRING BREAK!