CS-GY 6923: Lecture 7
Taste of Learning Theory, PAC learning

NYU Tandon School of Engineering, Prof. Christopher Musco



THE FUNDAMENTAL CURVE OF ML

Key Observation: Due to overfitting, more complex models do
not always lead to lower test error.
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The more complex a model is, the more training data we need
to ensure that we do not overfit.



EXAMPLE: POLYNOMIAL REGRESSION

If we want to learn a degree g polynomial model, we will
perfectly fit our training data if we have n < g examples.
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Need n > g samples to ensure good generalization. How much
more?



EXAMPLE: LINEAR REGRESSION

If we want to fit @ multivariate linear model with d features, we
will perfectly fit our training data if we have n < d examples.
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Need > d samples to ensure good generalization.

How much more?



STATISTICAL LEARNING THEORY

Major goal in learning theory:

Formally characterize how much training data is required to
ensure good generalization (i.e,, good test set performance)
when fitting models of varying complexity.



STATISTICAL LEARNING MODEL

Statistical Learning Model:

- Assume each data example is randomly drawn from some
distribution (x,y) ~ D.

For today: We will only consider classification problems so
assume thaty € {0, 1}.




SETUP

Statistical Learning Model:

- Assume each data example is randomly drawn from some
distribution (x,y) ~ D.

- Assume we want to fit our data with a function h (a
“hypothesis”) in some hypothesis class H. For input X,
h(x) — {0,1}.

You can think of h as a model, instantiated with a specific set
of parameters. l.e. h is the same as fy.



EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:
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H contains all functions of the form:

h(x) =1[x'8 > )]



EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

hypothesis h, hypothesis h, hypothesis h,

H contains all functions of the form:

h(x) =1[x'8 > )]



EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:
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H contains all functions of the form:

h(X) = 1[[1 < X1 < Uq and lz < Xy < Uz]
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:
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H contains all functions of the form:

h(X) = 1[[1 < X1 < Uq and lz < Xy < Uz]
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EXAMPLE HYPOTHESIS CLASS

Disjunctive Normal Form (DNF) formulas:
Assume x € {0,1}9 is binary.

H contains functions of the form:

h(X) = (X1/\)_<5 /\X1o)\/()_(3 /\Xz)\/...\/()_(q A X2 /\X1o)

A ="and" V = "or"

R-DNF: Each conjunction has at most k variables.
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POPULATION AND EMPIRICAL ERROR

Same as “population risk” for the zero one loss:

- Population (“True”) Error:

Roop(h) = Pr [h
pop(h) (W)LD[ (x) # V]
- Empirical Error: Given a set of samples
(X17y1)7---7(xm7ym)ND,
,I m
Remp(h) = o Z 1[h(x;) # vi]

=1

Goal is to find h € H that minimizes population error.
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GENERALIZATION

Let (X1,¥1), .-, (Xn,¥n) ~ D be our training set and let h¢, be
the empirical error minimizer:

n

1
Rirain = arghmm n Z ]l[h(X,‘) #* )/i]

=1

Let h* be the population error minimizer:

h* = argmin Rpop(h) = argmin Pr [h(X) # V]
h h (x)~D

Goal: Ideally, for some small €, Rpop(htrain) — Rpop(h*) < e.
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SIMPLIFICATION

Simplification for today: Assume we are in the realizable
setting, which means that Rpop(h*) = 0. le. there is some
hypothesis in our class H that perfectly classifies the data.

Formally, for any (x,y) such that Prp[x,y] > 0, h*(x) = y.

hypothesis h* hypothesis h*

Extending to the case when Rpop(h*) # 0 is not hard, but the

math gets a little trickier. And intuition is roughly the same. =



PAC LEARNING

Probably Approximately Correct (PAC) Learning (Valiant, 1984):

For a hypothesis class #, data distribution D, and training data
(X'|>y'|)7 ) (meﬂ)r let htrain - argminh % Z?:'] :H'[h(xl) 7é yl]

In the realizable setting, how many training samples n are
required so that, with probability 1 — ¢,

RPOD(htmin) <e€?

The number of samples n will depend on ¢, 4, and the
complexity of the hypothesis class H. Perhaps surprisingly, it
will not depend at all on D.



COMPLEXITY OF HYPOTHESIS CLASS

Many ways to measure complexity of a hypothesis class. Today
we will start with the simplest measure: the number of
hypotheses in the class, |H]|.

Example: What is the number of hypothesis in the class of
3-DNF formulas on d dimensional inputs
X =[x1,...,x4] € {0,1}9?

h(x) = (X1 AXs AXi0) V (X3 AX2) V...V (X1 A X2 A Xq0)



COMPLEXITY OF HYPOTHESIS CLASS

Caveat: Many hypothesis classes are infinitely sized. E.g. the
set of linear thresholds

h(x) = 1[x'8 > )|

But you could imagine approximating H by a finite hypothesis
class. E.g. take values in 8, A to lie on a finite grid of size C.
Then how many hypothesis are there?

Formally moving from finite to infinite sized hypothesis classes
is a huge area of learning theory (VC theory, Rademacher
complexity, etc.)



MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data set (X1, y1),- .., (Xa,¥n), and
Nirain = arg ming & S0 1[h(X;) # vil.

Theorem

If n > 1 (log|H| + log 1), then with probability 1 — 6,

RPOP(htmin) <e

Roughly how many training samples are needed to learn 3-DNF
formulas? To learn (discretized) linear threshold funtions?
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TOOLS

Two ingredients needed for proof:

1. Forany e € [0,1], (1—¢) < e~ -
2. Union bound. Basic but important inequality about
probabilities.
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ALGEBRAIC FACT

Foranye € [0,1], (1—¢) <e -

- e« N\

Raising both sides to 1/¢, we have the (1—¢)¢ < 1 ~ 37.

1
@
The specific constant here won't be imporatnt.

21



UNION BOUND

Lemma (Union Bound)
For any random events A, ..., Ax:

PF[A1 orA,or ... or A/?] < PI’[A1] aF Pr[Az] = oo Tr PF[A/?]

Proof by picture. )



UNION BOUND

What is the probability that a dice roll is odd, or that it is < 37

What is the probability that a dice roll is 1, or that it is > 4?
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MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data (x1, V1), - - -, (Xn, ¥n), and

Ntrgin = arg miny, % 2?21 1[h(x;) # yil-

Theorem

If n > 1 (log |H| + log §), then with probability 1— 6,

Rpop(Nirain) < €.
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PROOF

First observation: Note that because we are in the realizable
setting, we always select and hyqgin With Rirgin(hirain) = 0. There
is always at least one h € H such that h(x;) = y; for all i.

hypothesis h*

Proof approach: Show that for any fixed hypothesis h with
Rpop(hP99) > ¢, it is very unlikely that Ryqj,(h?99) = 0. So with
high probability, we will not choose a bad hypothesis. 25




PROOF

Let hb9 be a fixed hypothesis with Rpop(h) > €. For (x,y) drawn
from D, what is the probability that h?%(x) = y?

What is the probability that for a training set
(X1,¥1), - - ., (Xn, ¥n) drawn from D that h?%9(x;) = y; for all i? l.e.
that Ryqin(h?99) = 0.
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PROOF

Claim

For any fixed hypthesis h with Rpop(h?99) > ¢, the probability
that Ryqin(h) = 0 can be bounded by:

Pr[Rtram(hbad) =0]<e .

Set n > llog(|#|/8). Then we have that for any fixed hypthesis
had with Rpop(hP9%) > e,

1)
Pr[Rerqin(hP99) = 0] < —.
r[ tra/n( ) ] A
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UNION BOUND APPLICATION

Let h?ad ... hba9 be all hypthesis in H with Rpop(h) > €. How
large can m be? Certainly no more than H!

Pr[Rtrain(hﬁ)ad) =0or...or Rtrain(h?nad) = O]
< Pr[Rtraln(hﬁmd) = 0] +.o.F Pr[Rtraln(hr%]ad) = O]

<me
H
So with probability 1 — 4 (high probability) no bad hypotheses
have 0 training error. Accordingly, it must be that when we
choose a hypothesis with 0 training error, we are choosing a
good one. l.e. one with Rpop(h) < e.
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THINGS WE DIDN'T COVER TODAY

- How to deal with the non-realizable setting? E.g. where
miny Rpop # 07

- How to deal with infinite hypothesis classes (most classes
in ML are)?

- How to find h¢yqjn = arg miny, %Zf; 1[h(x;) #yi] ina
computationally efficient way?
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HAVE A GOOD SPRING BREAK!



