
CS-GY 6923: Lecture 7
Taste of Learning Theory, PAC learning

NYU Tandon School of Engineering, Prof. Christopher Musco

1



THE FUNDAMENTAL CURVE OF ML

Key Observation: Due to overfitting, more complex models do
not always lead to lower test error.

The more complex a model is, the more training data we need
to ensure that we do not overfit. 2



EXAMPLE: POLYNOMIAL REGRESSION

If we want to learn a degree q polynomial model, we will
perfectly fit our training data if we have n ≤ q examples.

Need n > q samples to ensure good generalization. How much
more?

3



EXAMPLE: LINEAR REGRESSION

If we want to fit a multivariate linear model with d features, we
will perfectly fit our training data if we have n ≤ d examples.

Need > d samples to ensure good generalization.

How much more?
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STATISTICAL LEARNING THEORY

Major goal in learning theory:

Formally characterize how much training data is required to
ensure good generalization (i.e., good test set performance)
when fitting models of varying complexity.
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STATISTICAL LEARNING MODEL

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

For today: We will only consider classification problems so
assume that y ∈ {0, 1}.
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SETUP

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Assume we want to fit our data with a function h (a
“hypothesis”) in some hypothesis class H. For input x,
h(x) → {0, 1}.

You can think of h as a model, instantiated with a specific set
of parameters. I.e. h is the same as fθ .
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EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

H contains all functions of the form:

h(x) = 1[xTβ ≥ λ]

.
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EXAMPLE HYPOTHESIS CLASS

Linear threshold functions:

H contains all functions of the form:

h(x) = 1[xTβ ≥ λ]

.
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:

H contains all functions of the form:

h(x) = 1[l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2]
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EXAMPLE HYPOTHESIS CLASS

Axis aligned rectangles:

H contains all functions of the form:

h(x) = 1[l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2]
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EXAMPLE HYPOTHESIS CLASS

Disjunctive Normal Form (DNF) formulas:

Assume x ∈ {0, 1}d is binary.

H contains functions of the form:

h(x) = (x1 ∧ x̄5 ∧ x10) ∨ (x̄3 ∧ x2) ∨ . . . ∨ (x̄1 ∧ x2 ∧ x10)

∧ = ”and”, ∨ = ”or”

k-DNF: Each conjunction has at most k variables.
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POPULATION AND EMPIRICAL ERROR

Same as “population risk” for the zero one loss:

• Population (“True”) Error:

Rpop(h) = Pr
(x,y)∼D

[h(x) ̸= y]

• Empirical Error: Given a set of samples
(x1, y1), . . . , (xm, ym) ∼ D,

Remp(h) =
1
m

m∑
i=1

1[h(xi) ̸= yi]

Goal is to find h ∈ H that minimizes population error.
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GENERALIZATION

Let (x1, y1), . . . , (xn, yn) ∼ D be our training set and let htrain be
the empirical error minimizer:

htrain = argmin
h

1
n

n∑
i=1

1[h(xi) ̸= yi]

Let h∗ be the population error minimizer:

h∗ = argmin
h

Rpop(h) = argmin
h

Pr
(x,y)∼D

[h(x) ̸= y]

Goal: Ideally, for some small ϵ, Rpop(htrain)− Rpop(h∗) ≤ ϵ.
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SIMPLIFICATION

Simplification for today: Assume we are in the realizable
setting, which means that Rpop(h∗) = 0. I.e. there is some
hypothesis in our class H that perfectly classifies the data.

Formally, for any (x, y) such that PrD[x, y] > 0, h∗(x) = y.

Extending to the case when Rpop(h∗) ̸= 0 is not hard, but the
math gets a little trickier. And intuition is roughly the same. 15



PAC LEARNING

Probably Approximately Correct (PAC) Learning (Valiant, 1984):

For a hypothesis class H, data distribution D, and training data
(x1, y1), . . . , (xn, yn), let htrain = argminh

1
n
∑n

i=1 1[h(xi) ̸= yi].

In the realizable setting, how many training samples n are
required so that, with probability 1− δ,

Rpop(htrain) ≤ ϵ?

The number of samples n will depend on ϵ, δ, and the
complexity of the hypothesis class H. Perhaps surprisingly, it
will not depend at all on D.
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COMPLEXITY OF HYPOTHESIS CLASS

Many ways to measure complexity of a hypothesis class. Today
we will start with the simplest measure: the number of
hypotheses in the class, |H|.

Example: What is the number of hypothesis in the class of
3-DNF formulas on d dimensional inputs
x = [x1, . . . , xd] ∈ {0, 1}d?

h(x) = (x1 ∧ x̄5 ∧ x10) ∨ (x̄3 ∧ x2) ∨ . . . ∨ (x̄1 ∧ x2 ∧ x10)
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COMPLEXITY OF HYPOTHESIS CLASS

Caveat: Many hypothesis classes are infinitely sized. E.g. the
set of linear thresholds

h(x) = 1[xTβ ≥ λ]

But you could imagine approximating H by a finite hypothesis
class. E.g. take values in β, λ to lie on a finite grid of size C.
Then how many hypothesis are there?

Formally moving from finite to infinite sized hypothesis classes
is a huge area of learning theory (VC theory, Rademacher
complexity, etc.)

18



MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data set (x1, y1), . . . , (xn, yn), and
htrain = argminh

1
n
∑n

i=1 1[h(xi) ̸= yi].

Theorem
If n ≥ 1

ϵ

(
log |H|+ log 1

δ

)
, then with probability 1− δ,

Rpop(htrain) ≤ ϵ.

Roughly how many training samples are needed to learn 3-DNF
formulas? To learn (discretized) linear threshold funtions?
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TOOLS

Two ingredients needed for proof:

1. For any ϵ ∈ [0, 1], (1− ϵ) ≤ e−ϵ.
2. Union bound. Basic but important inequality about

probabilities.
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ALGEBRAIC FACT

For any ϵ ∈ [0, 1], (1− ϵ) ≤ e−ϵ.

Raising both sides to 1/ϵ, we have the (1− ϵ)1/ϵ ≤ 1
e ≈ .37.

The specific constant here won’t be imporatnt.
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UNION BOUND

Lemma (Union Bound)
For any random events A1, . . . , Ak:

Pr[A1 or A2 or . . . or Ak] ≤ Pr[A1] + Pr[A2] + . . .+ Pr[Ak].

Proof by picture.

Sometimes written as Pr[A1 ∪ A2 ∪ . . . ∪ Ak].
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UNION BOUND

What is the probability that a dice roll is odd, or that it is ≤ 3?

What is the probability that a dice roll is 1, or that it is ≥ 4?
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MAIN RESULT

Consider the realizable setting with hypothesis class H, data
distribution D, training data (x1, y1), . . . , (xn, yn), and
htrain = argminh

1
n
∑n

i=1 1[h(xi) ̸= yi].

Theorem
If n ≥ 1

ϵ

(
log |H|+ log 1

δ

)
, then with probability 1− δ,

Rpop(htrain) ≤ ϵ.
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PROOF

First observation: Note that because we are in the realizable
setting, we always select and htrain with Rtrain(htrain) = 0. There
is always at least one h ∈ H such that h(xi) = yi for all i.

Proof approach: Show that for any fixed hypothesis hbad with
Rpop(hbad) > ϵ, it is very unlikely that Rtrain(hbad) = 0. So with
high probability, we will not choose a bad hypothesis. 25



PROOF

Let hbad be a fixed hypothesis with Rpop(h) > ϵ. For (x, y) drawn
from D, what is the probability that hbad(x) = y?

What is the probability that for a training set
(x1, y1), . . . , (xn, yn) drawn from D that hbad(xi) = yi for all i? I.e.
that Rtrain(hbad) = 0.
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PROOF

Claim
For any fixed hypthesis h with Rpop(hbad) > ϵ, the probability
that Rtrain(h) = 0 can be bounded by:

Pr[Rtrain(hbad) = 0] < e−ϵn.

Set n ≥ 1
ϵ log(|H|/δ). Then we have that for any fixed hypthesis

hbad with Rpop(hbad) > ϵ,

Pr[Rtrain(hbad) = 0] < δ

H
.
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UNION BOUND APPLICATION

Let hbad
1 , . . . ,hbad

m be all hypthesis in H with Rpop(h) > ϵ. How
large can m be? Certainly no more than H!

Pr[Rtrain(hbad
1 ) = 0 or . . . or Rtrain(hbad

m ) = 0]
≤ Pr[Rtrain(hbad

1 ) = 0] + . . .+ Pr[Rtrain(hbad
m ) = 0]

< m · δ

H

So with probability 1− δ (high probability) no bad hypotheses
have 0 training error. Accordingly, it must be that when we
choose a hypothesis with 0 training error, we are choosing a
good one. I.e. one with Rpop(h) ≤ ϵ.
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THINGS WE DIDN’T COVER TODAY

• How to deal with the non-realizable setting? E.g. where
minh Rpop ≠ 0?

• How to deal with infinite hypothesis classes (most classes
in ML are)?

• How to find htrain = argminh
1
n
∑n

i=1 1[h(xi) ̸= yi] in a
computationally efficient way?
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HAVE A GOOD SPRING BREAK!
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