CS-GY 6923: Lecture 6
Gradient Descent + Stochastic Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco



LOGISTIC REGRESSION

Goal: Minimize generic differentiable loss function:

L(B) = =D _vilog(h(8'x))) + (1 = yi) log(1 — h(8'x;)),~

i=1
L(B)=IX8-VI3
L(B) = IIX8 =yl + AIBI3

l.e. ﬁﬂdg‘ = arg min L(3).

_—

Gradient Descent: Most common iterative method for solving
this problem.



FIRST ORDER OPTIMIZATION

Given a function L to minimize, assume we have routines for
computing:

- Function oracle: Evaluate L(3) for any 3.

—

* Gradient oracle: Evaluate VL(3) for an@

Gradient descent will use these routines in a black-box way to
find the optimal 3*.



GRADIENT DESCENT

Basic Gradient descent algorithm:

- Choose starting point ﬂﬁl—

-Fori:O,...@ P
L B0 = g0 y1(80) &0
- Return g,

n is the step-size parameter or learning rate.



LAST CLASS

We came to an important observations: L ((bm)

1. For small enough 7, we always have that L(3(t7) < £8).

L(B +Y) — L(B##m) ~ (VL(B),V). = LTL(B)  -mVLE)

2 < -m\oudy;
Wt wesobve Vot oy VL(D) —
{

L8 of e
Conclusion: Gradient descent always converges to a local ‘:i“\m_

minimum or stationary point of L. Typically to a local
minimum. N /é/



VISUALIZING IN 2D
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Level sets of L(B)




STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)
H%Y(“?ﬁ = arg mir"v,||V||2:1 <VL(5)> V)

Levelsets of L(B) <) «)
<0

B,

B,



CONVEX FUNCTION

For a broad class of functions, GD converges to global minima.

Definition @

A function L i iff for any 1, B2, A € [0,1]:

(T=A)-L(B)+A-L(B2) 2 L((1 =) - B+ - 5)
——
Cwrvo




CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex. 9



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.
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CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

. o . N
This function is convex.

I



CONVERGENCE OF GRADIENT DESCENT

What functions are convex?

- Least squares loss for linear regression.

- /4 loss for linear regression.

- Either of these with and ¢; or ¢, regularization penalty.

- Logistic regression! Logistic regression with regularization.

- Many other models in machine leaning.

12



CONVEXITY OF LEAST SQUARES REGRESSION LOSS

See notes from last week on proof that L(8) = | X8 — y||3 is
CONVeX. FBY - néce -

Simpler problem: prove tha@ convex.

[(-06, +26,) < (-Do> - r b,

——

13



CONVERGENCE ANALYSIS FOR CONVEX FUNCTIONS

Assume:

- Lis convex.

- Lipschitz function: for all 3,(JVL(B)|2 < G.

- Starting radius: ||3* — B8, <R &
—_—

Gradient descent:

- Choose number of steps T.
- Starting point 8. Eg. B8O = 0.

. _ R
L=5v7 o)
- Fori=0,...,T:

. B(W) — 5(!’) _ UVL(ﬁ([))
- Return 3 = arg min 5) L(B).

14



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T > 545, then L(B) ge.
J/ L uﬂ

e 7
) (ﬁ [0

@By
z 2
S
A;“’ @N &!ﬂ
Proof is made tricky by the fact that L(8()) does not improve

monotonically. We can “overshoot” the minimum. This is why
the step size needs to depend on 1/G. 15



GRADIENT DESCENT

Definition (Alternative Convexity Definition)
A function L is convexd if for any g, a:

>
ko) - li8) #VEB) (o /ﬂD

e L(6) -L() < vL6) [&-2)

'—//_____,,—4

=
]
<

—
() - B)
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T> BE and g = £, then L(B) < L(B") + ¢

€2

————

Claim 1: Foralli=0,...,T,

— - 2n 2

—_—

Claim 1(a): Foralli=0,...,T,

180 —F - 18 =B 0
- 2n 2

- -

v (8" — %)

Claim 1 follows from Claim 1(a) by our new definition of convexity.

L (6™) =L (&) < p L (V) (67 -8)

17



GRADIENT DESCENT ANALYSIS

7L (697
Claim (GD Convergence Bound) |
IfT> B¢ = &= then L(B) < L(B") + ¢ L drvassrl
e
Claim 1(a): Foralli=o0,..., T,
0 _ g 18" — B8*113 ,lLﬁ o 5*H§
EVL 5 B") < @

ot ety = 160 -aphe) BT \w
ot ¥y = B8 -2 g8 (7% s YL BN

Q
(&3] 9
P GUET) T (B0 - 22 ) <

Lo v 2
g ML BN & mT- 6
'&I¢ ~ “(bﬁﬂ)ﬂa& \13 o G”b

"Recall that ||x — y||3 =( XH%)*@

6" = 47 -4y 7K v ®
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

fT> &€ and g = %=, then L(B) < L(B") +e.

E (i+7) )
L(,B )—L( ) < Hﬁ =B Hz Hﬁ 5”2 7)76

Telescoping sum:
T—1

5 (18" mw%wl

 IpLest Wﬁ”‘ﬂz \

&M/L/‘\
L Ienp i L - B*|§]+@[
2n
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

IfT> Rz andn = G\ﬁ,then L(B) < L(B¥) +

Telescoping sum:

&

(?HQ TnGz

T—1 ) o)
5 [8%) - (s < 12
= —
e /_ s 7 , Ta "
72 LB - 18" ce a5
=0
SN (A oo b
_— roeE - —— r —
17 B/G > S
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
IfT> &S andy = £ then L(B) < L(ﬁ*) +e
" L( “) 7// Z V\V\L(@?(P)

1k
»Y‘Q o-‘"

()]

ﬁ

Final step:

We always have that min; L(8") <[1 /=) L(8),Js0 this is
what we return:

21



SETTING LEARNING RATE/STEP SIZE

Gradient descent algorithm for minimizing L(3):

- Choose arbitrary starting point 3(%.
- Fori=1,...,T:

. ﬁ(i-ﬂ) _ Ig(i) _ T]VL(,B(i))
- Return B,

In_practice we don't set the step-size/learning rate parameter
ince we typically don’t know these parameters. The
X

above analysis can also be loose for many functions.

n needs to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm.

22



Precision in choosing the learning rate 7 is not super
important, but we do need to get it to the right order of

magnitude.

LEARNING RATE



LEARNING RATE

“Overshooting” can be a problem if you choose the step-size

too high. 5
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Often a good idea to plot the entire optimization curve for
diagnosing what's going on.

We will have a lab on gradient descent optimization after the
midterm we're you'll get practice doing this.
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EXPONENTIAL GRID SEARCH

Just as in regularization, search over a grid of possible
parameters: )/77,) oo

n=[27"2"%27,...,272"9.

Or tune by hand based on the optimization curve.

25



BACKTRACKING LINE SEARCH/ARMIJO RULE

Recall: If we set 30+ « g() — v (B") then:
L(B%+1) ~ L(BD) - n (VL(8D), TL(BM))
= L(BY) — nl|VL(BD)|3.

—

5
Approximation holds true for small ». If it holds, error

monotonically decreases. %



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

- Choose arbitrary starting point 3.
- Choose starting step sizen. - 1

+ Choose 7, ¢ < 1 (typically both c =1/2 and 7 = 1/2)

’ Forii_l:;——'_'—»jz

- BU) = g —nvL(B)

S IFLBT) < L(B) - cnfVL(B) <= !
. ,Beﬂ(”ew) - =
T N e oM

- Else

TneT
Always decreases objective value, works very well in practice.

27



BACKTRACKING LINE SEARCH/ARMIJO RULE

\, ..., 1o
Gradient descent with backtracking line search: 0, 0

s

Z Pr o (p3)
e

Leamning rate

10° 10! 10? 10°
14 \0 Iteration |L©

Always decreases objective value, works very well in practice.
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COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss

function. o el
Example 1: Let X € R"™*9 be a data matrix. 2XTX & —x Ty~
L(B) = [1X8 — yI3 VLB)=2X"(XB V) )= &
(XT d features Q\xél(c{ x_i)
@ Tﬁ&) oL N oG
) n examples - )fz_ _2 > (y (l> %’OO")
dxd D(,ﬁ) ' @xxYwy) =00 1-w)
— X Yn = DL"ICA>
X y D(M)

- Runtime of closed form solution 8* = (X’X)~'XTy: ©(nd*)
- Runtime of one GD step: ()(dw)
—D 29



COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X € R"*? be a data matrix.

L(B) = — ny log(h(B8%;)) + (1 - yi) log(1 — h(B"x;))

VL(B) = X (h(XB) — )

- No closed form solution.
* Runtime of one GD step: /v, d, )

30



COMPLEXITY OF GRADIENT DESCENT

Frequently the complexity is O(nd) if you have n data-points
and d parameters in your model.

Not bad, but the dependence on n can be a lot! n might be on
the order of thousands, or millions.

31



TRAINING NEURAL NETWORKS

Stochastic Gradient Descent (SGD).

- Powerful randomized variant of gradient descent used to
train machine learning models when n is large and thus
computing a full gradient is expensive.

Applies to any loss wittructu re:
~—_

- % (\KJT& '\3)_)7‘
" 32



STOCHASTIC GRADIENT DESCENT

Fobab
Let{ L}(B_) denote(!(B, X;, Y;)- %\ _ >\ o\
Claim: If j€1,....nis chosen uniformly at random. Then:

W
- Z b (teese 3Y 2w TLy(8)

3—,\ y -
= i Lo VL) Ub} - 2 VL)(&) 2 ‘Q(: )i( Ly U5>3
- S 3=
)'f\

VL;(B) is called a stochastic gradient. & ‘(5“&“%
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STOCHASTIC GRADIENT DESCENT

£
L 6% iy,
SGD iteration:
- Initialize 8.
- Fori=0,...,T—1:
- Choose j uniformly at random. €ec 1, ... M.

) Pl e e 50
. Update B(H"I) = 6(0 —n- ng
-2

Move in direction of steepest descent in expectation.

Cost of computing g/is independent of n!

VL@‘ .‘EVLJ(&

)>' 34



COMPLEXITY OF STOCHASTIC GRADIENT DESCENT

O(d)

Example: Let X € R"*? be a data matrix.

L(/ﬁ) = [IX8 —yl5 =Y _(v; — Bx)?
“ - Fl== S
L)~ 2 L& v ey Ly

éy/é&v T . o X~
ILle) = | My -eled- LD 8T oy g

- Runtime of one SGD step: -
(&)

—
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

\
/N

xgi@ =)

77

\

\
|

N

Gradient Descent Stochastic Gradient Descent
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

ISTY>)

GD's smooth convergence SGD's stochastic convergence

600 NM”\“‘W\ 610,

608
606

604

Mean squared error
w
8
8

Mean squared error

602
600

0 10 20 30 40 50 0 10 20 30 40 50
# GD iterations # SGD iterations
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Typical implementation:(Shuffled Gradient Descer@

Instead of choosing j independently at random for each
iteration, randomly permute (shuffle) data and setj=1,...,n.
After every n iterations, reshuffle data and repeat.

- Relatively similar convergence behavior to standard SGD.

- Important term: oneenotes one pass over all

training examples: j =1,...,j=n.

- Convergence rates for training ML models are often
discussed in terms of epochs instead of iterations.

38



STOCHASTIC GRADIENT DESCENT IN PRACTICE

L &) - %H((b) L (®) = (6Txy - )™ S
Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch sizes, s <<ny w. 0 ()
v Ly(e) n
E EZVLL.(B) = VL(B).
= =
VL. (&)
ifj1,...,Js are chosen independently and uniformly at random
from1,...,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?

39



MINI-BATCH GRADIENT DESCENT

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Ay
2" ¥
&5

- Overall faster convergence (fewer iterations needed).

40



MIDTERM

T

- 1 hour long, here in the classroom. We will have lecture
after.

- You can bring in a single, 2-sided cheat sheet with terms,
definitions, etc.

- Mix of short answer questions (true/false, matching, etc.)
and questions similar to the homework but easier.

- Might need to write some easy pseudocode.

- Covers everything through today. Don't need to know
gradier)lt descent proof of convergence. m
_ [
1ye? % J
41






