
CS-GY :ࠂࠁ69 Lecture 6
Gradient Descent + Stochastic Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ



LOGISTIC REGRESSION

Goal: Minimize generic differentiable loss function:

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

L(β) = ‖Xβ − y‖ࠁࠁ
L(β) = ‖Xβ − y‖ࠀ + λ‖β‖ࠁࠁ

I.e. find β∗ = argmin L(β).

Gradient Descent: Most common iterative method for solving
this problem.
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FIRST ORDER OPTIMIZATION

Given a function L to minimize, assume we have routines for
computing:

• Function oracle: Evaluate L(β) for any β.
• Gradient oracle: Evaluate ∇L(β) for any β.

Gradient descent will use these routines in a black-box way to
find the optimal β∗.
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GRADIENT DESCENT

Basic Gradient descent algorithm:

• Choose starting point β(߿).
• For i = ,ࠀ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(t).

η is the step-size parameter or learning rate.
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LAST CLASS

We came to an important observations:

.ࠀ For small enough η, we always have that L(β(i+ࠀ)) ≤ β(i).

L(β + v)− L(β + v) ≈ 〈∇L(β), v〉.

Conclusion: Gradient descent always converges to a local
minimum or stationary point of L. Typically to a local
minimum.
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VISUALIZING IN Dࠁ
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STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)
−∇L(β)
‖∇L(β)‖ࠁ = argminv,‖v‖ࠀ=ࠁ〈∇L(β), v〉
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CONVEX FUNCTION

For a broad class of functions, GD converges to global minima.

Definition (Convex)
A function L is convex iff for any βࠀ,βࠁ,λ ∈ ,߿] :[ࠀ

−ࠀ) λ) · L (βࠀ) + λ · L(βࠁ) ≥ L −ࠀ)) λ) · βࠀ + λ · βࠁ)
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CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex. ࠈ



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.
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CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.
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CONVERGENCE OF GRADIENT DESCENT

What functions are convex?

• Least squares loss for linear regression.
• ࠀ# loss for linear regression.
• Either of these with and ࠀ# or ࠁ# regularization penalty.
• Logistic regression! Logistic regression with regularization.
• Many other models in machine leaning.
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CONVEXITY OF LEAST SQUARES REGRESSION LOSS

See notes from last week on proof that L(β) = ‖Xβ − y‖ࠁࠁ is
convex. For now just consider λ = ࠀ

ࠁ case.

Simpler problem: prove that L(β) = βࠁ is convex.
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CONVERGENCE ANALYSIS FOR CONVEX FUNCTIONS

Assume:

• L is convex.
• Lipschitz function: for all β, ‖∇L(β)‖ࠁ ≤ G.
• Starting radius: ‖β∗ − β(߿)‖ࠁ ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point β(߿). E.g. β(߿) = .߿
• η = R

G
√
T

• For i = ,߿ . . . , T:
• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β̂ = argminβ(i) L(β).
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
, then L(β̂) ≤ L(β∗) + ε.

Proof is made tricky by the fact that L(β(i)) does not improve
monotonically. We can “overshoot” the minimum. This is why
the step size needs to depend on .G/ࠀ ࠄࠀ
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GRADIENT DESCENT

Definition (Alternative Convexity Definition)
A function L is convex if and only if for any β,α:

f(α)− f(β) ≤ ∇f(β)T(α− β)
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√

T , then L(β̂) ≤ L(β∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

L(β(i))− L(β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β

(i+ࠀ) − β∗‖ࠁࠁ
ηࠁ

+
ηGࠁ

ࠁ

Claim :(a)ࠀ For all i = ,߿ . . . , T,

∇L(β(i))T(β(i) − β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β

(i+ࠀ) − β∗‖ࠁࠁ
ηࠁ

+
ηGࠁ

ࠁ

Claim ࠀ follows from Claim (a)ࠀ by our new definition of convexity.
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√

T , then L(β̂) ≤ L(β∗) + ε.

Claim :(a)ࠀ For all i = ,߿ . . . , T, ࠀ

∇L(β(i))T(β(i) − β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β

(i+ࠀ) − β∗‖ࠁࠁ
ηࠁ

+
ηGࠁ

ࠁ

Recallࠀ that ‖x− y‖ࠁࠁ = ‖x‖ࠁࠁ − +xTyࠁ ‖y‖ࠁࠁ.
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√

T , then L(β̂) ≤ L(β∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

L(β(i))− L(β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β(i+ࠀ) − β∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ
Telescoping sum:

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ ‖β

(߿) − β∗‖ࠁࠁ − ‖β(ࠀ) − β∗‖ࠁࠁ
ηࠁ +

ηGࠁ

ࠁ

+
‖β(ࠀ) − β∗‖ࠁࠁ − ‖β(ࠁ) − β∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ

+
‖β(ࠁ) − β∗‖ࠁࠁ − ‖β(ࠂ) − β∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ
...

+
‖β(T−ࠀ) − β∗‖ࠁࠁ − ‖β(T) − β∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ ‖β

(߿) − β∗‖ࠁࠁ − ‖β(T) − β∗‖ࠁࠁ
ηࠁ +

TηGࠁ

ࠁ

ࠀ
T

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ Rࠁ

Tηࠁ +
ηGࠁ

ࠁ
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√

T , then L(β̂) ≤ L(β∗) + ε.

Telescoping sum:

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ ‖β

(߿) − β∗‖ࠁࠁ − ‖β
(T) − β∗‖ࠁࠁ

ηࠁ
+

TηGࠁ

ࠁ

ࠀ
T

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ Rࠁ

Tηࠁ
+

ηGࠁ
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
and η = R

G
√
T , then L(β̂) ≤ L(β∗) + ε.

Final step:

ࠀ
T

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ ε

[
ࠀ
T

T−ࠀ∑

i=߿

L(β(i))

]
− L(β∗) ≤ ε

We always have that mini L(β(i)) ≤ ࠀ
T
∑T−ࠀ

i=߿ L(β(i)), so this is
what we return:

L(β̂) = min
i∈ࠀ,...,T

L(β(i)) ≤ L(β∗) + ε.

ࠀࠁ

f-IFHE"')Z 'fEEiii.¥ .L' " ' )
= myL I B"D

YE

- O



SETTING LEARNING RATE/STEP SIZE

Gradient descent algorithm for minimizing L(β):

• Choose arbitrary starting point β(߿).
• For i = ,ࠀ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(t).

In practice we don’t set the step-size/learning rate parameter
η = R

G
√
T , since we typically don’t know these parameters. The

above analysis can also be loose for many functions.

η needs to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm.
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LEARNING RATE

Precision in choosing the learning rate η is not super
important, but we do need to get it to the right order of
magnitude.
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LEARNING RATE

“Overshooting” can be a problem if you choose the step-size
too high.

Often a good idea to plot the entire optimization curve for
diagnosing what’s going on.

We will have a lab on gradient descent optimization after the
midterm we’re you’ll get practice doing this.
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EXPONENTIAL GRID SEARCH

Just as in regularization, search over a grid of possible
parameters:

η = ,ࠄ−ࠁ] ,ࠃ−ࠁ ,ࠂ−ࠁ . . . , ,ࠈࠁ .[߿ࠀࠁ

Or tune by hand based on the optimization curve.
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BACKTRACKING LINE SEARCH/ARMIJO RULE

Recall: If we set β(i+ࠀ) ← β(i) − η∇L(β(i)) then:

L(β(i+ࠀ)) ≈ L(β(i))− η
〈
∇L(β(i)),∇L(β(i))

〉

= L(β(i))− η‖∇L(β(i))‖ࠁࠁ.

Approximation holds true for small η. If it holds, error
monotonically decreases. ࠅࠁ
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BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

• Choose arbitrary starting point β.

• Choose starting step size η.

• Choose τ, c < ࠀ (typically both c = ࠁ/ࠀ and τ = (ࠁ/ࠀ

• For i = ,ࠀ . . . , T:

• β(new) = β − η∇L(β)
• If L(β(new)) ≤ L(β)− cη‖∇L(β)‖ࠁࠁ

• β ← β(new)

• η ← τ−ࠀη

• Else
• η ← τη

Always decreases objective value, works very well in practice.
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BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

Always decreases objective value, works very well in practice.
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COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example :ࠀ Let X ∈ Rn×d be a data matrix.

L(β) = ‖Xβ − y‖ࠁࠁ ∇L(β) = XTࠁ (Xβ − y)

• Runtime of closed form solution β∗ = (XTX)−ࠀXTy:
• Runtime of one GD step:
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COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example :ࠀ Let X ∈ Rn×d be a data matrix.

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

∇L(β) = XT (h(Xβ)− y)

• No closed form solution.
• Runtime of one GD step:
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COMPLEXITY OF GRADIENT DESCENT

Frequently the complexity is O(nd) if you have n data-points
and d parameters in your model.

Not bad, but the dependence on n can be a lot! n might be on
the order of thousands, or millions.
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TRAINING NEURAL NETWORKS

Stochastic Gradient Descent (SGD).

• Powerful randomized variant of gradient descent used to
train machine learning models when n is large and thus
computing a full gradient is expensive.

Applies to any loss with finite sum structure:

L(β) =
n∑

j=ࠀ

#(β, xj, yj)
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STOCHASTIC GRADIENT DESCENT

Let Lj(β) denote #(β, xj, yj).

Claim: If j ∈ ,ࠀ . . . ,n is chosen uniformly at random. Then:

E
[
n ·∇Lj(β)

]
= ∇L(β).

∇Lj(β) is called a stochastic gradient.
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STOCHASTIC GRADIENT DESCENT

SGD iteration:

• Initialize β(߿).
• For i = ,߿ . . . , T− :ࠀ

• Choose j uniformly at random.
• Compute stochastic gradient g = ∇Lj(β(i)).
• Update β(t+ࠀ) = β(t) − η · ng

Move in direction of steepest descent in expectation.

Cost of computing g is independent of n!
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COMPLEXITY OF STOCHASTIC GRADIENT DESCENT

Example: Let X ∈ Rn×d be a data matrix.

L(β) = ‖Xβ − y‖ࠁࠁ =
n∑

j=ࠀ

(yj − βTxj)ࠁ

• Runtime of one SGD step:
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Typical implementation: Shuffled Gradient Descent.

Instead of choosing j independently at random for each
iteration, randomly permute (shuffle) data and set j = ,ࠀ . . . ,n.
After every n iterations, reshuffle data and repeat.

• Relatively similar convergence behavior to standard SGD.
• Important term: one epoch denotes one pass over all
training examples: j = ,ࠀ . . . , j = n.

• Convergence rates for training ML models are often
discussed in terms of epochs instead of iterations.
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch size s,

E
[
n
s

s∑

i=ࠀ

∇Lji(β)
]
= ∇L(β).

if jࠀ, . . . , js are chosen independently and uniformly at random
from ,ࠀ . . . ,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?
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MINI-BATCH GRADIENT DESCENT

• Overall faster convergence (fewer iterations needed).
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MIDTERM

• ࠀ hour long, here in the classroom. We will have lecture
after.

• You can bring in a single, sided-ࠁ cheat sheet with terms,
definitions, etc.

• Mix of short answer questions (true/false, matching, etc.)
and questions similar to the homework but easier.

• Might need to write some easy pseudocode.
• Covers everything through today. Don’t need to know
gradient descent proof of convergence.
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