CS-GY 6923: Lecture 6
Gradient Descent + Stochastic Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco



LOGISTIC REGRESSION

Goal: Minimize generic differentiable loss function:

L(B) = — Zy; log(h(B7x))) + (1 — ;) log(1 — h(B'x;))

L(B) = |IXB —vI5
L(B) = [XB -yl + Al BII3

l.e. find B* = argmin L(3).

Gradient Descent: Most common iterative method for solving
this problem.



FIRST ORDER OPTIMIZATION

Given a function L to minimize, assume we have routines for
computing:

- Function oracle: Evaluate L(3) for any 3.
- Gradient oracle: Evaluate VL(3) for any 8.

Gradient descent will use these routines in a black-box way to
find the optimal 8*.



GRADIENT DESCENT

Basic Gradient descent algorithm:

- Choose starting point 8(%.
- Fori=1,...,T

. 5(”‘1) _ B([) _ nVL(ﬁ([))
- Return g,

n is the step-size parameter or learning rate.



LAST CLASS

We came to an important observations:

1. For small enough 7, we always have that L(3(+") < g0,

L(B+V) — L(B+V) ~ (VL(B),V).

Conclusion: Gradient descent always converges to a local
minimum or stationary point of L. Typically to a local
minimum.



VISUALIZING IN 2D

Level sets of L(B)

i~ L(B) =10

L(B) =9
B, L(B) = 8

L(B) = 4




STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)

H_VY(L[%L = argminv,l|V|Iz=1<VL(B)aV>

Level sets of L(B)

A

B,




CONVEX FUNCTION

Definition (Convex)
A function L is convex iff for any B, B2, A € [0,1]:

(1=A)-L(B1)+A-L(B2) 2L((T=A)- B+ - B2)

L(B,)

L(B:)




CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

V4

0.2 0.4

This function

0.6 0.8 1, 2

is not convex. 9



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.
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CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.

n



CONVERGENCE OF GRADIENT DESCENT

What functions are convex?

- Least squares loss for linear regression.

- ¢y loss for linear regression.

- Either of these with and ¢, or ¢, regularization penalty.

- Logistic regression! Logistic regression with regularization.

- Many other models in machine leaning.
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CONVEXITY OF LEAST SQUARES REGRESSION LOSS

See notes from last week on proof that L(B3) = |X8 — y||3 is
convex. For now just consider A\ = % case.

Simpler problem: prove that L(B) = 3? is convex.
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CONVERGENCE ANALYSIS FOR CONVEX FUNCTIONS

Assume:

- L is convex.
- Lipschitz function: for all 8, [|VL(8)|]» < G.
- Starting radius: ||8* — B, < R.

Gradient descent:

- Choose number of steps T.
- Starting point 8. Eg. 8(® = 0.

.. _ R
=57
- Fori=0,...,T

. ﬁ(’*” — ﬁ(i) _ 77VL(/Q(/A))
- Return 3 = arg minB(i) L(B).

14



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
IfT> B then L(B) < L(B*) +«

Proof is made tricky by the fact that L(8()) does not improve
monotonically. We can “overshoot” the minimum. This is why
the step size needs to depend on 1/G. 15



GRADIENT DESCENT

Definition (Alternative Convexity Definition)
A function L is convex if and only if for any 3, a:

fle) = f(B) < VAB) (a — B)




GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

IfT> &S and = ci\ﬁ' then L(B) < L(B") + e

Claim1: Foralli=o0,...,T,

. ) _ g*12 _ 136+ _ 3*2 2
L8%) - gty < 18O =BB=18 — 83 06

2n 2
Claim 1(a): Foralli=0,...,T,

180 =815 — 18" — I3 | 06
- 2n 2

vL(BD) (8" — g*)

Claim 1 follows from Claim 1(a) by our new definition of convexity.



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

IfT> &S and = ci\ﬁ' then L(B) < L(B") + e

Claim 1(a): Foralli=o0,..., T,

_ 18 =5 — 18" — 13 L ne?
- 2n 2

VLB (B - B*)

'Recall that [[x — |5 = [|x[l3 — 2x"y + [lyl[3.



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
IfT> S and = B, then L(B) < L(B) +e
Claim1: Foralli=0,...,T,

18" _ L) < 1B =B I8 - 815 | G

2n 2
Telescoping sum:
-1 ) 0) _ @12 _ 1@ _ ag*2 nG
Z [L(,B(l)) _ L(ﬁ*)] < 18 B H22 1B B ll2 + ]T
i=0 n
18" = 813 = 18% = B*|5 | nG*
+ +
2n 2
18? = B[~ I8Y = B3 | nG®
+ +
2n 2
(T=1) _ g2 _ 113N _ g*2 G2
L 118 Bl — 187 = B"ll5 | G 19

2n 2



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

IfT> &S and = ci\ﬁ' then L(B) < L(B") + e

Telescoping sum:

T—1 0) * (12 @) * 112 7

iy an] o 1B =8B 187 - 813 | ™G
> L") - 1(87)] < = + 2
T—1

1 (i) o R2 7']62
T - {L(ﬁ )*L(B)}SﬂﬂLT

0
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
IfFT> &S andy = 2=, then L(B) < L(B%) + e

Final step:
T—1

23 [t - 18] < €

=0

T—1
[ Z ﬁ(’] L(B) < e

We always have that min; L(8() < 1 3°=71(8"), so this is
what we return:

L(B) = min_L(BD) < L(8") +e.

i€l,...,T
21



SETTING LEARNING RATE/STEP SIZE

Gradient descent algorithm for minimizing L(3):

- Choose arbitrary starting point 8(%).

- Fori=1,...,T
. g0+ = g0 nvL(8?)
- Return ,6

In practice we don't set the step-size/learning rate parameter
n= Gﬁ' since we typically don’t know these parameters. The
above analysis can also be loose for many functions.

n needs to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm.

22



LEARNING RATE

Precision in choosing the learning rate n is not super
important, but we do need to get it to the right order of
magnitude.

23



LEARNING RATE

“Overshooting” can be a problem if you choose the step-size
too high.
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Often a good idea to plot the entire optimization curve for
diagnosing what's going on.

We will have a lab on gradient descent optimization after the
midterm we're you'll get practice doing this.
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EXPONENTIAL GRID SEARCH

Just as in regularization, search over a grid of possible
parameters:

n=[27°2"%273..,2,.29.

Or tune by hand based on the optimization curve.
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BACKTRACKING LINE SEARCH/ARMIJO RULE

Recall: If we set 30+") « g() — v (B81") then:
L(B™Y) ~ L(8D) — n (VL(B"), vL(BY))
= L(B8W) — nvVL(BY)

2
2.

8

Approximation holds true for small n. If it holds, error

monotonically decreases. %



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

- Choose arbitrary starting point 3.

- Choose starting step size 7.

- Choose 7, ¢ < 1 (typically both c =1/2 and 7 = 1/2)
- Fori=1,...,T

- B = g — yvL(B)

- IFL(BT)) < L(B) — en| VL(B)I3
- B« Brew
T Tn

- Else
/A

Always decreases objective value, works very well in practice.

27



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

Loss

10¢
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Leamning rate

10! 107 10°
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107

Always decreases objective value, works very well in practice.
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COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X € R"*9 be a data matrix.

L(B) = X8 — ylI3 VL(B) = 2X (XB ~y)
d features
- x1 - y1
— X— Y2
n examples
— X Yn
X y

- Runtime of closed form solution 8* = (X'X)~"Xy:

- Runtime of one GD step: .



COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X € R"*9 be a data matrix.

L(B) = - Zy; log(h(B'x;)) + (1~ vi) log(1 — h(Bx,))

VL(B) = X (h(XB) — )

- No closed form solution.

- Runtime of one GD step:

30



COMPLEXITY OF GRADIENT DESCENT

Frequently the complexity is O(nd) if you have n data-points
and d parameters in your model.

Not bad, but the dependence on n can be a lot! n might be on
the order of thousands, or millions.
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TRAINING NEURAL NETWORKS

Stochastic Gradient Descent (SGD).

- Powerful randomized variant of gradient descent used to
train machine learning models when n is large and thus
computing a full gradient is expensive.

Applies to any loss with finite sum structure:

L(B) =Y _ 4B x;,Y)
j=1

32



STOCHASTIC GRADIENT DESCENT

Let L;(B) denote £(8, X, Y;).

Claim: If j € 1,...,nis chosen uniformly at random. Then:

E[n-VLi(8)] = VL(8).

VL;(B) is called a stochastic gradient.

33



STOCHASTIC GRADIENT DESCENT

SGD iteration:

- Initialize B(®.

- Fori=0,...,T—1
- Choose j uniformly at random.
- Compute stochastic gradient g = VL;(8").
- Update Ig(t“) — Ig(t) —n-ng

Move in direction of steepest descent in expectation.

Cost of computing g is independent of n!

34



COMPLEXITY OF STOCHASTIC GRADIENT DESCENT

Example: Let X € R"<¢ be a data matrix.

n

L(B) = IXB=yIE = > (v — B™%)’

j=1

- Runtime of one SGD step:
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

A
T T—
/
\& \ — /
Gradient Descent Stochastic Gradient Descent
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STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

GD's smooth convergence SGD's stochastic convergence

608
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604

Mean squared error
w
8
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Mean squared error
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# GD iterations # SGD iterations
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Typical implementation: Shuffled Gradient Descent.

Instead of choosing j independently at random for each
iteration, randomly permute (shuffle) data and setj=1,...,n.
After every n iterations, reshuffle data and repeat.

- Relatively similar convergence behavior to standard SGD.

- Important term: one epoch denotes one pass over all
training examples: j =1,...,j = n.

- Convergence rates for training ML models are often
discussed in terms of epochs instead of iterations.
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STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch size s,

E = VL(B).

2> VL(68)
=1

if j1,...,Jjs are chosen independently and uniformly at random
from1,...,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?
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MINI-BATCH GRADIENT DESCENT

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

- Overall faster convergence (fewer iterations needed).

40



MIDTERM

- 1 hour long, here in the classroom. We will have lecture
after.

- You can bring in a single, 2-sided cheat sheet with terms,
definitions, etc.

- Mix of short answer questions (true/false, matching, etc.)
and questions similar to the homework but easier.

- Might need to write some easy pseudocode.

- Covers everything through today. Don't need to know
gradient descent proof of convergence.
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