
CS-GY 6923: Lecture 6
Gradient Descent + Stochastic Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

1



LOGISTIC REGRESSION

Goal: Minimize generic differentiable loss function:

L(β) = −
n∑
i=1

yi log(h(βTxi)) + (1− yi) log(1− h(βTxi))

L(β) = ∥Xβ − y∥22
L(β) = ∥Xβ − y∥1 + λ∥β∥22

I.e. find β∗ = argmin L(β).

Gradient Descent: Most common iterative method for solving
this problem.

2



FIRST ORDER OPTIMIZATION

Given a function L to minimize, assume we have routines for
computing:

• Function oracle: Evaluate L(β) for any β.
• Gradient oracle: Evaluate ∇L(β) for any β.

Gradient descent will use these routines in a black-box way to
find the optimal β∗.

3



GRADIENT DESCENT

Basic Gradient descent algorithm:

• Choose starting point β(0).
• For i = 1, . . . , T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(t).

η is the step-size parameter or learning rate.

4



LAST CLASS

We came to an important observations:

1. For small enough η, we always have that L(β(i+1)) ≤ β(i).

L(β + v)− L(β + v) ≈ ⟨∇L(β), v⟩.

Conclusion: Gradient descent always converges to a local
minimum or stationary point of L. Typically to a local
minimum.

5



VISUALIZING IN 2D

6



STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)
−∇L(β)
∥∇L(β)∥2 = argminv,∥v∥2=1⟨∇L(β), v⟩

7



CONVEX FUNCTION

For a broad class of functions, GD converges to global minima.

Definition (Convex)
A function L is convex iff for any β1,β2, λ ∈ [0, 1]:

(1− λ) · L (β1) + λ · L(β2) ≥ L ((1− λ) · β1 + λ · β2)

8



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex. 9



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.

10



CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is convex.
11



CONVERGENCE OF GRADIENT DESCENT

What functions are convex?

• Least squares loss for linear regression.
• ℓ1 loss for linear regression.
• Either of these with and ℓ1 or ℓ2 regularization penalty.
• Logistic regression! Logistic regression with regularization.
• Many other models in machine leaning.

12



CONVEXITY OF LEAST SQUARES REGRESSION LOSS

See notes from last week on proof that L(β) = ∥Xβ − y∥22 is
convex. For now just consider λ = 1

2 case.

Simpler problem: prove that L(β) = β2 is convex.

13



CONVERGENCE ANALYSIS FOR CONVEX FUNCTIONS

Assume:

• L is convex.
• Lipschitz function: for all β, ∥∇L(β)∥2 ≤ G.
• Starting radius: ∥β∗ − β(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point β(0). E.g. β(0) = 0.
• η = R

G
√
T

• For i = 0, . . . , T:
• β(i+1) = β(i) − η∇L(β(i))

• Return β̂ = argminβ(i) L(β).

14



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
, then L(β̂) ≤ L(β∗) + ϵ.

Proof is made tricky by the fact that L(β(i)) does not improve
monotonically. We can “overshoot” the minimum. This is why
the step size needs to depend on 1/G. 15



GRADIENT DESCENT

Definition (Alternative Convexity Definition)
A function L is convex if and only if for any β,α:

f(α)− f(β) ≤ ∇f(β)T(α− β)

16



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

L(β(i))− L(β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η +

ηG2

2

Claim 1(a): For all i = 0, . . . , T,

∇L(β(i))T(β(i) − β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η +

ηG2

2

Claim 1 follows from Claim 1(a) by our new definition of convexity.

17



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Claim 1(a): For all i = 0, . . . , T, 1

∇L(β(i))T(β(i) − β∗) ≤ ∥β
(i) − β∗∥22 − ∥β

(i+1) − β∗∥22
2η +

ηG2

2

1Recall that ∥x− y∥22 = ∥x∥22 − 2xTy+ ∥y∥22.

18



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√

T , then L(β̂) ≤ L(β∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

L(β(i))− L(β∗) ≤ ∥β
(i) − β∗∥22 − ∥β(i+1) − β∗∥22

2η +
ηG2

2
Telescoping sum:

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β(1) − β∗∥22
2η +

ηG2

2

+
∥β(1) − β∗∥22 − ∥β(2) − β∗∥22

2η +
ηG2

2

+
∥β(2) − β∗∥22 − ∥β(3) − β∗∥22

2η +
ηG2

2
...

+
∥β(T−1) − β∗∥22 − ∥β(T) − β∗∥22

2η +
ηG2

2

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β(T) − β∗∥22
2η +

TηG2

2

1
T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ R2

2Tη +
ηG2

2

19



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Telescoping sum:

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ∥β

(0) − β∗∥22 − ∥β
(T) − β∗∥22

2η +
TηG2

2

1
T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ R2

2Tη +
ηG2

2

20



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
and η = R

G
√
T , then L(β̂) ≤ L(β∗) + ϵ.

Final step:

1
T

T−1∑
i=0

[
L(β(i))− L(β∗)

]
≤ ϵ

[
1
T

T−1∑
i=0

L(β(i))

]
− L(β∗) ≤ ϵ

We always have that mini L(β(i)) ≤ 1
T
∑T−1

i=0 L(β
(i)), so this is

what we return:

L(β̂) = min
i∈1,...,T

L(β(i)) ≤ L(β∗) + ϵ.

21



SETTING LEARNING RATE/STEP SIZE

Gradient descent algorithm for minimizing L(β):

• Choose arbitrary starting point β(0).
• For i = 1, . . . , T:

• β(i+1) = β(i) − η∇L(β(i))

• Return β(t).

In practice we don’t set the step-size/learning rate parameter
η = R

G
√
T , since we typically don’t know these parameters. The

above analysis can also be loose for many functions.

η needs to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm.

22



LEARNING RATE

Precision in choosing the learning rate η is not super
important, but we do need to get it to the right order of
magnitude.

23



LEARNING RATE

“Overshooting” can be a problem if you choose the step-size
too high.

Often a good idea to plot the entire optimization curve for
diagnosing what’s going on.

We will have a lab on gradient descent optimization after the
midterm we’re you’ll get practice doing this.

24



EXPONENTIAL GRID SEARCH

Just as in regularization, search over a grid of possible
parameters:

η = [2−5, 2−4, 2−3, . . . , 29, 210].

Or tune by hand based on the optimization curve.

25



BACKTRACKING LINE SEARCH/ARMIJO RULE

Recall: If we set β(i+1) ← β(i) − η∇L(β(i)) then:

L(β(i+1)) ≈ L(β(i))− η
⟨
∇L(β(i)),∇L(β(i))

⟩
= L(β(i))− η∥∇L(β(i))∥22.

Approximation holds true for small η. If it holds, error
monotonically decreases. 26



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

• Choose arbitrary starting point β.

• Choose starting step size η.

• Choose τ, c < 1 (typically both c = 1/2 and τ = 1/2)

• For i = 1, . . . , T:

• β(new) = β − η∇L(β)
• If L(β(new)) ≤ L(β)− cη∥∇L(β)∥22

• β ← β(new)

• η ← τ−1η

• Else
• η ← τη

Always decreases objective value, works very well in practice.

27



BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

Always decreases objective value, works very well in practice.

28



COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 ∇L(β) = 2XT (Xβ − y)

• Runtime of closed form solution β∗ = (XTX)−1XTy:
• Runtime of one GD step: 29



COMPLEXITY OF GRADIENT DESCENT

Complexity of computing the gradient will depend on you loss
function.

Example 1: Let X ∈ Rn×d be a data matrix.

L(β) = −
n∑
i=1

yi log(h(βTxi)) + (1− yi) log(1− h(βTxi))

∇L(β) = XT (h(Xβ)− y)

• No closed form solution.
• Runtime of one GD step:

30



COMPLEXITY OF GRADIENT DESCENT

Frequently the complexity is O(nd) if you have n data-points
and d parameters in your model.

Not bad, but the dependence on n can be a lot! n might be on
the order of thousands, or millions.

31



TRAINING NEURAL NETWORKS

Stochastic Gradient Descent (SGD).

• Powerful randomized variant of gradient descent used to
train machine learning models when n is large and thus
computing a full gradient is expensive.

Applies to any loss with finite sum structure:

L(β) =
n∑
j=1

ℓ(β, xj, yj)

32



STOCHASTIC GRADIENT DESCENT

Let Lj(β) denote ℓ(β, xj, yj).

Claim: If j ∈ 1, . . . ,n is chosen uniformly at random. Then:

E
[
n · ∇Lj(β)

]
= ∇L(β).

∇Lj(β) is called a stochastic gradient.

33



STOCHASTIC GRADIENT DESCENT

SGD iteration:

• Initialize β(0).
• For i = 0, . . . , T− 1:

• Choose j uniformly at random.
• Compute stochastic gradient g = ∇Lj(β(i)).
• Update β(t+1) = β(t) − η · ng

Move in direction of steepest descent in expectation.

Cost of computing g is independent of n!

34



COMPLEXITY OF STOCHASTIC GRADIENT DESCENT

Example: Let X ∈ Rn×d be a data matrix.

L(β) = ∥Xβ − y∥22 =
n∑
j=1

(yj − βTxj)2

• Runtime of one SGD step:

35



STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

36



STOCHASTIC GRADIENT DESCENT

Gradient descent: Fewer iterations to converge, higher cost per
iteration.

Stochastic Gradient descent: More iterations to converge,
lower cost per iteration.

37



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Typical implementation: Shuffled Gradient Descent.

Instead of choosing j independently at random for each
iteration, randomly permute (shuffle) data and set j = 1, . . . ,n.
After every n iterations, reshuffle data and repeat.

• Relatively similar convergence behavior to standard SGD.
• Important term: one epoch denotes one pass over all
training examples: j = 1, . . . , j = n.

• Convergence rates for training ML models are often
discussed in terms of epochs instead of iterations.

38



STOCHASTIC GRADIENT DESCENT IN PRACTICE

Practical Modification: Mini-batch Gradient Descent.

Observe that for any batch size s,

E

[
n
s

s∑
i=1
∇Lji(β)

]
= ∇L(β).

if j1, . . . , js are chosen independently and uniformly at random
from 1, . . . ,n.

Instead of computing a full stochastic gradient, compute the
average gradient of a small random set (a mini-batch) of
training data examples.

Question: Why might we want to do this?

39



MINI-BATCH GRADIENT DESCENT

• Overall faster convergence (fewer iterations needed).

40



MIDTERM

• 1 hour long, here in the classroom. We will have lecture
after.

• You can bring in a single, 2-sided cheat sheet with terms,
definitions, etc.

• Mix of short answer questions (true/false, matching, etc.)
and questions similar to the homework but easier.

• Might need to write some easy pseudocode.
• Covers everything through today. Don’t need to know
gradient descent proof of convergence.

41


