
CS-GY :ࠂࠁ69 Lecture 5
Logistic Regression + Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

LINEAR CLASSIFICATION

Standard approach for binary classification of real-valued data:

• Find parameter vector β.
• For input data vector x, predict ߿ if βTx > λ and ࠀ βTx ≤ λ

for some threshold λ.ࠀ

Canࠀ always assume λ = ߿ if x has an intercept term. ࠁ

< B ,x >
=

- = e

I BTX > O

§"
" °

B i x s o

LINEAR CLASSIFICATION

In higher dimensions, we should think of data as being
separated by a hyperplane, which has equation βTx = .߿

ࠂ

=

t
End

X : O

:*.÷.

LOGISTIC REGRESSION

Loss minimization approach:

• Given training data (xࠀ, yࠀ), . . . , (xn, yn) where xi ∈ Rd and
yi ∈ ,߿} .{ࠀ

• Minimize “Logistic loss” aka “binary cross-entropy loss”

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

• Above h(z) be the logistic/sigmoid function: h(z) = ࠀ
e−z+ࠀ

Predict ࠀ if βTxi ≥ ,߿ predict ߿ otherwise.

ࠃ

- -

- I t o
=

LOGISTIC REGRESSION

Let h(z) be the logistic/sigmoid function: h(z) = ࠀ
e−z+ࠀ

Can think of this function as mapping xTβ to a probability that
the true label is .ࠀ If xTβ % ߿ then the probability is close to ,ࠀ
if xTβ & ߿ then the probability is close to .߿

ࠄ

= •
✓?O

GREAT QUESTION

Great question by Azraf from last class: why not minimize

L(β) =
n∑

i=ࠀ

(
yi − h(xTβ

ࠁ(
?

Answer: This is actually a pretty reasonable thing to do. An
important issue however is that the loss here is not convex,
which makes it hard to find the β that minimizes the loss.

Log-loss on the other hand is convex.

ࠅ

⇐
-

LOGISTIC LOSS

• Convex function in β, can be minimized using gradient
descent.

• Works well in practice.
• Good Bayesian motivation.
• Easily combined with non-linear data transformations.

Fit using logistic regression/log loss.
ࠆ

F

NON-LINEAR TRANSFORMATIONS

How would we learn a classifier for this data using logisitic
regression?

This data is not linearly separable or even approximately
linearly separable.

ࠇ

X : [×,,Xu]
X , O f

i f4 ,Xv, - I

['Ex.,
x ., x i i i)

NON-LINEAR TRANSFORMATIONS

Transform each x = [xࠀ, xࠁ] to x = ,ࠀ] xࠀ, xࠁ, xࠀࠁ , xࠁࠁ, xࠀxࠁ]

• Predict class ࠀ if xࠀࠁ + xࠁࠁ < λ.
• Predict class ߿ if xࠀࠁ + xࠁࠁ ≥ λ.

This is a linear classifier on our transformed data set. Logisitic
regression might learn β = ,߿] ,߿ ,߿ ,ࠀ ,ࠀ .[߿ ࠈ

- -Foo:O
t . F I ¥
solve H B= I t I E dei s
argminL(B):B' zoo

1¥14# xitx.az#

ai' ,

NON-LINEAR TRANSFORMATIONS

View as mapping data to a higher dimensional space, where it
is linearly separable.

Lots more on this in future lecture!

߿ࠀ

ERROR IN CLASSIFICATION

Once we have a classification algorithm, how do we judge its
performance?

• Simplest answer: Error rate = fraction of data examples
misclassified in test set.

• What are some issues with this approach?

Think back to motivating problem of breast cancer detection.

ࠀࠀ

"f-s ' zdign
= 1 -

falsenegatives
a r e m o r e costly.

ERROR IN CLASSIFICATION

• Precision: Fraction of
positively labeled
examples (label (ࠀ which
are correct.

• Recall: Fraction of true
positives that we labeled
correctly with label .ࠀ

Question: Which should we
optimize for medical diagnosis?

ࠁࠀ

µ
no t a

" d

dealK¥5,i o

- →
went close

t o 1

Recall

ERROR IN CLASSIFICATION

Logistic regression workflow:

• Select β via training and compute h(βTxi) = ࠀ
e−〈xi,β〉+ࠀ for

all xi.
• Predict yi = ߿ if h(βTxi) ≤ λ, yi = ࠀ if h(βTxi) > λ.
• Default value of λ is .ࠁ/ࠀ Increasing λ improves precision.
Decreasing λ improves recall.

This is very heuristic. There are other methods for handling
“class imbalance” or fine tuning precision or recall. Techniques
include weighting the loss function to care more about false
negatives, or subsampling the larger class.

ࠂࠀ

ERROR IN CLASSIFICATION

Possible logistic regression workflow:

• Learn β and compute βTxi for all "xi.
• Predict yi = ߿ if βTxi ≤ λ, yi = ࠀ if βTxi > λ.
• Default value of λ is .߿ Increasing λ improves precision.
Decreasing λ improves recall.

This is very heuristic. There are other methods for handling
“class imbalance” which can often lead to good overall error,
but poor precision or recall. Techniques include weighting the
loss function to care more about false negatives, or
subsampling the larger class.

ࠃࠀ

MULTI-CLASS

What about when y ∈ ,ࠀ} . . . , q} instead of y ∈ ,߿} {ࠀ

Two common options for reducing multi-class problems to
binary problems:

• One-vs.-all (most common, also called one-vs.-rest)
• One-vs.-one (slower, but can be more effective)

ࠄࠀ

i ti÷÷÷

-

=

ONE VS. REST

• For q classes train q classifiers. Obtain parameters βࠀ, . . . ,βq.

• Assign y to class i if βT
i x is .ࠀ Could be ambiguous!

• Better: Assign y to class i with maximum value of h(βT
i x).

ࠅࠀ

q :3

i i @ : :2I÷tf÷l.
..

.tititY J
o

§

If 8

any,,,,]
±,..,µ±

- k o
- -

@

ONE VS. REST

• For q classes train q(q−ࠀ)
ࠁ classifiers.

• Assign y to class which i which wins in the most number of
head-to-head comparisons.

ࠆࠀ

n o
1
o n e

- =? " : *class2 '.O . . . f i

classy!

ah -
5

(o- 0 t o o

Bws., hlb.us.,Tx)¥8

ONE VS. ONE

Hard case for one-vs.-all.

• One-vs.-one would be a better choice here.
• Also tends to work better when there is class in balance.

But one-vs.-one can be super expensive! E.g when q = ߿߿ࠀ or
q = .߿߿߿ࠀ

ࠇࠀ

of¥) z 92
1602
= 10,000

1,000,o o o

=

-

MULTICLASS LOGISTIC REGRESSION

More common modern alternative: If we have q classes, train
a single model with q parameter vectors βࠀ, . . . ,βq, and
predict class i = argmaxi β

T
i x.

Same idea as one-vs.-rest, but we treat [βࠀ, . . . ,βq] as a single
length qd parameter vector which we to optimize to minimize a
single joint loss function. We do not train the parameter
vectors separately.

What’s a good loss function?

ࠈࠀ

O - 0
← one-us.-all

-

- -

MULTICLASS LOGISTIC REGRESSION

Softmax function:

βT
xࠀ
...

βT
qx

 softmax−−−−→

eβT
/xࠀ

∑q
i=ࠀ e

βT
i x

...
eβ

T
qx/

∑q
i=ࠀ e

βT
i x

Softmax takes in a vector of numbers and converts it to a
vector of probabilities:

[
߿ࠀ− ࠃ ࠀ ߿ ࠄ−

]
→

[
߿߿. ࠃࠈ. ࠃ߿. ࠁ߿. ߿߿.−

]

߿ࠁ

p
¥2,%?¥¥..;¥±.;%e%#=1

O - - - } s u m t o 7 -

a n¥ - 1

MULTICLASS LOGISTIC REGRESSION

Multi-class cross-entropy:

L(βࠀ, . . . ,βq) = −
∑

i:yi=ࠀ

log
eβ

T
ࠀ x

∑q
j=ࠀ e

βT
i x
−

∑

i:yi=ࠁ

log
eβ

T
xࠁ

∑q
j=ࠀ e

βT
i x
− . . .−

∑

i:yi=k

log
eβ

T
kx

∑q
j=ࠀ e

βT
i x

= −
n∑

i=ࠀ

q∑

ࠀ=!
[yi = #] · log eβT

!x
∑q

j=ࠀ e
βT

i x

Binary cross-entropy:

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

= −
∑

i:yi=ࠀ

log(h(βTxi))−
∑

i:yi=߿

log(ࠀ− h(βTxi))

ࠀࠁ

÷....".......,-l-¥0.
→

. .

-

Hool o ss :

- -

A - O -

ERROR IN (MULTICLASS) CLASSIFICATION

Confusion matrix for k classes:

• Entry i, j is the fraction of class i items classified as class j.
• Useful to see whole matrix to visualize where errors occur.

ࠁࠁ

1,2+4×3-x + 1 0× 5
- -

t.li#0:g.o5.os
o

• 8

- 7

• 9

OPTIMIZATION

ࠁࠁ

LOGISTIC REGRESSION

Goal: Minimize the logistic loss:

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

I.e. find β∗ = argmin L(β). How should we do this?

ࠂࠁ

LOGISTIC REGRESSION GRADIENT

L(β) = −
n∑

i=ࠀ

yi log(h(βTxi)) + −ࠀ) yi) log(ࠀ− h(βTxi))

Let X ∈ Rd×n be our data matrix with xࠀ, . . . , xn ∈ Rd as rows.
Let y = [yࠀ, . . . , yn]. A calculation gives (see notes on webpage):

∇L(β) = XT (h(Xβ)− y)

where h(Xβ) = ࠀ
e−Xβ+ࠀ . Here all operations are entrywise. I.e in

Python you would compute:

ࠃࠁ

= O

-

LOGISTIC REGRESSION GRADIENT

To find β minimizing L(β) we typically start by finding a β

where:

∇L(β) = XT (h(Xβ)− y) = ߿

• In contrast to what we saw when minimizing the squared
loss for linear regression, there’s no simple closed form
expression for such a β!

• This is the typical situation when minimizing loss in
machine learning: linear regression was a lucky exception.

• Main question: How do we minimize a loss function L(β)
when we can’t explicitly compute where it’s gradient is ?߿

ࠄࠁ

- 0

MINIMIZING LOSS FUNCTIONS

Always an option: Brute-force search. Test our many possible
values for β and just see which gives the smallest value of
L(β).

• As we saw on Lab ,ࠀ this actually works okay for
low-dimensional problems (e.g. when β has ࠀ or ࠁ entries).

• Problem: Super computationally expensive in
high-dimension. For β ∈ Rd, run time grows as:

ࠅࠁ

O

¥-
50

(5o)
d

MINIMIZING LOSS FUNCTIONS

Much Better idea. Some sort of guided search for a good of β.

• Start with some β(߿), and at each step try to change β

slightly to reduce L(β).
• Hopefully find an approximate minimizer for L(β) much
more quickly than brute-force search.

• Concrete goal: Find β with

L(β) < min
β

L(β) + ε

for some small error term ε.

ࠆࠁ

=

~

t
-

z 0

GRADIENT DESCENT

Gradient descent: A greedy search algorithm for minimizing
functions of multiple variables (including loss functions) that
often works amazingly well.

The single most important computational tool in machine
learning. And it’s remarkable simple + easy to implement.

ࠇࠁ

OPTIMIZATION ALGORITHMS

Just one method in a huge class of algorithms for numerical
optimization. All of these methods are important in ML.

ࠈࠁ

%

FIRST ORDER OPTIMIZATION

First order oracle model: Given a function L to minimize,
assume we can:

• Function oracle: Evaluate L(β) for any β.
• Gradient oracle: Evaluate ∇L(β) for any β.

These are very general assumptions. Gradient descent will not
use any other information about the loss function L when
trying to find a β which minimizes L.

߿ࠂ

-

I s -

GRADIENT DESCENT

Basic Gradient descent algorithm:

• Choose starting point β(߿).
• For i = ,ࠀ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(t).

η is a step-size parameter. Also called the learning rate.

Why does this method work?

First observation: if we actually reach the minimizer β∗ then
we stop.

ࠀࠂ

I µ
shell positoe

w w w .
- 0

-

P L(Bt) = O

INTUITION

Consider a dimensional-ࠀ loss function. I.e. where β is just a
single value. Our update step is β(i+ࠀ) = β(i) − ηL′(β(i))

ࠁࠂ

• -

I'F i e'

: ÷oo→ f #
• too:*:"

GRADIENT DESCENT IN Dࠀ

Mathematical way of thinking about it:

By definition, L′(β) = limη→߿
L(β+t)−L(β)

t . So for small values of
t, we expect that:

L(β + t)− L(β) ≈ t · L′(β).

We want L(β + t) to be smaller than L(β), so we want t · L′(β) to
be negative.

This can be achieved by choosing t = −η · L′(β).

β(i+ࠀ) = β(i) − ηL′(β(i))

ࠂࠂ

L'(B)= L(B+11¥B)
-

- t

1 % 4
uesch.ve

- -

-=...".i÷ii,"""
= #

- .

-

DIRECTIONAL DERIVATIVES

For high dimensional functions (β ∈ Rd), our update involves a
vector v ∈ Rd. At each step:

β ← β + v.

Question: When v is small, what’s an approximation for
L(β + v)− L(β)?

L(β + v)− L(β) ≈

ࠃࠂ

i:p
blurt) - l (B)2 t-L'b)

- -

-

#
V i .¥IB)+ U r 2¥49)

Y t . . .t VieEs,(B)

¥ . ¥..... '' I

DIRECTIONAL DERIVATIVES

We have

L(β + v)− L(β) ≈ ∂L
∂βࠀ

vࠀ +
∂L
∂βࠁ

vࠁ + . . .+
∂L
∂βd

vd

= 〈∇L(β), v〉.

How should we choose v so that L(β + v) < L(β)?

:

,Formallyࠀ you might remember that we can define the directional
derivative of a multivariate function: DvL(β) = limt→߿

L(β+tv)−L(β)
t .

ࠄࠂ

- g , ,

" T ' = L !a > = flaky

-

t.IE?Em@Er---.e@=L0LlB),-
m0LlBD=.mCvLlD,V

LIBS?= - n 11043112

STEEPEST DESCENT

Claim (Gradient descent = Steepest descentࠁ)
−∇L(β)
‖∇L(β)‖ࠁ = argminv,‖v‖ࠀ=ࠁ〈∇L(β), v〉

Recall: For two vectors a,b,

〈a,b〉 = ‖a‖ࠁ‖b‖ࠁ · cos(θ)

Weࠁ could have restricted v using a different norm. E.g. ‖v‖ࠀ ≤ ࠀ or
‖v‖∞ = .ࠀ These choices lead to variants of generalized steepest descent..

ࠅࠂ

QQ.no#. : i ; I i i-
← → →

- - - -

STEEPEST DESCENT

Claim (Gradient descent = Steepest descent)
−∇L(β)
‖∇L(β)‖ࠁ = argminv,‖v‖ࠀ≥ࠁ∇〈L(β), v〉

ࠆࠂ

GRADIENT DESCENT

Basic Gradient descent (GD) algorithm:

• Choose starting point β(߿).
• For i = ,ࠀ . . . , T:

• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β(t).

• Theoretical questions: Does gradient descent always
converge to the minimum of the loss function L? Can you
prove how quickly?

• Practical questions: How to choose η? Any other
modifications needed for good practical performance?

ࠇࠂ

BASIC CLAIM

• For sufficiently small η, every step of GD either
.ࠀ Decreases the function value.
.ࠁ Get’s stuck because the gradient term equals ߿

Claim
For sufficiently small η and a sufficiently large number of
iterations T, gradient descent will converge to a local
minimum or stationary point of the loss function β̃

∗. I.e. with

‖∇L(β̃∗
ࠁ‖(= .߿

ࠈࠂ

-

-

-

g - n o

BASIC CLAIM

You can have stationary points that are not minima (local
maxima, saddle points). In practice, always converge to local
minimum.

Very unlikely to land precisely on another stationary point and
get stuck. Non-minimal stationary points are “unstable”.

߿ࠃ

•

⇐ A t

CONVEX FUNCTION

We can say something more for a broad class of functions!

Definition (Convex)
A function L is convex iff for any βࠀ,βࠁ,λ ∈ ,߿] :[ࠀ

−ࠀ) λ) · L (βࠀ) + λ · L(βࠁ) ≥ L −ࠀ)) λ) · βࠀ + λ · βࠁ)

ࠀࠃ

-

a - - a -

i - i=
' k

'"
'" "=÷÷¥÷I

CONVEX FUNCTION

In words: A function is convex if a line between any two points
on the function lies above the function. Captures the notion
that a function looks like a bowl.

This function is not convex. ࠁࠃ

: * .

I

CONVEX FUNCTION

Claim (Convex Function Minimizers.)
Every stationary point of a differentiable convex function is a
global minimum of the function.

The immediate implication is that for any convex loss function,
gradient descent converges to β∗ = argminβ L(β)

ࠂࠃ

CONVERGENCE OF GRADIENT DESCENT

Claim (GD Convergence for Convex Functions.)
For sufficiently small step-size η, Gradient Descent converges
to the global minimum of any convex function L.

What functions are convex?

• Least squares loss for linear regression.
• ࠀ# loss for linear regression.
• Either of these with and ࠀ# or ࠁ# regularization penalty.
• Logistic regression! Logistic regression with regularization.
• Many other models in machine leaning.

This is not a coincidence: often it makes sense to reformulate
your problem so that the loss function is convex, simply so you

can minimize it with GD.
ࠃࠃ

-

NON-CONVEX

What functions in machine learning are not convex? Loss
functions involving neural networks, matrix completion
problems, mixture models, many more.

Vary in how “bad” the non-convexity is. For example, some
matrix factorization problems are non-convex but still only
have global minima.

ࠄࠃ

Ooo:O
- - - -

w e

CONVEXITY OF LEAST SQUARES REGRESSION LOSS

Prove that L(β) = ‖Xβ − y‖ࠁࠁ is convex. For now just consider
λ = ࠀ

ࠁ case. The general λ case is similar, but messier.

Usefulࠁ identity: (a+ b)ࠁ ≤ ࠁa)ࠁ + bࠁ)

ࠅࠃ

Needt oshow: 11×1I B ,+ IB,)-ylli s 'zhx.es,-211:t I 11×2-y"I
1

= 1111×3,-g)+ I (XB,-g)11,'

I l l ' i lXB,-2711,t 1111×3,-g)1112
itrieggaf
fy

= 'T("XB,-2112+11×2-3112)" [LIMB,-yet11×2-045)
proven

ant i-web>0

a m : *. , . .
"III.

CONVEXITY OF LEAST SQUARES REGRESSION LOSS

Prove that L(β) = ‖Xβ − y‖ࠁࠁ is convex. I.e. that:

‖X(λβࠀ + −ࠀ) λ)βࠀ)− y‖ࠁࠁ ≤ λ‖Xβࠀ − y‖ࠁࠁ + −ࠀ) λ)‖Xβࠁ − y‖ࠁࠁ

ࠆࠃ

a

RATE OF CONVERGENCE FOR CONVEX FUNCTIONS

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on L(β).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Next slides: A canonical gradient descent analysis that every
computer scientist should know.

ࠇࠃ

-

GRADIENT DESCENT ANALYSIS

Assume:

• L is convex.
• Lipschitz function: for all β, ‖∇L(β)‖ࠁ ≤ G.
• Starting radius: ‖β∗ − β(߿)‖ࠁ ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point β(߿). E.g. β(߿) = .߿
• η = R

G
√
T

• For i = ,߿ . . . , T:
• β(i+ࠀ) = β(i) − η∇L(β(i))

• Return β̂ = argminβ(i) L(β).

ࠈࠃ

⇒
a s I

0

I I E '→ I " → . - →s t

- L i b)

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
, then L(β̂) ≤ L(β∗) + ε.

Proof is made tricky by the fact that L(β(i)) does not improve
monotonically. We can “overshoot” the minimum. This is why
the step size needs to depend on .G/ࠀ ߿ࠄ

e e - - 0 hqx 110 lb)" i f

11iu÷±v.G l o v e r

GRADIENT DESCENT

Definition (Convex)
A function L is convex if and only if for any β,α:

f(α)− f(β) ≤ ∇f(β)T(α− β)

ࠀࠄ

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

L(β(i))− L(β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β

(i+ࠀ) − β∗‖ࠁࠁ
ηࠁ

+
ηGࠁ

ࠁ

Claim :(a)ࠀ For all i = ,߿ . . . , T,

∇L(β(i))T(β(i) − β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β

(i+ࠀ) − β∗‖ࠁࠁ
ηࠁ

+
ηGࠁ

ࠁ

Claim ࠀ follows from Claim (a)ࠀ by our new definition of convexity.

ࠁࠄ

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ε.

Claim :(a)ࠀ For all i = ,߿ . . . , T,

∇L(β(i))T(β(i) − β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β

(i+ࠀ) − β∗‖ࠁࠁ
ηࠁ

+
ηGࠁ

ࠁ

ࠂࠄ

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√
T , then L(β̂) ≤ L(β∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

L(β(i))− L(β∗) ≤ ‖β
(i) − β∗‖ࠁࠁ − ‖β

(i+ࠀ) − β∗‖ࠁࠁ
ηࠁ

+
ηGࠁ

ࠁ

Telescoping sum:

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ ‖β

(߿) − β∗‖ࠁࠁ − ‖β
(T) − β∗‖ࠁࠁ

ηࠁ
+

TηGࠁ

ࠁ

ࠀ
T

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ Rࠁ

Tηࠁ
+

ηGࠁ

ࠁ

ࠃࠄ

GRADIENT DESCENT ANALYSIS

Telescoping sum:

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ ‖β

(߿) − β∗‖ࠁࠁ − ‖β
(T) − β∗‖ࠁࠁ

ηࠁ
+

TηGࠁ

ࠁ

ࠀ
T

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ Rࠁ

Tηࠁ
+

ηGࠁ

ࠁ

ࠄࠄ

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
and η = R

G
√
T , then L(β̂) ≤ L(β∗) + ε.

Final step:

ࠀ
T

T−ࠀ∑

i=߿

[
L(β(i))− L(β∗)

]
≤ ε

[
ࠀ
T

T−ࠀ∑

i=߿

L(β(i))

]
− L(β∗) ≤ ε

We always have that mini L(β(i)) ≤ ࠀ
T
∑T−ࠀ

i=߿ L(β
(i)), so this is

what we return:

L(β̂) = min
i∈ࠀ,...,T

L(β(i)) ≤ L(β∗) + ε.

ࠅࠄ

SETTING LEARNING RATE/STEP SIZE

Gradient descent algorithm for minimizing L("β):

• Choose arbitrary starting point "β(߿).
• For i = ,ࠀ . . . , T:

• "β(i+ࠀ) = "β(i) − η∇L("β(i))

• Return "β(t).

In practice we don’t set the step-size/learning rate parameter
η = R

G
√
T , since we typicall don’t know these parameters. The

above analysis can also be loose for many function.s

η needs to be chosen sufficiently small for gradient descent to
converge, but too small will slow down the algorithm.

ࠆࠄ

LEARNING RATE

Precision in choosing the learning rate η is not super
important, but we do need to get it to the right order of
magnitude.

ࠇࠄ

LEARNING RATE

“Overshooting” can be a problem if you choose the step-size
too high.

Often a good idea to plot the entire optimization curve for
diagnosing what’s going on.

We will have a mini-lab on gradient descent optimization after
the midterm we’re you’ll get practice doing this.

ࠈࠄ

EXPONENTIAL GRID SEARCH

Just as in regularization, search over a grid of possible
parameters:

η = ,ࠄ−ࠁ] ,ࠃ−ࠁ ,ࠂ−ࠁ . . . , ,ࠈࠁ .[߿ࠀࠁ

Or tune by hand based on the optimization curve.

߿ࠅ

BACKTRACKING LINE SEARCH/ARMIJO RULE

Recall: If we set β(i+ࠀ) ← β(i) − η∇L(β(i)) then:

L(β(i+ࠀ)) ≈ L(β(i))− η〈∇L(β(i)),∇L(β(i))〉
= L(β(i))− η‖∇L(β(i))‖ࠁࠁ.

Approximation holds true for small η. When it does not, we
might be overshooting.

ࠀࠅ

BACKTRACKING LINE SEARCH/ARMIJO RULE

Gradient descent with backtracking line search:

• Choose arbitrary starting point β.

• Choose starting step size η.

• Choose τ, c < ࠀ (typically both c = ࠁ/ࠀ and τ = (ࠁ/ࠀ

• For i = ,ࠀ . . . , T:

• β(new) = β − η∇L(β)
• If L(β(new)) ≤ L(β)− cη‖∇L(β)‖ࠁࠁ

• β ← β(new)

• η ← τ−ࠀη

• Else
• η ← τη

Always decreases objective value, works very well in practice.

ࠁࠅ

