
CS-GY 6923: Lecture 4
Naive Bayes Classifier, Bayesian Linear
Regression + Regularization

NYU Tandon School of Engineering, Prof. Christopher Musco
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BAYESIAN PROBABILISTIC MODELING

Specific approach to machine learning:

1. Design parametric probabilistic model (usual pretty
simple) that plausibly could have generated our data
(x1, y1), . . . , (xn, yn).

2. Learn unknown parameters of the model based on
observed training data.

3. Given new input x, predict the label y which is most likely
under the now fixed probabilistic model.

Two strategies covered: Maximum a posteriori (MAP)
estimation and maximum likelihood estimation (MLE).
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NAIVE BAYES CLASSIFIER

Goal:

• Build a probabilistic model for a binary classification
problem.

• Estimate parameters of the model.
• From the model derive a Maximum a posteriori (MAP)
estimation classification rule for future predictions.
Specifically we will see the Naive Bayes Classifier.
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SPAM PREDICTION

Both target labels and data vectors are binary.
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PROBABILISTIC MODEL FOR EMAIL

Probabilistic model for (bag-of-words, label) pair (x, y):

• Set y = 0 with probability p0, y = 1 with probability
p1 = 1− p0.

• p0 is probability an email is not spam (e.g. 99%).
• p1 is probability an email is spam (e.g. 1%).

• If y = 0, for each i, set xi = 1 with prob. pi0.
• If y = 1, for each i, set xi = 1 with prob. pi1.

Unknown model parameters:
• p0,p1,
• p10,p20, . . .pn0, one for each of the n vocabulary words.
• p11,p21, . . .pn1, one for each of the n vocabulary words.
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PARAMETER ESTIMATION

How to set parameters:

• Set p0 and p1 to the empirical fraction of not spam/spam
emails.

• For each word i, set pi0 to the empirical probability word i
appears in a non-spam email.

• For each word i, set pi1 to the empirical probability word i
appears in a spam email.

Estimating these parameters from previous data examples is
the only “training” we will do.
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DONE WITH MODELING
ON TO PREDICTION
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PROBABILITY REVIEW

• Probability: p(x) – the probability event x happens.
• Joint probability: p(x,y) – the probability that event x and
event y happen.

• Conditional Probability p(x | y) – the probability x
happens given that y happens.

p(x|y) =
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BAYES THEOREM/RULE

p(x|y) = p(y|x)p(x)
p(y)

Proof:
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CLASSIFICATION RULE

Given unlabeled input (w, ), choose the label y ∈ {0, 1}
which is most likely given the data. Recall w = [0, 0, 1, . . . , 1, 0].

Classification rule: maximum a posterior (MAP) estimate.

Step 1. Compute:

• p(y = 0 | w): prob. y = 0 given observed data vector w.
• p(y = 1 | w): prob. y = 1 given observed data vector w.

Step 2. Output: 0 or 1 depending on which probability is larger.

p(y = 0 | w) and p(y = 1 | w) are called posterior probabilities.
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EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

p(z = 0 | w) = p(w | y = 0)p(y = 0)
p(w) (1)

posterior = likelihood× prior
evidence (2)

• Prior: Probability in class 0 prior to seeing any data.
• Posterior: Probability in class 0 after seeing the data.
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EVALUATING THE POSTERIOR

Goal is to determine which is larger:

p(y = 0 | w) = p(w | y = 0)p(y = 0)
p(w) vs.

p(y = 1 | w) = p(w | y = 1)p(y = 1)
p(w)

• We can ignore the evidence p(w) since it is the same for
both sides!

• p(y = 0) and p(y = 1) already known (computed from
training data). These are our computed parameters p0, p1.

• p(w | y = 0) = ? p(w | y = 1) = ?
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EVALUATING THE POSTERIOR

Consider the example w = [0, 1, 1, 0, 0, 0, 1, 0].

Recall that, under our model, index i is 1 with probability pi0 if
we are not spam, and 1 with probability pi1 if we are spam .

p(w | y = 0) =

p(w | y = 1) =
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NAIVE BAYES

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

• p0 = p(y = 0),p1 = p(y = 1)
• For all i compute:

• pi0 = p(xi = 1 | y = 0) and (1− pi0) = p(xi = 0 | y = 0)
• pi1 = p(xi = 1 | y = 1) and (1− pi1) = p(xi = 0 | y = 1)

Prediction:
• For new input w:

• Compute p(w | y = 0) =
∏

i p(wi | y = 0)
• Compute p(w | y = 1) =

∏
i p(wi | y = 1)

• Return

argmax [p (w | y = 0) · p (y = 0) ,p (w | y = 1) · p (y = 1)] .
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OTHER APPLICATIONS OF
THE BAYESIAN PERSPECTIVE
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BAYESIAN REGRESSION

The Bayesian view offers an interesting alternative perspective
on many machine learning techniques.

Example: Linear Regression.

Probabilistic model:

y = ⟨x,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.

Pr(η = z) ∼

The symbol ∼ means “is proportional to”. 14



GAUSSIAN DISTRIBUTION REFRESHER

Names for same thing: Normal distribution, Gaussian
distribution, bell curve.

Parameterized by mean µ and variance σ2.

η is a continuous random variable, so it has a probability
density function p(η) with

∫∞
−∞ p(η)dη = 1

p(η) = 1
σ
√
2π

e−
1
2 (

η−µ
σ

)2
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GAUSSIAN DISTRIBUTION REFRESHER

The important thing to remember is that the the PDF falls off
exponentially as we move further from the mean.

The normalizing constant in front 1/2, etc. don’t matter so
much.
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QUICK CHECK

Example: Linear Regression.

Probabilistic model:

y = ⟨x,β⟩+ η

where the η drawn from N(0, σ2) is random Gaussian noise.
The noise is independent for different inputs x1, . . . , xn.

If we knew β what is the maximum a posterior (MAP) estimate
for y given new data observation x?

I.e. what value of y maximizes Pr(y | x)?
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BAYESIAN REGRESSION

How should be select β for our model?

Also use a Bayesian approach!

Choose β to maximize:

posterior = Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) =

likelihood× prior
evidence .

In this case, we don’t have a prior – no values of β are
inherently more likely than others.

Choose β to maximize just the likelihood:
Pr(X, y | β)Pr(β)

Pr(X, y) =
likelihood× prior

evidence .

This is called the maximum likelihood estimate.
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MAXIMUM LIKELIHOOD ESTIMATE

Data:

X =


— x1 —
— x2 —

...
— xn —

 y =


y1
y2
...
yn


Model: yi = ⟨xi,β⟩+ ηi where p(ηi = z) ∼ e−z2/2σ2 and η1, . . . , ηn
are independent.

Pr(X, y | β) ∼
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LOG LIKELIHOOD

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) = argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

= argmax
β

log

( n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2

)

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2.
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MAXIMUM LIKELIHOOD ESTIMATOR

Conclusion: Choose β to minimize:

n∑
i=1

(yi − ⟨xi,β⟩)2 = ∥y− Xβ∥22.

This is a completely different justification for squared loss!

Minimizing the ℓ2 loss is optimal in a certain sense when you
assume your data follows a linear model with i.i.d. Gaussian
noise.
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BAYESIAN REGRESSION

If we had modeled our noise η as Laplace noise, we would
have found that minimizing ∥y− Xβ∥1 was optimal.

Pr(η = z) ∼

Laplace noise has “heavier tails”, meaning that it results in
more outliers.

This is a completely different justification for ℓ1 loss.
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BAYESIAN REGULARIZATION

We can add another layer of probabilistic modeling by also
assuming β is random and comes from some distribution,
which encodes our prior belief on what the parameters are.

Return to Maximum a posteriori (MAP estimation):

Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) .

Assume values in β = [β1, . . . , βd] come from some distribution.

• Common model: Each βi drawn from N(0, γ2), i.e. normally
distributed, independent.

• Encodes a belief that we are unlikely to see models with
very large coefficients.
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BAYESIAN REGULARIZATION

Goal: choose β to maximize:

Pr(β | X, y) = Pr(X, y | β) Pr(β)
Pr(X, y) .

• We can still ignore the “evidence” term Pr(X, y) since it is a
constant that does not depend on β.

• Pr(β) = Pr(β1) · Pr(β2) · . . . · Pr(βd)
• Pr(β) ∼
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BAYESIAN REGULARIZATION

Easier to work with the log likelihood:

argmax
β

Pr(X, y | β) · Pr(β)

= argmax
β

n∏
i=1

e−(yi−⟨xi,β⟩)2/2σ2 ·
n∏
i=1

e−(βi)
2/2γ2

= argmax
β

n∑
i=1

−(yi − ⟨xi,β⟩)2/2σ2 +
d∑
i=1

−(βi)
2/2γ2

= argmin
β

n∑
i=1

(yi − ⟨xi,β⟩)2 +
σ2

γ2

d∑
i=1

(βi)
2/σ2.

Choose β to minimize ∥y− Xβ∥22 + σ2

γ2 ∥β∥22.

Completely different justification for ridge regularization!
25



BAYESIAN REGULARIZATION

Test your intuition: What modeling assumption justifies LASSO
regularization: min ∥y− Xβ∥22 + λ∥β∥1?
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LINEAR CLASSIFICATION
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MOTIVATING PROBLEM

Breast Cancer Biopsy: Determine if a breast lump in a patient
is malignant (cancerous) or benign (safe).

• Collect cells from lump using fine needle biopsy.
• Stain and examine cells under microscope.
• Based on certain characteristics (shape, size, cohesion)
determine if likely malignant or not).
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MOTIVATING PROBLEM

Demo: demo_breast_cancer.ipynb
Data: UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(original)

Features: 10 numerical scores about cell characteristics (Clump
Thickness, Uniformity, Marginal Adhesion, etc.) 28

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)


MOTIVATING PROBLEM

Data: (x1, y1), . . . , (xn, yn).

xi = [1, 5, 4 . . . , 2] contains score values.

Label yi ∈ {0, 1} is 0 if benign cells, 1 if malignant cells.

Goal: Based on scores (which would be collected manually, or
even learned on their own using an ML algorithm) predict if a
sample of cells is malignant or benign.

Approach:

• Naive Bayes Classifier can be extended to x with numerical
values (instead of binary values as seen before). Will see
on homework.

• Today: Learn a different type of classifier.
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BEGIN BY PLOTTING DATA

We pick two variables, Margin Adhesion and Size Uniformity
and plot a scatter plot. Points with label 1 (malignant) are
plotted in blue, those with label 2 (benign) are plotted in green.

Lots of overlapping points! Hard to get a sense of the data. 30



PLOTTING WITH JITTER

Simple + Useful Trick: data jittering. Add tiny random noise
(using e.g. np.random.randn) to data to prevent overlap.

Noise is only for plotting. It is not added to the data for
training, testing, etc. 31



BRAINSTORMING

Any ideas for possible classification rules for this data?
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LINEAR CLASSIFIER

Given vector of predictors xi ∈ Rd (here d = 2) find a parameter
vector β ∈ Rd and threshold λ.

• Predict yi = 0 if ⟨xi,β⟩ ≤ λ.
• Predict yi = 1 if ⟨xi,β⟩ > λ

Line has equation ⟨x,β⟩ = λ. 33



LINEAR CLASSIFIER

As long as we append a 1 onto each data vector xi (i.e. a
column of ones onto the data matrix X) like we did for linear

regression, an equivalent function is:

• Predict yi = 0 if ⟨xi,β⟩ ≤ 0.
• Predict yi = 1 if ⟨xi,β⟩ > 0

Line has equation ⟨x,β⟩ = 0.
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0− 1 LOSS

Question: How do we find a good linear classifier
automatically?

Loss minimization approach (first attempt):

• Model1:

fβ(x) = 1 [⟨x,β⟩ > 0]

• Loss function: “0− 1 Loss”

L(β) =
n∑
i=1

|fβ(xi)− yi|

1
1[event] is the indicator function: it evaluates to 1 if the argument inside is

true, 0 if false.
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0− 1 LOSS

Problem with 0− 1 loss:

• The loss function L(β) is not differentiable because fβ(x)
is discontinuous.

• Impossible to take the gradient, very hard to minimize loss
to find optimal β.

• Non-convex function (will make more sense next lecture).
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LINEAR CLASSIFIER VIA SQUARE LOSS

Loss minimization approach (second attempt):

• Model:

fβ(x) = 1 [⟨x,β⟩ > 1/2]

• Loss function: “Square Loss”

L(β) =
n∑
i=1

(⟨x,β⟩ − yi)2

Intuitively tries to make ⟨x,β⟩ close to 0 for examples in class
0, close to 1 for examples in class 1.
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LINEAR CLASSIFIER VIA SQUARE LOSS

We can solve for β by just solving a least squares multiple
linear regression problem.

Do you see any issues here?
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LINEAR CLASSIFIER VIA SQUARE LOSS

Problem with square loss:

• Loss increases if ⟨x,β⟩ > 1 even if correct label is 1. Or if
⟨x,β⟩ < 0 even if correct label is 0.

• Intuitively we don’t want to “punish” these cases.
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LOGISTIC REGRESSION

Let hβ(x) be the logistic function:

hβ(x) =
1

1+ e−⟨β,x⟩
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LOGISTIC REGRESSION

Loss minimization approach (this works!):

• Model: Let hβ(x) = 1
1+e−⟨β,x⟩

fβ(x) = 1 [hβ(x) > 1/2]

• Loss function: “Logistic loss” aka “binary cross-entropy
loss”

L(β) = −
n∑
i=1

yi log(hβ(x)) + (1− yi) log(1− hβ(x))
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LOGISTIC LOSS

Logistic Loss:
L(β) = −

∑n
i=1 yi log(hβ(x)) + (1− yi) log(1− hβ(x))
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LOGISTIC LOSS

Logistic Loss:
L(β) = −

∑n
i=1 yi log(hβ(x)) + (1− yi) log(1− hβ(x))
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LOGISTIC LOSS

• Convex function in β, can be minimized using gradient
descent (next lecture).

• Works well in practice.
• Good Bayesian motivation: see posted lecture notes if you
are interested.

Fit using logistic regression/log loss.
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ERROR IN CLASSIFICATION

Once we have a classification algorithm, how do we judge its
performance?

• Simplest answer: Error rate = fraction of data examples
misclassified in test set.

• What are some issues with this approach?
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ERROR IN CLASSIFICATION

• Precision: Fraction of
positively labeled
examples (label 1) which
are correct.

• Recall: Fraction of true
positives that we labeled
correctly with label 1.

Question: Which should we
optimize for medical diagnosis?
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ERROR IN CLASSIFICATION

Logistic regression workflow:

• Select β via training and compute hβ(xi) = 1
1+e−⟨xi,β⟩ for all

xi.
• Predict yi = 0 if hβ(xi) ≤ λ, yi = 1 if hβ(xi) > λ.
• Default value of λ is 1/2. Increasing λ improves precision.
Decreasing λ improves recall.
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ERROR IN CLASSIFICATION

Once we have a classification algorithm, how do we judge its
performance?

• Simplest answer: Error rate = fraction of data examples
misclassified in test set.

• What are some issues with this approach?
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ERROR IN CLASSIFICATION

• Precision: Fraction of
positively labeled
examples (label 1) which
are correct.

• Recall: Fraction of true
positives that we labeled
correctly with label 1.

Question: Which should we
optimize for medical diagnosis?
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ERROR IN CLASSIFICATION

Possible logistic regression workflow:

• Learn β⃗ and compute h
β⃗
(⃗xi) = 1

1+e−⟨⃗xi,β⃗⟩
for all x⃗i.

• Predict yi = 0 if h
β⃗
(⃗xi) ≤ λ, yi = 1 if h

β⃗
(⃗xi) > λ.

• Default value of λ is 1/2. Increasing λ improves precision.
Decreasing λ improves recall.

This is very heuristic. There are other methods for handling
“class imbalance” which can often lead to good overall error,
but poor precision or recall. Techniques include weighting the
loss function to care more about false negatives, or
subsampling the larger class.
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MULTICLASS

What about when y ∈ {1, . . . , q} instead of y ∈ {0, 1}

Two options for multiclass data:

• One-vs.-all (most common, also called one-vs.-rest)
• One-vs.-one (slower, but can be more effective)

In both cases, we convert to multiple binary classification
problem.
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ONE VS. REST

• For q classes train q classifiers. Obtain parameters β⃗1, . . . , β⃗q.

• Assign y to class i with maximum ⟨β⃗i, x⃗⟩.
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ONE VS. REST

• For q classes train q(q−1)
2 classifiers.

• Assign y to class which i which wins in the most number of
head-to-head comparisons.
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ONE VS. ONE

Hard case for one-vs.-all.

• One-vs.-one would be a better choice here.
• Also tends to work better when there is class in balance.
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SOFTMAX/MULTICLASS CROSS-ENTROPY LOSS

We will see one more very common approach related to
one-vs-rest either next lecture or when we do neural nets.

55



ERROR IN (MULTICLASS) CLASSIFICATION

Confusion matrix for k classes:

• Entry i, j is the fraction of class i items classified as class j.
• Useful to see whole matrix to visualize where errors occur.
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