
CS-GY 6923: Lecture 3
Model Selection + Regularization + Bayesian
Perspective

NYU Tandon School of Engineering, Prof. Christopher Musco
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COURSE ADMIN

• Homework 1 due tonight.
• New lab will be released tonight, due next Thursday.
• Next problem set will be due a week after that.
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LOSS MINIMIZATION

Basic machine learning problem:

• Given model fθ and loss function L(fθ).
• Choose θ∗ to minimize L(fθ).
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MODEL SELECTION

Model selection problem:

• Given choice of many models f(1)θ1
, f(2)θ2

, . . . , f(q)θq
.

• Choose θ∗
1 , . . . , θ

∗
q to minimize L(fθ1), . . . , L(fθq).

• Then choose the “best” model for our data.
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MODEL SELECTION EXAMPLE

Polynomial regression models with different degree. See
demo_polyfit.ipynb.

• Model f(1)θ1
: all linear functions.

• Model f(2)θ2
: all quadratic functions.

• Model f(3)θ3
: all cubic functions.

• . . .
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MODEL SELECTION

The more complex our model class (e.g., the higher degree we
allow in polynomial regression) the better our loss:

Training loss alone is not usually a good metric for model
selection. Small loss does not imply generalization to new

data.
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TRAIN-TEST PARADIGM

Main approach: Evaluate model on fresh test data which was
not used during training.

Test/train split:

• Given data set (X, y), split into two sets (Xtrain, ytrain) and
(Xtest, ytest).

• Train q models f(1), . . . , f(q) by finding parameters which
minimize the loss on (Xtrain, ytrain).

• Evaluate loss of each trained model on (Xtest, ytest).

7



GENERALIZATION

While train error always decreases, we eventually see test error
increase with increasing model complexity.
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THE FUNDAMENTAL CURVE OF ML

The above trend is fairly representative of what we tend to see
across the board:
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TRAIN-TEST INTUITION

Is “test error” the end goal though? Don’t we care about
“future” error?

Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?
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STATISTICAL LEARNING MODEL

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

E.g. x1, . . . , xd are Gaussian random variables with parameters
µ1, σ1, . . . , µd, σd.

This is not a simplifying assumptions! The distribution could
be arbitrarily complicated.
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RISK

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Define the Risk of a model/parameters:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

here L is our loss function (e.g. L(z, y) = |z− y| or
L(z, y) = (z− y)2).

Goal: Find model f ∈ {f(1), . . . , f(q)} and parameter vector θ to
minimize the R(f,θ).
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RISK

• (Population) Risk:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

• Empirical Risk: Draw (x1, y1), . . . , (xn, yn) ∼ D

RE(f,θ) =
1
n

n∑
i=1

L (f(x,θ), y)
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EMPIRICAL RISK

For any fixed model f and parameters θ,

E [RE(f,θ)] = R(f,θ).

Only true if f and θ are chosen without looking at the data
used to compute the empirical risk.
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MODEL SELECTION

• Train q models (f(1),θ∗
1 ), . . . , (f(q),θ∗

q).
• For each model, compute empirical risk RE(f(i),θ∗

i ) using
test data.

• Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, RE(f(i),θ∗

i ) is an unbiased estimate of the true risk
R(f(i),θ∗

i ) for every i. Can use it to distinguish between models.
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bag-of-words
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bi-grams
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

tri-grams
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MODEL SELECTION EXAMPLE

Models of increasing order:

• Model f(1)θ1
: spam filter that looks at single words.

• Model f(2)θ2
: spam filter that looks at bi-grams.

• Model f(3)θ3
: spam filter that looks at tri-grams.

• . . .

“interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.
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MODEL SELECTION EXAMPLE

Electrocorticography ECoG (upcoming lab):

• Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

• Predict hand motion based on ECoG measurements.
• Model order: predict movement at time t using brain
signals at time t, t− 1, . . . , t− q for varying values of q.
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AUTOREGRESSIVE MODEL

Predicting time t based on a linear function of the signals at
time t, t− 1, . . . , t− q is not the same as fitting a line to the
time series. It’s much more expressive.

Predecessor of modern “recurrent neural networks”.
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MODEL SELECTION LAB TIP

Electrocorticography ECoG lab:

First lab where computation actually matters (solving
regression problems with ∼ 40k examples, ∼ 1500 features)

Makes sense to test and debug code using a subset of the data.
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ADAPTIVE DATA ANALYSIS

Slight caveat: This is typically not how machine learning or
scientific discovery works in practice!

Typical workflow:

• Train a class of models.
• Test.
• Adjust class of models.
• Test.
• Adjust class of models.
• Cont...

Final model implicitly depends on test set because
performance on the test set guided how we changed our
model.
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ADAPTIVE DATA ANALYSIS

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

Kaggle (various competitions)

Imagenet (image classification and categorization) 24



ADAPTIVE DATA ANALYSIS

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research.
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ADAPTIVE DATA ANALYSIS

Do ImageNet Classifiers Generalized to ImageNet?

Interestingly, when comparing popular vision models on
“fresh” data, while performance dropped across the board, the
relative rank of model performance did not change
significantly.

26



REGULARIZATION
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OVER-PARAMETERIZED MODELS

In all the model selection examples we discussed we had full
control over the complexity of the model: could range from
underfitting to overfitting.

In practice, you often don’t have this freedom. Even the most
basic model might lead to overfitting.

Example: Linear regression model where d ≥ n. Can always
find β so that Xβ = y exactly. 27



FEATURE SELECTION

Select some subset of features to use in model:

Filter method: Compute some metric for each feature, and
select features with highest score.

• Example: compute loss or R2 value when each feature in X
is used in single variate regression.

Any potential limitations of this approach?
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FEATURE SELECTION

Exhaustive approach: Pick best subset of q features.

Faster approach: Greedily select q features.

Stepwise Regression:

• Forward: Step 1: pick single feature that gives lowest loss.
Step k: pick feature that when combined with previous
k− 1 chosen features gives lowest loss.

• Backward: Start with all of the features. Greedily eliminate
those which have least impact on model performance.

Feature selection deserves more than two slides, but we won’t
go into too much more detail!
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ALTERNATIVE APPROACH

Regularization: Explicitly discourage overfitting by adding a
regularization penalty to the loss minimization problem.

min
θ

[L(θ) + Reg(θ)] .

Example: Least squares regression. L(β) = ∥Xβ − y∥22.

• Ridge regression (ℓ2): Reg(β) = λ∥β∥22
• LASSO (least absolute shrinkage and selection operator)
(ℓ1): Reg(β) = λ∥β∥1

• Elastic net: Reg(β) = λ1∥β∥1 + λ2∥β∥22
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REGULARIZATION
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RIDGE REGULARIZATION

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• As λ → ∞, we expect ∥β∥22 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Feature selection methods attempt to set many
coordinates in β to 0. Ridge regularizations encourages
coordinates to be small.
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DUALITY WITH CONSTRAINED REGRESSION

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• Can be viewed as shrinking the size of our model class.
Relaxed version of minβ:∥β∥22<c ∥Xβ − y∥22.

Claim: For any λ, let β∗
λ = argminβ ∥Xβ − y∥22 + λ∥β∥22. Then

there is some c(λ) such that:

β∗
λ = argmin

β:∥β∥22<c(λ)
∥Xβ − y∥22.

Moreover, we have the for λ′ > λ, c(λ′) < c(λ).
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RIDGE REGULARIZATION

Ridge regression: minβ ∥Xβ − y∥22 + λ∥β∥22.

• minβ:∥β∥22<c ∥Xβ − y∥22 won’t have a solution at zero for all
y, even when over-parameterized.

• Regularization methods are not invariant to data scaling.
Typically when using regularization we mean center and
scale columns to have unit variance.
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RIDGE REGULARIZATION

How do we minimize: LR(β) = ∥Xβ − y∥22 + λ∥β∥22?
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LASSO REGULARIZATION

Lasso regularization: minβ ∥Xβ − y∥22 + λ∥β∥1.

• As λ → ∞, we expect ∥β∥1 → 0 and ∥Xβ − y∥22 → ∥y∥22.
• Typically encourages subset of βi’s to go to zero, in
contrast to ridge regularization.
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LASSO REGULARIZATION

Pros:

• Simpler, more interpretable model.
• More intuitive reduction in model order.

Cons:

• No closed form solution because ∥β∥1 is not
differentiable.

• Can be solved with iterative methods, but generally not as
quickly as ridge regression.
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REGULARIZATION

Notes:

• Model selection/cross validation used to choose optimal
scaling λ on λ∥β∥22 or λ∥β∥1.

• Often grid search for best parameters is performed in “log
space”. E.g. consider [λ1, . . . , λq] = 1.5[−4,−3,−2,−1,−0,1,2,3,4].
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THE BAYESIAN/PROBABILISTIC MODELING PERSPECTIVE
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CLASSIFICATION SETUP

• Data Examples: x1, . . . , xn ∈ Rd

• Target: y1, . . . , yn ∈ {0, 2, . . . , q− 1} when there are q
classes.

• Binary Classification: q = 2, so each yi ∈ {0, 1}.
• Multi-class Classification: q > 2. 1

1Note that there is also multi-label classification where each data example
maybe belong to more than one class.
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CLASSIFICATION EXAMPLES

• Medical diagnosis from MRI: 2 classes.
• MNIST digits: 10 classes.
• Full Optical Character Regonition: 100s of classes.
• ImageNet challenge: 21,000 classes.

Running example today: Email Spam Classification.
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CLASSIFICATION

Classification can (and often is) solved using the same
loss-minimization framework we saw for regression.

We won’t see that today! We’re going to use classification as a
window into another way of thinking about machine learning.

Will give new an interesting justifications for tools like
regularization.

Today: ML from a Probabilistic Modeling/Bayesian
Perspective.
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PROBABILISTIC MODELING

In a Bayesian or Probabilistic approach to machine learning we
always start by conjecturing a

probabilistic model

that plausibly could have generated our data.

• The model guides how we make predictions.
• The model typically has unknown parameters θ⃗ and we try
to find the most reasonable parameters based on
observed data (more on this later in lecture).
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PROBABILISTIC MODELING

Typically we try to keep things simple!
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PROBABILISTIC MODELING

Exercise: Come up with a probabilistic model for any one of
the following data sets (x1, y1), . . . , (xn, yn).

1. For n people: each xi ∈ {0, 1} with zero indicating male,
one indicating female. Each yi is the height of the person
in inches.

2. For n NYC apartments: each xi is the size of the apartment
in square feet. Each yi is the monthly rent in dollars.

3. For n students: each xi ∈ {Fresh., Soph., Jun., Sen.}
indicating class year. Each yi ∈ {0, 1} with zero indicating
the student has not taken machine learning, one
indicating they have.

What are the unknown parameters of your model. What would
be a guess for their values? How would you confirm or refine

this guess using data? 44



PROBABILISTIC MODELING

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n people: each xi ∈ {0, 1} with zero indicating
male, one indicating female. Each yi is the height of the person
in inches.

Model:
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PROBABILISTIC MODELING

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n NYC apartments: each xi is the size of the
apartment in square feet. Each yi is the monthly rent in dollars.

Model:
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PROBABILISTIC MODELING

Dataset: (x1, y1), . . . , (xn, yn)

Description: For n students: each
xi ∈ {Fresh., Soph., Jun., Sen.} indicating class year. Each
y1 ∈ {0, 1} with zero indicating the student has not taken
machine learning, one indicating they have.

Model:
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NAIVE BAYES CLASSIFIER

Goal:

• Build a probabilistic model for a binary classification
problem.

• Estimate parameters of the model.
• From the model derive a classification rule for future
predictions (the Naive Bayes Classifier).
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SPAM PREDICTION

Both target labels and data vectors are binary.
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PROBABILISTIC MODEL FOR EMAIL

Probabilistic model for (bag-of-words, label) pair (x, y):
• Set y = 0 with probability p0, y = 1 with probability
p1 = 1− p0.

• p0 is probability an email is not spam (e.g. 99%).
• p1 is probability an email is spam (e.g. 1%).

• If y = 0, for each i, set xi = 1 with prob. pi0.
• If y = 1, for each i, set xi = 1 with prob. pi1.

Unknown model parameters:
• p0,p1,
• p10,p20, . . .pn0, one for each of the n vocabulary words.
• p11,p21, . . .pn1, one for each of the n vocabulary words.

How would you estimate these parameters?
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PARAMETER ESTIMATION

Reasonable way to set parameters:

• Set p0 and p1 to the empirical fraction of not spam/spam
emails.

• For each word i, set pi0 to the empirical probability word i
appears in a non-spam email.

• For each word i, set pi1 to the empirical probability word i
appears in a spam email.

Estimating these parameters from previous data examples is
the only “training” we will do.
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DONE WITH MODELING
ON TO PREDICTION
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PROBABILITY REVIEW

• Probability: p(x) – the probability event x happens.
• Joint probability: p(x,y) – the probability that event x and
event y happen.

• Conditional Probability p(x | y) – the probability x
happens given that y happens.

p(x|y) =
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BAYES THEOREM/RULE

p(x|y) = p(y|x)p(x)
p(y)

Proof:

53



CLASSIFICATION RULE

Given unlabeled input (x, ), choose the label y ∈ {0, 1}
which is most likely given the data. Recall x = [0, 0, 1, . . . , 1, 0].

Classification rule: maximum a posterior prob. (MAP) estimate.

Step 1. Compute:

• p(y = 0 | x): prob. y = 0 given observed data vector x.
• p(y = 1 | x): prob. y = 1 given observed data vector x.

Step 2. Output: 0 or 1 depending on which probability is larger.

p(y = 0 | x) and p(y = 1 | x) are called posterior probabilities.
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EVALUATING THE POSTERIOR

How to compute the posterior? Bayes rule!

p(y = 0 | x) = p(x | y = 0)p(y = 0)
p(x) (1)

posterior = likelihood× prior
evidence (2)

• Prior: Probability in class 0 prior to seeing any data.
• Posterior: Probability in class 0 after seeing the data.
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EVALUATING THE POSTERIOR

Goal is to determine which is larger:

p(y = 0 | x) = p(x | y = 0)p(y = 0)
p(x) vs.

p(y = 1 | x) = p(x | y = 1)p(y = 1)
p(x)

How to compute posteriors:

• Ignore evidence p(x) since it is the same for both sides.
• p(y = 0) and p(y = 1) already known (computed from
training data).

• p(x | y = 0) = ? p(x | y = 1) = ?
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NAIVE BAYES

“Naive” Bayes Rule: Compute p(x | y = 0) by assuming
independence:

p(x | y = 0) = p(x1 | y = 0) · p(x2 | y = 0) · . . . · p(xn | y = 0)

• p(xi | y = 0) is the probability you observe xi given that an
email is not spam.2

A more complicated method might take dependencies into
account.

2Recall, xi is either 0 when word i is not present, or 1 when word i is present.
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NAIVE BAYES

Final Naive Bayes Classifier

Training/Modeling: Use existing data to compute:

• p(y = 0),p(y = 1)
• For all i:

• Compute p(0 at position i | y = 0),p(1 at position i | y0)
• Compute p(0 at position i | y = 1),p(1 at position i | y = 1)

Prediction:
• For all i:

• Compute p(x | y = 0) =
∏

i p(xi | y = 0)
• Compute p(x | y = 1) =

∏
i p(xi | y = 1)

• Return

argmax [p (x | y = 0) · p (y = 0) ,p (x | y = 1) · p (y = 1)] .
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