
CS-GY 6923: Lecture 2
Multiple Linear Regression + Feature
Transformations + Model Selection

NYU Tandon School of Engineering, Prof. Christopher Musco
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COURSE ADMIN

• First lab assignment lab_housing_partial.ipynb
due tonight, by midnight.

• First written assignment due next Thursday, by midnight.
• 10% extra credit if you use LaTeX or Markdown to typeset
your assignment.

The problem set is challenging. I expect working through the
problems to be one of the major ways you master material for
the course. Please try to get started ASAP so that you can take
advantage of office hours next week if needed.
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LINEAR ALGEBRA REVIEW

Now it the time to review your linear algebra!

Notation:

• Let X be an n× d matrix. Written X ∈ Rn×d.
• xi is the ith row of the matrix.
• x(j) is the jth column.
• xij is the i, j entry.
• For a vector y, yi is the ith entry.
• XT is the matrix transpose.
• yT is a vector transpose.

3



LINEAR ALGEBRA REVIEW

Things to remember:

• Matrix multiplication. If I multiply X ∈ Rn×d by Y ∈ Rd×k I
get XY = Z ∈ Rn×k.

• Inner product/dot product. ⟨y, z⟩ =
∑n

i=1 yizi.
• ⟨y, z⟩ = yTz = zTy.
• Euclidean norm: ∥y∥2 =

√
yTy.

• (XY)T = YTXT.
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LINEAR ALGEBRA REVIEW

Things to remember:

• Identity matrix is denoted as I.
• “Most” square matrices have an inverse: i.e. if Z ∈ Rn×n,
there is a matrix Z−1 such that Z−1Z = ZZ−1 = I.

• Let D = diag(d) be a diagonal matrix containing the
entries in d.

• XD scales the columns of X. DX scales the rows.
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LINEAR ALGEBRA REVIEW

You also need to be comfortable working with matrices in
numpy . Go through the demo_numpy_matrices.ipynb
slowly.
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REMINDER: SUPERVISED REGRESSION

Training Dataset:

• Given input pairs (x1, y1), . . . , (xn, yn).
• Each xi is an input data vector (the predictor).
• Each yi is a continuous output variable (the target).

Objective:

• Have the computer automatically find some function f(x)
such that f(xi) is close to yi for the input data.
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EXAMPLE FROM LAST CLASS

Predict miles per gallon of a vehicle given information about
its engine/make/age/etc.
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EXAMPLE FROM LAST CLASS

Dataset:
• x1, . . . , xn ∈ R (horsepowers of n cars – this is the
predictor/independent variable)

• y1, . . . , yn ∈ R (MPG – this is the response/dependent
variable)
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SUPERVISED LEARNING DEFINITIONS

What are the three components needed to setup a supervised
learning problem?

• Model fθ(x): Class of equations or programs which map input x
to predicted output. We want fθ(xi) ≈ yi for training inputs.

• Model Parameters θ: Vector of numbers. These are numerical
nobs which parameterize our class of models.

• Loss Function L(θ): Measure of how well a model fits our data.
Typically some function of fθ(x1)− y1, . . . , fθ(xn)− yn

Empirical Risk Minimization: Choose parameters θ∗ which minimize
the Loss Function:

θ∗ = argmin
θ

L(θ)
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SIMPLE LINEAR REGRESSION

Simple Linear Regression

• Model: fβ0,β1(x) = β0 + β1 · x

• Model Parameters: β0, β1

• Loss Function: L(β0, β1) =
∑n

i=1(yi − fβ0,β1(xi))2

Goal: Choose β0, β1 to minimize
L(β0, β1) =

∑n
i=1 |yi − β0 − β1xi|2.
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MULTIPLE LINEAR REGRESSION

Predict target y using multiple features, simultaneously.

Motivating example: Predict diabetes progression in patients
after 1 year based on health metrics. (Measured via numerical
score.)

Features: Age, sex, body mass index, average blood pressure,
six blood serum measurements (e.g. cholesterol, lipid levels,
iron, etc.)

Demo in demo_diabetes.ipynb.

12



LIBRARIES FOR THIS DEMO

Introducing Scikit Learn.
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SCIKIT LEARN

Pros:

• One of the most popular “traditional” ML libraries.

• Many built in models for regression, classification,
dimensionality reduction, etc.

• Easy to use, works with ‘numpy‘, ‘scipy‘, other libraries we use.

• Great for rapid prototyping, testing models.

Cons:

• Everything is very “black-box”: difficult to debug, understand
why models aren’t working, speed up code, etc.
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SCIKIT LEARN

Modules used:

• datasets module contains a number of pre-loaded
datasets. Saves time over downloading and importing
with pandas.

• linear_model can be used to solve Multiple Linear
Regression. A bit overkill for this simple model, but gives
you an idea of sklearn’s general structure.
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THE DATA MATRIX

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features
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THE DATA MATRIX

Target variable:

• Scalars y1, . . . , yn for n data examples (a.k.a. samples).

Predictor variables:

• d dimensional vectors x1, . . . , xn for n data examples and d
features
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MULTIPLE LINEAR REGRESSION

Data matrix indexing:

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd


Multiple Linear Regression Model:

Predict yi ≈ β0 + β1xi1 + β2xi2 + . . .+ βdxid

The rate at which diabetes progresses depends on many
factors, with each factor having a different magnitude effect.
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MULTIPLE LINEAR REGRESSION

Assume first columns contains all 1’s. If it doesn’t append on a
column of all 1’s.

X =


x11 x12 . . . x1d
x21 x22 . . . x2d
x31 x32 . . . x3d
...

...
...

xn1 xn2 . . . xnd

 =


1 x12 . . . x1d
1 x22 . . . x2d
1 x32 . . . x3d
...

...
...

1 xn2 . . . xnd


Multiple Linear Regression Model:

Predict yi ≈ β1xi1 + β2xi2 + . . .+ βdxid
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MULTIPLE LINEAR REGRESSION

Use as much linear algebra notation as possible!

• Model:

• Model Parameters:

• Loss Function:
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MULTIPLE LINEAR REGRESSION

Linear Least-Squares Regression.

• Model:

fβ(x) = ⟨x,β⟩

• Model Parameters:

β = [β1, β2, . . . , βd]

• Loss Function:

L(β) =
n∑
i=1

|yi − ⟨xi,β⟩|2

= ∥y− Xβ∥22
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LINEAR ALGEBRAIC FORM OF LOSS FUNCTION
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LOSS MINIMIZATION

Machine learning goal: minimize the loss function
L(β) : Rd → R.

Find optimum by determining for which β = [β1, . . . , βd] all
partial derivatives are 0. I.e. when do we have:

∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
. . .

0


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THE ALL IMPORTANT GRADIENT

For any function L(β) : Rd → R, the gradient ∇L(β) is a
function from Rd → Rd defined:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd


The gradient of the loss function is a central tool in machine
learning. We will use it again and again.
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GRADIENT

Loss function:

L(β) = ∥y− Xβ∥22

Gradient:

−2 · XT(y− Xβ)

Find optimum by determining for which β = [β1, . . . , βd] the
gradient is 0. I.e. when do we have:

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βd

 =


0
0
...
0


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LOSS MINIMIZATION

Goal: minimize the loss function L(β) = ∥y− Xβ∥22.

∇L(β) = −2 · XT(y− Xβ)
= 2XTXβ − 2XTy = 0

Solve for optimal β∗:

XTXβ∗ = XTy

β∗ =
(
XTX

)−1 XTy

26



MULTIPLE LINEAR REGRESSION SOLUTION

Need to compute β∗ = argminβ ∥y− Xβ∥22 =
(
XTX

)−1 XTy.

• Main cost is computing (XTX)−1 which takes O(nd2) time.
• Can solve slightly faster using the method
numpy.linalg.lstsq, which is running an algorithm
based on QR decomposition.

• For larger problems, can solve much faster using an
iterative methods like scipy.sparse.linalg.lsqr.

Will learn more about iterative methods when we study
Gradient Descent.
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GRADIENT WARMUP

Function:

f(z) = aTz for some fixed vector a ∈ Rd

Gradient:

Function:

f(z) = ∥z∥22

Gradient:
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GRADIENT

Loss function:

L(β) = ∥y− Xβ∥22
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TEST YOUR INTUITION

Example from book: What is the sign of β1 when we run a
simple linear regression using the following predictors for
number of sales in a particular market as a function of:

• Amount of TV advertising in that market:
• Amount of print advertising in that market:
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INTERACTING VARIABLES

What is the sign of the corresponding β’s when we run a
multiple linear regression using the following predictors
together:

• Amount of TV advertising in that market: Positive
• Amount of print advertising in that market: Negative, close
to zero

Can you explain this? Try to think of your own example of a
regression problem where this phenomenon might show up.
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DEALING WITH CATEGORICAL VARIABLES

The sex variable in the diabetes problem was binary. We
encoded it as 2 numbers – e.g. (0,1), (-1,1), (1,2).

Suppose we go back to the MPG prediction problem. What if
we had a categorical predictor variable for car make with more
than 2 options: e.g. Ford, BMW, Honda. How would you encode
as a numerical column?

ford
ford
honda
bmw

honda
ford


→




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ONE HOT ENCODING

Better approach: One Hot Encoding.

ford
ford
honda
bmw
honda
ford


→



1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0


• Create a separate feature for every category, which is 1
when the variable is in that category, zero otherwise.

• Not too hard to do by hand, but you can also use library
functions like sklearn.preprocessing.OneHotEncoder.

Avoids adding inadvertent linear relationships.
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TRANSFORMED LINEAR MODELS

Suppose we have singular variate data examples (x, y). How
could we fit the non-linear model:

y ≈ β0 + β1x+ β2x2 + β3x3.
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TRANSFORMED LINEAR MODELS

Transform into a multiple linear regression problem:

X =


1 x1 x21 x31
1 x2 x12 x32
1 x3 x23 x33
...

...
...

1 xn x2n x3n


Each column j is generated by a different basis function ϕj(x).
Could have:

• ϕj(x) = xq

• ϕj(x) = sin(x)
• ϕj(x) = cos(10x)
• ϕj(x) = 1/x
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TRANSFORMED LINEAR MODELS

Transformations can also be for multivariate data.

Example: Multinomial model.

• Given a dataset with target y and predictors x, z.
• For inputs (x1, z1), . . . , (xn, zn) construct the data matrix:

1 x1 x21 z1 z21 x1z1
1 x2 x22 z2 z22 x2z2
...

...
...

1 xn x2n zn z2n xnzn


• Captures non-linear interaction between x and y.
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MODEL SELECTION

Remainder of lecture: Learn about model selection, test/train
paradigm, and cross-validation through a simple example.
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FITTING A POLYNOMIAL

Simple experiment:

• Randomly select data points x1, . . . , xn ∈ [−1, 1].
• Choose a degree 3 polynomial p(x).
• Create some fake data: yi = p(xi) + η where η is a random
number (e.g random Gaussian).
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FITTING A POLYNOMIAL

Simple experiment:

• Use multiple linear regression to fit a degree 3 polynomial.
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FITTING A POLYNOMIAL

What if we fit a higher degree polynomial?

• Fit degree 5 polynomial under squared loss.
• Fit degree 10 polynomial under squared loss.
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FITTING A POLYNOMIAL

Even higher?

• Fit degree 40 polynomial under squared loss.
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MODEL SELECTION

The more complex our model class (i.e. the higher degree we
allow) the better our loss:

Is our model getting better and better?

Given the raw data, how do we know which model to choose?
Degree 3? Degree 5? Degree 40?
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MODEL SELECTION

The more complex our model class the better our loss:

So training loss alone is not usually a good metric for model
selection. Small loss does not imply generalization.
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MODEL SELECTION

Problem: Loss alone is not informative for choosing model.

For more complex models, we get smaller loss on the training
data, but don’t expect to perform well on “new” data:

In other words, the model does not generalize.
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MODEL SELECTION

Solution: Directly test model on “new data”.

• Loss continues to decrease as model complexity grows.
• Performance on new data “turns around” once our model
gets too complex. Minimized around degree 4.
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TRAIN-TEST PARADIGM

Better approach: Evaluate model on fresh test data which was
not used during training.

Test/train split:

• Given data set (X, y), split into two sets (Xtrain, ytrain) and
(Xtest, ytest).

• Train q models f(1), . . . , f(q) by finding parameters which
minimize the loss on (Xtrain, ytrain).

• Evaluate loss of each trained model on (Xtest, ytest).

Sometimes you will see the term validation set instead of test set.
Sometimes there will be both: use validation set for choosing the

model, and test set for getting a final performance measure.
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TRAIN-TEST PARADIGM

• Train loss continues to decrease as model complexity
grows.

• Test loss “turns around” once our model gets too complex.
Minimized around degree 3− 4.
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GENERALIZATION ERROR

If the test loss remains low, we say that the model generalizes.
Test lost is often called generalization error.
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TRAIN-TEST PARADIGM

Typical train-test split: 70-90% / 10-30%. Trade-off between
between optimization of model parameters and better
estimate of model performance.
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K-FOLD CROSS VALIDATION

• Randomly divide data in K parts.
• Typical choice: K = 5 or K = 10.

• Use K− 1 parts for training, 1 for test.
• For each model, compute test loss Lts for each “fold”.
• Choose model with best average loss.
• Retrain best model on entire dataset.
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K-FOLD CROSS VALIDATION

Leave-one-out cross validation: take K = n, where n is our
total number of samples.

Is there any disadvantage to choosing K larger?
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TRAIN-TEST INTUITION

Intuition: Models which perform better on the test set will
generalize better to future data.

Goal: Introduce a little bit of formalism to better understand
what this means. What is “future” data?
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STATISTICAL LEARNING MODEL

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

This is not a simplifying assumptions! The distribution could
be arbitrarily complicated.
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RISK

Statistical Learning Model:

• Assume each data example is randomly drawn from some
distribution (x, y) ∼ D.

• Define the Risk of a model/parameters:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

here L is our loss function (e.g. L(z, y) = |z− y| or
L(z, y) = (z− y)2).

Goal: Find model f ∈ {f(1), . . . , f(q)} and parameter vector θ to
minimize the R(f,θ).
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RISK

• (Population) Risk:

R(f,θ) = E(x,y)∼D [L (f(x,θ), y)]

• Empirical Risk: Draw (x1, y1), . . . , (xn, yn) ∼ D

RE(f,θ) =
1
n

n∑
i=1

L (f(x,θ), y)

Minimizing training loss is the same as minimizing the
empirical risk on the training data.

Often called empirical risk minimization.
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EMPIRICAL RISK

For any fixed model f and parameters θ,

E [RE(f,θ)] = R(f,θ).

Only true if f and θ are chosen without looking at the data
used to compute the empirical risk.
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MODEL SELECTION

• Train q models (f(1),θ∗
1 ), . . . , (f(q),θ∗

q).
• For each model, compute empirical risk RE(f(i),θ∗

i ) using
test data.

• Since we assume our original dataset was drawn
independently from D, so is the random test subset.

No matter how our models were trained or how complex they
are, RE(f(i),θ∗

i ) is an unbiased estimate of the true risk
R(f(i),θ∗

i ) for every i. Can use it to distinguish between models.
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ADAPTIVE DATA ANALYSIS

Slight caveat: This is typically not how machine learning or
scientific discover works in practice!

Typical workflow:

• Train a class of models.
• Test.
• Adjust class of models.
• Test.
• Adjust class of models.
• Cont...

Final model implicitly depends on test set because
performance on the test set guided how we changed our
model.
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ADAPTIVE DATA ANALYSIS

Popularity of ML benchmarks and competitions leads to
adaptivity at a massive scale.

Kaggle (various competitions)

Imagenet (image classification and categorization) 59



ADAPTIVE DATA ANALYSIS

Is adaptivity a problem? Does it lead to over-fitting? How
much? How can we prevent it? All current research.
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bag-of-words
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

bi-grams
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MODEL SELECTION EXAMPLE

bag-of-words models and n-grams

Common way to represent documents (emails, webpages,
books) as numerical data. The ultimate example of 1-hot
encoding.

tri-grams
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MODEL SELECTION EXAMPLE

Models of increasing order:

• Model f(1)θ1
: spam filter that looks at single words.

• Model f(2)θ2
: spam filter that looks at bi-grams.

• Model f(3)θ3
: spam filter that looks at tri-grams.

• . . .

“interest” “low interest” “low interest loan”

Increased length of n-gram means more expressive power.
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MODEL SELECTION EXAMPLE

Electrocorticography ECoG (upcoming lab):

• Implant grid of electrodes on surface of the brain to
measure electrical activity in different regions.

• Predict hand motion based on ECoG measurements.
• Model order: predict movement at time t using brain
signals at time t, t− 1, . . . , t− q for varying values of q.
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